长沙市中考数学模拟试卷
2024年湖南省长沙市芙蓉区中考数学适应性试卷

一.选择题(共10小题,每小题3分,共30分)1.的倒数是()A.﹣2024B.2024C.D.2.龙年春晚分会场,“长沙元素”吸引八方来客,春节假日接待旅游人数278.94万人次,同比增长109.25%,其中数据278.94万用科学记数法表示为()A.2.7894×106B.0.27894×107C.2.7894×107D.27.894×1053.下列运算正确的是()A.2a2+a2=3a4B.(﹣2a2)3=8a6C.a2÷a3=D.(a﹣b)2=a2﹣b24.下列各组数中不能作为直角三角形的三边长的是()A.,,B.6,8,10C.7,24,25D.,3,55.3月28日,小米集团正式发布小米汽车SU7.小米SU7的正式发布上市,标志着小米“人车家生态”实现完整闭环,助推了我国新能源汽车产业的发展.以下是小米SU7Max四种造型的轮毂(除去轮胎的部分),其中不能近似看成轴对称图形的是()A.B.C.D.6.不等式组的解集在数轴上表示为()A.B.C.D.7.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是()A.B.C.D.8.下列命题是真命题的是()A.相等的角是对顶角B.圆周角等于圆心角的一半C.平分弦的直径垂直于弦D.同角或等角的余角相等9.王爷爷上午8:00从家出发,外出散步,到老年阅览室看了一会儿报纸,继续以相同的速度散步一段时间,然后回家.如图描述了王爷爷在散步过程中离家的路程s(米)与所用时间t(分)之间的函数关系,则下列信息错误的是()A.王爷爷看报纸用了20分钟B.王爷爷一共走了1600米C.王爷爷回家的速度是80米/分D.上午8:32王爷爷在离家800米处10.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN 为正三角形,则称图形G为点P的T型线,点P为图形G的T型点,△PMN为图形G关于点P的T 型三角形.若H(0,﹣2)是抛物线y=x2+n的T型点,则n的取值范围是()A.n≥﹣1B.n≤﹣1C.n≥﹣D.n≤﹣二.填空题(共6小题,每小题3分,共18分)11.的算术平方根是.12.分解因式:3x2+6xy+3y2=.13.将二次函数y=(x+1)2+3的图象向右平移2个单位,再向下平移5个单位,所得二次函数的解析式为.14.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S 2=0.08,成绩比较稳定的是(填“甲”或“乙”).乙15.若圆锥底面的半径为3,它的侧面展开图的面积为16π,则它的母线长为.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点M、N分别在AC、AB两边上,将△AMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM是直角三角形时,则tan∠AMN的值为.三.解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)17.计算:﹣2sin60°+(﹣1)0+()﹣2.18.先化简,再求值,再从0,1,2,3这4个数中选择一个恰当的x值代入求值.19.小明利用所学三角函数知识对小区洋房的高度进行测量.他们在地面的A点处用测角仪测得楼房顶端D点的仰角为30°,向楼房前行20m在B点处测得楼房顶端D点的仰角为60°,已知测角仪的高度是1.6m(点A,B,C在同一条直线上),根据以上数据求楼房CD的高度.(,结果取整数)20.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生,在扇形统计图中“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21.如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.22.春夏来临之际,天气开始暖和.某商家抓住商机,在三月份力推甲、乙两款儿童衬衣.已知三月份甲款衬衣的销售总额为6000元,乙款衬衣的销售总额为8100元,乙款衬衣的单价是甲款衬衣单价的1.5倍,乙款衬衣的销售数量比甲款衬衣的销售数量少5件.(1)求三月份甲款衬衣的单价是多少元?(2)四月份,该商家准备销售甲、乙两款衬衣共200件.为了加大推销力度,将甲款衬衣的单价在三月份的基础上下调了20%,乙款衬衣的单价在三月份的基础上打五折销售.要使四月份的总销售额不低于18720元,则该商家至少要卖出甲款衬衣多少件?23.如图,已知AB是⊙O的直径,AC是弦(不是直径),OD⊥AC垂足为G交⊙O于D,E为⊙O上一点(异于A、B),连接ED交AC于点F,过点E的直线交BA、CA的延长线分别于点P、M,且ME =MF.(1)求证:PE是⊙O的切线.(2)若DF=2,EF=8,求AD的长.(3)若PE=6,sin∠P=,求AE的长.24.我们不妨约定:在平面直角坐标系中,过某一点分别向x、y轴作垂线,若这一点与坐标轴围成的矩形周长和面积相等,则这个点叫做“和谐点”,这个矩形称为“和谐矩形”.例如,如图①,点P(﹣3,6),过点P分别作x、y垂线,与坐标轴围成的矩形周长和面积都是18,则点P为“和谐点”,矩形PBOA 为“和谐矩形”.(1)若点P(4,m﹣8)是第四象限的“和谐点”,求点p的坐标.(2)若反比例函数图象上存在“和谐点”,求k的取值范围.(3)如图②,一次函数与x轴、y轴分别交于点A、B,点P是△AOB的外接圆上一点,且四边形P AOB为“和谐矩形”,点C为弧BP的中点,点D是△AOB的外接圆上任意一点(P 与C不重合),连接CD,过点C作CD的垂线交直线DA于点E,求CE的最大值.25.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c 的对称轴是直线x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF=3PE.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.。
2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)

2024年湖南省长沙市雅礼集团中考模拟数学预测卷(一)一、单选题1.4的算术平方根是( )A .2±B .16±C .2D .2-2.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 3.如图所示的几何体是由一个正方体和一个圆柱组成的,它的左视图是( )A .B .C .D .4.方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =5.下列有关四边形的命题正确的是( )A .两组邻边分别相等的四边形是菱形B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .正方形的对角线相等且互相平分6.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择() A.甲B.乙C.丙D.丁7.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若2AB=,4BC=,则四边形EFGH的面积为()A.2 B.4 C.5 D.68.2023年6月4日,我省“神十五”航天员张陆和他的两位战友安全回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,则甲、乙两人同时被选中的概率为()A.12B.13C.14D.159.汉代初期的《淮南万毕术》是中国古代有关科技的重要文献,书中记载了我国古代学者在科技领域做过的一些探索及成就.如图1中记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,在如图2所示的井口放置一面平面镜可改变光路,当太阳光线AB与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=( )A .70︒B .75︒C .80︒D .85︒10.观察下边的数表(横排为行,竖排为列),按数表中的规律,分数242024若排在第a 行b 列,则a b -的值为( )A .2025B .2024C .2023D .2022二、填空题11.因式分解:22ax ax a -+=.12x 应满足的条件是.13.如图,BD 是等边ABC V 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长于点E ,则DEC ∠=.14.据长沙晚报消息:2023年一季度长沙全市实现地区生产总值3801.8亿元,同比增长4.5%.数据“3801.8亿”用科学记数法表示为.15.湖南是全国13个粮食主产省之一,水稻播种面积、总产量均居全国第一.2024年3月19日,习近平总书记来到常德市鼎城区谢家铺镇港中坪村,走进当地粮食生产万亩综合示范片区,察看秧苗培育和春耕备耕进展.如图为某农户家的圆锥形粮仓示意图,已知其底面周长为3π米,高度为3.6米,则此粮仓的侧面积为2m .(结果保留π)16.如图,点A ,B 分别在函数()0a y a x =>图像的两支上(A 在第一象限),连结AB 交x 轴于点C .点D ,E 在函数()0,0b y b x x=<<图像上,AE x P 轴,BD y ∥轴,连结DE ,BE .若2A C B C =,ABE V 的面积为12,四边形ABDE 的面积为15,则a b -的值为.三、解答题17.计算: 1011cos30|22-⎛⎫-⋅︒+ ⎪⎝⎭.18.先化简后求值:22222244a b a b a b a b a b a ab b +---÷+--+.其中2 1a b =. 19.如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)20.宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格(6070x≤<),一般(7080x≤<),良好(8090x≤<),优秀(90100x≤≤),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?21.已知图中ABC V 和BDE V 都是等边三角形,点C 可沿AD 边翻折至BD 边上的点F .(1)求证:AE CD =;(2)试用等式写出线段AD ,BD ,DF 三者之间的数量关系,并说明理由;22.某校与当地国防大学联合开展红色之旅研学活动,如地图1,上午7:00,国防大学官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路到红军抗战纪念基地进行研学.上午8:00,军车在离营地60km 的地方追上大巴并继续前行,到达仓库后,国防大学官兵下车领取研学物资,然后乘坐军车继续按原速前行,最后和师生同时到达基地,图2为军车和大巴离营地的路程()km s 与所用时间()h t 的函数关系.(1)求国防大学官兵在仓库领取物资所用的时间.(2)求大巴离营地的路程s 与所用时间t 的函数表达式及a 的值.(3)请直接写出军车领先大巴4km 时对应的大巴离营地的路程.23.如图所示,O e 外接于锐角ABC V ,D 为边BC 的中点,连接AD 并延长交O e 于点E ,过C 作AC 的垂线交AE 于点F ,点G 为AD 上一点,已知BC 平分EBG ∠且BCG AFC ∠=∠.(1)试求BGC ∠的度数.(2)①证明:AF BC =.②若AG DF =,求tan GBC ∠的值.24.定义:对于函数图像上任意一点(1x ,1y ),当1x 满足1m x n ≤≤(m 、n 为正实数)时,函数图像上都存在唯一的点(2x ,2y ),其中2m x n ≤≤,使得124y y ⋅=成立,则称该函数在m x n ≤≤时为“依赖函数”.(1)判断函数4y x=在34x ≤≤时是否为“依赖函数”,并说明理由; (2)若函数2y kx =+(0k ≠)在15x ≤≤时是“依赖函数”,求k 的值;(3)已知函数()2y x a =-(3a ≥)在34x ≤≤时是“依赖函数”,且在34x ≤≤时不等式()()2225x a t s t x -≥-+-+对于任意实数t 都成立,求实数s 的取值范围.25.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∠=︒∥,对角线BD 平分ADC ∠.求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ∠=∠=︒,BCD ∠为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ==,求四边形EBCD 的周长.。
湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟.doc

湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)【题文】数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或﹣3 B .6 C .﹣6 D .6或﹣6 【答案】A . 【解析】试题分析:设这个数是x ,则|x|=3,解得x=+3或﹣3.故选A . 考点:数轴.【题文】下列计算正确的是( )A .a3+a4=a7B .a3•a4=a7C .(a3)4=a7D .a6÷a3=a2 【答案】B . 【解析】试题分析:选项A ,a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;选项B ,、a3•a4=a7,正确;选项C ,应为(a3)4=a3×4=a12,故本选项错误;选项D ,应为a6÷a3=a6﹣3=a3,故本选项错误.故选B .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为( )A .42×103米B .0.42×105米C .4.2×104米D .4.2×105米 【答案】C . 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.将42千米用科学记数法表示为4.2×104,故选C . 考点:科学记数法.【题文】如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A.40° B.35° C.50° D.45°【答案】A.【解析】试题分析:已知AD平分∠BAC,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB∥CD,所以∠ACD=180°﹣∠BAC=40°,故选A.考点:平行线的性质.【题文】在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【答案】B.【解析】试题分析:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),根据“左加右减”的规律可得所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选B.考点:二次函数图象与几何变换.【题文】要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【答案】A.【解析】试题分析:根据被开方数大于等于0可得x﹣1≥0,解得x≥1.故选A.考点:二次根式有意义的条件.【题文】若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90° B.120° C.150° D.180°【答案】D.【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.【题文】下列说法正确的是()A. 随机抛掷一枚硬币,反面一定朝上B. 数据3,3,5,5,8的众数是8C. 某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D. 想要了解广安市民对“全面二孩”政策的看法,宜采用抽样调查【答案】D【解析】试题分析:选项A,抛硬币是一个随机事件,不能保证反面朝上,所以A错误;选项B,本组数据应该有两个众数,3、5都出现了两次,所以B错误;选项C,获奖概率为是一个随机事件,所以C错误;选项D,对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选D.考点:概率的意义;全面调查与抽样调查;众数.【题文】如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)【答案】B.【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.【题文】如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.xl=1,x2=2 B.xl=﹣2,x2=﹣1C.xl=1,x2=﹣2 D.xl=2,x2=﹣1【答案】C.试题分析:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),即可得关于x的方程kx+b=的解为xl=1,x2=﹣2.故选C.考点:反比例函数的图象;一次函数的图象.【题文】为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元 B.亏了12元 C.赚了20元 D.亏了20元【答案】D.【解析】试题分析:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选D.考点:一元一次方程的应用.【题文】若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【答案】C.【解析】试题分析:由题意得:an+1=an+an+2,an+2=an+1+an+3,an+3=an+2+an+4,三式相加,得:an+an+2+an+4=0,同理可得:an+1+an+3+an+5=0,以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选C.考点:规律探究题.【题文】如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF 是平行四边形(只填一个即可).【答案】AF=CE.试题分析:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.考点:平行四边形的判定与性质.【题文】有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.【答案】4.【解析】试题分析:由平均数的定义可得a=5×5﹣2﹣4﹣6﹣8=5,根据方差公式可得s2= [(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.考点:方差;算术平均数.【题文】已知x,y满足方程组,则x﹣y的值是.【答案】﹣1.【解析】试题分析:,由②﹣①得:x﹣y=﹣1.考点:解二元一次方程组.【题文】若关x的函数y=kx2+2x-1的图像与x轴仅有一个交点,则实数k的值为__________。
湖南长沙市中考模拟数学考试卷(三)(解析版)(初三)中考模拟.doc

湖南长沙市中考模拟数学考试卷(三)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣4的相反数().A.4 B.﹣4 C. D.【答案】A.【解析】试题分析:根据只有符号不同的两个数叫做互为相反数解答.所以﹣4的相反数4.故选:A.考点:相反数.【题文】下列图形中,是中心对称但不是轴对称图形的为().A. B. C. D.【答案】C.【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.考点:中心对称图形;轴对称图形.【题文】下列运算正确的是().A. B.C.3x﹣2x=1 D.【答案】D.【解析】试题分析:根据同底数幂的乘法与除法,幂的乘方的运算法则计算即可.A、与不是同类项,不能合并,故选项错误;B、应为,故选项错误;C、应为3x﹣2x=x,故选项错误;D、,正确.故选:D.考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.【题文】如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.【答案】A.【解析】试题分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得:第一层最左边有1个正方形,第二层有3个正方形.故选:A.考点:简单组合体的三视图.【题文】下列各式从左到右的变形中,为因式分解的是().A.x(a﹣b)=ax﹣bxB.C.﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【答案】C.【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积,可得答案.A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误.故选:C.考点:因式分解的意义.【题文】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为=0.56,=0.60,=0.50,=0.45,则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁【答案】D.【解析】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.∵=0.56,=0.60,=0.50,=0.45,∴<<<,∴成绩最稳定的是丁.故选:D.考点:方差;算术平均数.【题文】反比例函数y=的图象在().A.第一、二象限 B.第二、三象限C.第一、三象限 D.第二、四象限【答案】D.【解析】试题分析:根据反比例函数的图象与系数的关系即可得出结论.∵反比例函数y=中,k=﹣5<0,∴函数图象的两个分支分别位于二四象限.故选:D.考点:反比例函数的性质.【题文】一次函数y=﹣x+4的图象与两坐标轴所围成的三角形的面积为().A.2 B.4 C.6 D.8【答案】D.【解析】试题分析:先求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.∵令x=0,则y=4;令y=0,则x=4,∴直线与两坐标轴的交点分别为:(0,4),(4,0),∴一次函数y=﹣x+4的图象与两坐标轴所围成的三角形的面积=×4×4=8.故选:D.考点:一次函数图象上点的坐标特征.【题文】在半径为6的⊙O中,60°圆心角所对的扇形的面积为().A.6π B.4π C.2π D.π【答案】A.【解析】试题分析:根据扇形的面积公式S=进行解答即可.依题意到所求扇形的面积==6π.故选:A.考点:扇形面积的计算.【题文】如图,以两条直线,的交点坐标为解的方程组是().A. B. C. D.【答案】C.【解析】试题分析:两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.直线经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线,的交点坐标为解的方程组是:.故选:C.考点:一次函数与二元一次方程(组).【题文】如图,小山岗的斜坡AC的坡角α=45°,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,小山岗的高AB约为().(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)A.164m B.178m C.200m D.1618m【答案】C.【解析】试题分析:首先在Rt△ABC中,根据坡角的正切值用AB表示出BC,然后在Rt△DBA中,用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.∵在Rt△ABC中,=tanα=1,∴BC=AB,∵在RtADB中,∴=tan26.6°=0.50,即:BD=2AB,∵BD﹣BC=CD=200,∴2AB﹣AB=200,解得:AB=200米.故选:C.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【题文】如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为().A. B. C. D.【答案】A.【解析】试题分析:先求出△AEH与△BFE相似,再根据其相似比EF:FG=3:1设出AE、BF的长及AB、BC的长,求出的值即可.∵四边形EFGH是矩形ABCD的内接矩形,EF:FG=3:1,AB:BC=2:1,∴∠HEA+∠FEB=90°,∵∠FEB+∠EFB=90°,∴∠HEA=∠EFB,∵∠HAE=∠B,∴Rt△HAE∽△EBF,∴,同理可得,∠GHD=∠EFB,HG=EF,∴△GDH≌△EBF,DH=BF,DG=EB,设AB=2x,BC=x,AE=a,BF=3a,则AH=x﹣3a,AE=a,∴tan∠AHE=tan∠BEF,即,解得:x=8a,∴tan∠AHE===.故选:A.考点:勾股定理;全等三角形的性质;全等三角形的判定;相似三角形的判定与性质.【题文】一次函数y=3x+6中,y的值随x的增大而.【答案】增大.【解析】试题分析:根据一次函数的性质可知“当k>0时,变量y的值随x的值增大而增大”,由此可得出结论.考点:一次函数的性质.∵一次函数y=3x+6中,k>0,∴变量y的值随x的值增大而增大.故答案为:增大.【题文】不等式组的解集是.【答案】﹣1≤x≤1.【解析】试题分析:先求出各不等式的解集,再求出其公共解集即可.由(1)解得x≥﹣1.由(2)解得x≤1.故原不等式组的解集为:﹣1≤x≤1.故答案为:﹣1≤x≤1.考点:解一元一次不等式组.【题文】若∠A=45°30′,那么∠A的余角是.【答案】44°30′.【解析】试题分析:根据互为余角的两个角的和等于90°列式进行计算即可得解.则∠A的余角是90°﹣45°30′=44°30′.故答案为:44°30′.考点:余角和补角;度分秒的换算.【题文】已知一组数据3,4,4,2,5,这组数据的中位数为.【答案】4.【解析】试题分析:要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.从小到大排列此数据为:2、3、4、4、5,第3位是4,则这组数据的中位数是4.故答案为:4.考点:中位数.【题文】如图,在⊙O中,圆心角∠AOB=100°,点P是上任意一点(不与A、B重合,点C在AP的延长线上),则∠BPC= .【答案】50°.【解析】试题分析:在优弧上取点D,连接AD、BD,根据圆周角定理求出∠ADB=∠AOB=50°,根据圆内接四边形的性质可得∠BPC=∠ADB=50°.故答案为:50°.考点:圆内接四边形的性质;圆周角定理.【题文】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点的坐标是.【答案】(﹣1,0).【解析】试题分析:分别求得第一、二、三…八次变换后的坐标,得到每8次循环一次.则2016÷8=252即可求得结果.由题意第一次旋转后的坐标为(,),第二次旋转后的坐标为(0,﹣1),第三次旋转后的坐标为(,),第四次旋转后的坐标为(1,0),第五次旋转后的坐标为(,),第六次旋转后的坐标为(0,1),第七次旋转后的坐标为(,),第八次旋转后的坐标为(﹣1,0),因为2016÷8=252,所以把点A经过连续2016次这样的变换得到的点A2016的坐标是(﹣1,0).故答案是:(﹣1,0).考点:关于原点对称的点的坐标.【题文】计算:.【答案】1.【解析】试题分析:原式利用零指数幂、负整数指数幂法则,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=4﹣2+1﹣2=1.考点:实数的运算;零指数幂;负整数指数幂.【题文】先化简再求值:,其中x=.【答案】原式化简得,代入数值得.【解析】试题分析:先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.试题解析:原式===,当x=时,原式==.考点:分式的化简求值;分母有理化.【题文】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110【答案】(1)50;18;(2) 51﹣56分数段;(3) .【解析】试题分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.试题解析:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示,将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)P(一男一女l(2)作AM⊥BC于M,由等边三角形的性质和三角函数求出AM,在求出AD的长,证出四边形ABCD是梯形,由梯形的面积公式即可得出结果.试题解析:(1)∵△ABC、△ADE是等边三角形,∴AF=EF=AE=D E=AD,∠ACB=∠DAE=60°,∴四边形AFED是菱形;(2)解:作AM⊥BC于M,如图所示:∵△ABC是等边三角形,∴AC=BC=10,∠B=60°,∴AM=AB•sin60°=10×=,∵E是AC的中点,∴AE=AD=AC=5,∵∠ACB=∠DAE=60°,∴AD∥BC,∴四边形ABCD是梯形,∴四边形ABCD的面积=(AD+BC)×AM=(5+10)×=.考点:菱形的判定与性质;等边三角形的性质.【题文】为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150元,售价为168元;乙种商品每件进价为120元,售价为140元,该超市用42000元购进甲、乙两种商品,销售完后共获利5600元.(1)该超市购进甲、乙两种商品各多少件?(2)超市第二次以原价购进甲、乙两种商品共400件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元,共有几种进货方案?写出利润最大的进货方案.【答案】(1) 购进甲、乙两种商品分别为200件和100件;(2) 共有10种进货方案,当购进甲201件,乙种商品购进199件时,最大利润为7598元.【解析】试题分析:(1)设购进甲种商品x件,购进乙种商品y件,利用总成本和总利润列二元一次方程组,然后解方程组即可;(2)设超市第二次以原价购进甲a件,则乙种商品购进(400﹣a)件,利用“购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元”列不等式组,然后求出不等式组的整数解即可得到进货方案,再利用每件乙商品的利润比每件甲商品的利润大可确定利润最大的进货方案.试题解析:(1)设购进甲种商品x件,购进乙种商品y件,根据题意得,解得,答:该超市购进甲、乙两种商品分别为200件和10l【题文】如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.【答案】(1)证明详见解析;(2) ;(3)证明详见解析.【解析】试题分析:(1)连接OC,由AB为⊙O的直径,得到∠ACB=90°,求得∠ACB=∠D,根据角平分线的性质得到∠BAC=∠CAD,通过相似三角形得到∠ABC=∠ACD,等量代换得到∠OCB=∠ACD,求出∠OCD=90°,即可得到结论;(2)根据勾股定理得到AE==10,根据相似三角形的性质得到,代入数据得到r=,于是得到结论;(3)过C作CG⊥AE于G,根据全等三角形的性质得到AG=AD,CG=CD,推出Rt△BCG≌Rt△FCD,由全等三角形的性质得到BG=FD,等量代换即可得到结论.试题解析:(1)连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∵CD⊥AF,∴∠D=90°,∴∠ACB=∠D,∵AC平分∠BAF,∴∠BAC=∠CAD,∴△ABC∽△ACD,∴∠ABC=∠ACD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠ACD,∵∠OCB+∠ACO=∠ACO+∠ACD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵AD=6,DE=8,∴AE==10,∵OC∥AD,∴∠OCE=∠ADE,∴△OCE∽△ADE,∴,即,∴r= ,∴BE=10﹣=;(3)过C作CG⊥AE于G,在△ACG与△ACD中,∠GAC=∠DAC,∠CGA=∠CDA,AC=AC,∴△ACG≌△ACD,∴AG=AD,CG=CD,∵BC=CF,在Rt△BCG与Rt△FCD中,CG=CD,BC=CF,∴Rt△BCG≌Rt△FCD,∴BG=FD,∴AF+2DF=AD+DF=AG+GB=AB,即AF+2DF=AB.考点:切线的判定.【题文】(2016•长沙模拟)已知二次函数y=(k是常数).(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.【答案】(1) k<,且k≠0;(2) k<0;x<;(3)1,理由详见解析.【解析】试题分析:(1)根据题意k≠0,△>0,列出不等式组即可解决问题.(2)设反比例函数解析式为y=,因为经过点(1,k),所以m=k,再根据条件即可确定k的值以及x 的范围.(3)结论:=1.令y=0,则有=0,所以+=,=,根据=34,列出方程求出k的值,设过点P的直线为y=kx+3﹣k,由消去y得+(4k﹣2)x﹣3﹣4k=0,得=﹣(4k﹣2),=﹣3﹣4k,根据=,代入化简即可解决问题.试题解析:(1)∵二次函数y=与x轴有两个不同的交点,∴,解得k<,且k≠0.所以若该函数的图象与x轴有两个不同的交点,k的取值范围是k<,且k≠0;(2)设反比例函数解析式为y=,∵经过点(1,k),∴m=k,∵反比例函数和二次函数y=都是y随x的增大而增大,∴k<0,x<,即x<.(3)结论:=1.理由:令y=0,则有=0,∴+=,=∵=34,∴=34,∴=0,解得k=或,由(1)可知k<,∴k=,∴抛物线解析式为y=,设过点P的直线为y=kx+b,把P(1,3)代入得3=k+b,∴b=3﹣k,∴过点P的直线为y=kx+3﹣k,∵过点P的直线为y=kx+3﹣k与物线交于(,)、(,)两点,∴=k+3﹣k,=k+3﹣k,由消去y得+(4k﹣2)x﹣3﹣4k=0,∴=﹣(4k﹣2),=﹣3﹣4k ,∴===1.考点:二次函数综合题.【题文】(2016•长沙模拟)已知直线y=x+3与两坐标轴分别相交于A、B两点,若点P、Q分别是线段AB、OB上的动点,且点P不与A、B重合,点Q不与O、B重合.(1)若OP⊥AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;(2)当点P是AB的中点时,若△OPQ与△ABO相似,这时满足条件的点Q有几个?请分别求出相应的OQ 的长;(3)试探究是否存在以点P为直角顶点的Rt△OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P的坐标;若不存在,请说明理由.【答案】(1) 点Q有三个,OQ的长为2或或;(2) 2个,OQ的长为2或;(3)存在,OQ取最小值时点P的坐标(,).【解析】试题分析:(1)如图1中,满足条件的点Q有三个,分三种情形讨论即可①QO=QP,②OP=OQ,③PO=PQ.(2)如图2中,满足条件的点Q有2个.作⊥OB于,⊥OP于,可以证明、满足条件,理由相似三角形的性质即可解决问题.(3)存在.以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.由此求出OQ ,即可解决问题.试题解析:(1)如图1中,满足条件的点Q有三个.理由:作PM⊥OB于M,作OP的垂直平分线交OP于F,交OB于.则=,△是等腰三角形,此时=OB=2.∵A(0,3),B(4,0),∴OA=3,OB=4,AB=5,∵OP⊥AB,∴•OA•OB=•AB•OP,∴OP==,当=OP时,△是等腰三角形,此时=,当PO=时,∵PM⊥,∴=2OM,∵∠POM=∠,∠PMO=∠OPB,∴△OPM∽△OBP,∴=OM•OB,∴OM=,∴=.综上所述,△OPQ为等腰三角形时,满足条件的点Q有三个,OQ的长为2或或.(2)如图2中,满足条件的点Q有2个.理由:作⊥OB于,⊥OP于,∵PA=PB,∠AOB=90°,∴PA=PB=PO,∴∠=∠ABO,∵∠=∠AOB,∴△∽△BAO,∵PA=PB,∥OA,∴={{165}l∴PB=AB=AP=2,在Rt△PBG中,∵∠GPB=90°,PG=r,BG=4﹣r,PB=2,∴,∴r=,∴OQ=2r=3,∴当3≤OQ<4时,△OPQ可为直角三角形.作PM⊥OB于M.∵PM∥OA,∴,∴,∴PM=,BM=,∴OM=4﹣=,∴OQ取最小值时点P的坐标(,).考点:一次函数综合题.。
初中数学湖南省长沙市中考模拟数学考试题(含解析)

xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的相反数是()A.﹣2 B.﹣ C.2 D.试题2:据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105 B.10.2×103 C.1.02×104 D.1.02×103试题3:下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5 D.m5÷m3=m2试题4:下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm试题5:下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.试题6:不等式组的解集在数轴上表示正确的是()A. B. C. D.试题7:将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.试题8:下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件试题9:估计+1的值是()A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间试题10:小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min试题11:我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米试题12:若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无穷多个试题13:化简:=试题14:某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.试题15:在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是试题16:掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是试题17:已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为试题18:如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.试题19:计算:(﹣1)2018﹣+(π﹣3)0+4cos45°试题20:先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.试题21:)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?试题22:为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)试题23:随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?试题24:如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.试题25:如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.试题26:我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.试题1答案:C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.试题2答案:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:10200=1.02×104,故选:C.试题3答案:D【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.试题4答案:B分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.试题5答案:A【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.试题6答案:C分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.试题7答案:D【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.试题8答案:C分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.试题9答案:C【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.试题10答案:B【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.试题11答案:A【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.试题12答案:B【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.试题13答案:1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.试题14答案:90分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.试题15答案:(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).试题16答案:.【分析】先统计出偶数点的个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为=,故答案为:.试题17答案:2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.试题18答案:50【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.试题19答案:解:原式=1﹣2+1+4×=1﹣2+1+2=2.试题20答案:解:原式=a2+2ab+b2+ab﹣b2﹣4ab=a2﹣ab,当a=2,b=﹣时,原式=4+1=5.试题21答案:【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分的人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20%=100(份).试题22答案:【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.试题23答案:【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.试题24答案:【解答】(1)解:∵AD是边BC上的中线,∴BD=CD,∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6;(2)证明:∵BD=CD,∠BAD=∠CAD,AD=AD,∴△ABD≌△CAD,∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP、BQ、CQ,在Rt△ABD中,AB==5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中,(R﹣3)2+42=R2,解得R=,∴PD=PA﹣AD=﹣3=,∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴•r•5+•r•8+•r•5=•3•8,解得r=,即QD=,∴PQ=PD+QD=+=.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.试题25答案:【解答】解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+!,令x=0,得到y=m+1,∴D(0,m+1),令y+0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)设M(a,),∵△OPM∽△OCP,∴==,∴OP2=OC•OM,当m=3时,P(3,1),C(4,0),OP2=32+12=10,OC=4,OM=,∴=,∴10=4,∴4a4﹣25a2+36=0,(4a2﹣9)(a2﹣4)=0,∴a=±,a=±2,∵1<a<3,∴a=或2,当a=时,M(,2),PM=,CP=,≠(舍弃),当a=2时,M(2,),PM=,CP=,∴==,成立,∴M(2,).(3)不存在.理由如下:当m=5时,P(5,1),Q(1,5),设M(x,),OP的解析式为:y=x,OQ的解析式为y=5x,①当1<x<5时,如图1中,∴E(,),F(x,x),S=S矩形OAMB﹣S△OAF﹣S△OBE=5﹣•x•x﹣••=4.1,化简得到:x4﹣9x2+25=0,△<O,∴没有实数根.②当x≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.试题26答案:【解答】解:(1)①∵菱形,正方形的对角线互相垂直,∴菱形,正方形是:“十字形”,∵平行四边形,矩形的对角线不一定垂直,∴平行四边形,矩形不是“十字形”,故答案为:菱形,正方形;②如图,当CB=CD时,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,∴当CB≠CD时,四边形ABCD不是“十字形”,故答案为:不是;(2)∵∠ADB+∠CBD=∠ABD+∠CDB,∠CBD=∠CDB=∠CAB,∴∠ADB+∠CAD=∠ABD+∠CAB,∴180°﹣∠AED=180°﹣∠AEB,∴∠AED=∠AEB=90°,∴AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2),∵6≤AC2+BD2≤7,∴2﹣≤OE2≤2﹣,∴≤OE2≤,∴(OE>0);(3)由题意得,A(,0),B(0,c),C(,0),D(0,﹣ac),∵a>0,c<0,∴OA=,OB=﹣c,OC=,OD=﹣ac,AC=,BD=﹣ac﹣c,∴S=AC•BD=﹣(ac+c)×,S1=OA•OB=﹣,S2=OC•OD=﹣,S3=OA×OD=﹣,S4=OB×OC=﹣,∵=+,=+,∴+=+,∴=2,∴a=1,∴S=﹣c,S1=﹣,S4=﹣,∵,∴S=S1+S2+2,∴﹣c=﹣+2,∴﹣=﹣c•,∴=,∴b=0,∴A(﹣,0),B(0,c),C(,0),d(0,﹣c),∴四边形ABCD是菱形,∴4AD=12,∴AD=3,即:AD2=90,∵AD2=c2﹣c,∴c2﹣c=90,∴c=﹣9或c=10(舍),即:y=x2﹣9.。
2024年湖南省长沙市雅礼集团中考模拟数学试题(五)

2024年湖南省长沙市雅礼集团中考模拟数学试题(五)一、单选题1.2024-的倒数为( )A .2024B .12024C .2024-D .12024- 2.某市政府在2022年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示为( )A .82502.710⨯B .112.502710⨯C .102.502710⨯D .32.502710⨯ 3.如图是一个立体图形的三视图,该立体图形是( )A .三棱柱B .圆柱C .三棱锥D .圆锥4.下列函数中,函数值y 随x 的增大而减小的是( )A .6y x =B .6y x =-C .6y x =D .6y x =- 5.如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=︒,60D ∠=︒,则B ∠=( )A .50︒B .45︒C .40︒D .25︒6.某镇的“脆红李”深受广大市民的喜爱,也是馈赠亲友的尚佳礼品,首批“脆红李”成熟后,当地某电商用12000元购进这种“脆红李”进行销售,面市后,线上订单猛增供不应求,该电商又用11000元购进第二批这种“脆红李”,由于更多“脆红李”成熟,单价比第一批每件便宜了5元,但数量比第一批多购进了40件,求购进的第一批“脆红李”的单价.设购进的第一批“脆红李”的单价为x 元/件,根据题意可列方程为( )A .1200011000405x x =-- B .1200011000405x x -=+ C .1200011000405x x +=+ D .1100012000405x x +=- 7.为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公交车的车流量,则下列说法正确的是( )A .小车的车流量比公交车的车流量稳定B .小车的车流量比公交车的方差较大C .小车与公交车车流量在同一时间段达到最小值D .小车与公交车车流量的变化趋势相同8.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( ) A .AB CD ∥ B .AD BC = C .A B ∠=∠ D .A D ∠=∠9.()11,A x y ,()22,B x y 为反比例函数4k y x -=的图像上两点,当120x x <<时,有12y y <,则k 的取值范围是( )A .0k <B .0k >C .4k <D .4k >10.如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A ⋅⋅⋅是由多段90︒的圆心角所对的弧组成的.其中,¼1DA 的圆心为A ,半径为AD ;¼11A B 的圆心为B ,半径为1BA ;¼11B C 的圆心为C ,半径为1CB ;¼11C D 的圆心为D ,半径为1DC ,…,按规律循环延伸曲线,¼20242024A B 则的长是( )A .4047π2B .2024πC .2025π2D .2023π二、填空题11.函数y =x 的取值范围是. 12.分解因式:29m n n -=.13.在平面直角坐标系xOy 中,若反比例函数()0k y k x=≠的图象经过点()1,2--A 和点()2,B m ,则AOB V 的面积为.14.已知12,x x 是方程2220x kx +-=的两个实数根,且()()122210x x --=,则k 的值为. 15.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长80cm AB =,两个端点A ,B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则支撑点C ,D 之间的距离为cm .(结果保留根号)16.在ABC V 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B e 过点A ,E e 过点D ,若B e 与E e 有公共点,那么E e 半径r 的取值范围是.三、解答题17()042024π2cos30--+︒18.先化简,再求值;532224a a a a ⎛⎫ ⎪⎝-÷⎭+---,其中a 为满足04a <<的整数. 19.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)20.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A .剪纸社团,B .泥塑社团,C .陶笛社团,D .书法社团,E .合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.21.在如图所示的平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为(,点D 是边OC 上的动点,过点D 作DE OB ⊥交边OA 于点E ,作DF OB ∥交边BC 于点F ,连接EF ,设OD x =,DEF V 的面积为S .(1)求线段DF 的长度y 关于x 的函数解析式,并写出x 的范围;(2)当x 取何值时,S 的值最大?请求出S 的最大值.22.中国是世界文明古国之一.数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求《孙子算经》、《周髀算经》两种图书的单价分别为多少元?(2)国际数学节是为了纪念中国古代数学家祖冲之而设立的节日.为筹备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售,求两种图书分别购买多少本时费用最少?23.在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.24.如图(1)所示,已知在ABC V 中,AB AC =,O 在边AB 上,点F 为边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG V 是以OB 为腰的等腰三角形,且AO OF =,求OG OD的值. 25.如图1所示,已知抛物线212y x bx c =-++与x 轴交于A ,B 4,0 两点,与y 轴交于点()0,2C .点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)填空:b =______,c =______,tan ABC ∠=______;(2)如图1所示,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2所示,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒.点E ,F 分别为BDQ △的边DQ ,DB 上的动点,且QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB V 的面积为S ,若214S m k =-,请直接写出k 的取值范围.。
初中数学 湖南省长沙市中考模拟数学考试卷考试题及答案word解析版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-3相反数是()A. B.-3 C. - D.3试题2:下列平面图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.试题3:甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定试题4:一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()评卷人得分A. B. C.D.试题5:下列四边形中,对角线一定不相等的是()A.正方形 B.矩形 C.等腰梯形 D.直角梯形试题6:下列四个角中,最有可能与70°角互补的是()试题7:小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()试题8:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于E,AD=6cm,则OE的长为()A、6cmB、4cmC、3cmD、2cm试题9:某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数解析式为()A.I=B. I=C. I=D. I=-试题10:现有3㎝,4㎝,7㎝,9㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D.4个试题11:已知函数关系式:y=则自变量x的取值范围是__________试题12:如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= 度.试题13:若实数a,b满足:,则= .试题14:如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是试题15:任意抛掷一枚硬币,则“正面朝上”是事件试题16:在半径为1cm的圆中,圆心角为120°的扇形的弧长是 cm;试题17:如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= 度;试题18:如图,等腰梯形ABCD中,AD//BC,AB=AD=2,∠B=60°,则BC的长为;试题19:计算:试题20:先化简,再求值:,其中=-2,b=1;试题21:某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题:(1) 频数、频率统计表中,a=;b= ;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~1.5合计频数2 a2164 5频率0.4.16.4.32b 1试题22:如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD;试题23:以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。
湖南省长沙市天心区部分校2024届中考数学最后冲刺模拟试卷含解析

湖南省长沙市天心区部分校2024年中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=2.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.53.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°4.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C .D .5.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=5706.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A .16B .13C .12 D .237.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .8.下列方程中有实数解的是( )A .x 4+16=0B .x 2﹣x+1=0C .+2x x =-D .22111xx x =--9.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <010.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为()A .32πB .83πC .6πD .以上答案都不对11.下列实数中,有理数是( )A .2B .2.1C .πD .5312.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:2363m m -+=__________.14.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.15.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.16.当a =3时,代数式22121()222a a a a a a -+-÷---的值是______. 17.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.18.已知△ABC 中,∠C=90°,AB=9,2cos 3A =,把△ABC 绕着点C 旋转,使得点A 落在点A′,点B 落在点B′.若点A′在边AB 上,则点B 、B′的距离为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:x 2-4x -5=020.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A ,B ,C ,D ,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B 等级所对应扇形的圆心角度数;(3)已知A 等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.21.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).22.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣12).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.23.(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.25.(10分)楼房AB后有一假山,其坡度为i=13E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)26.(12分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.27.(12分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE 的坡度i=1:1(即DB :EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】根据应用题的题目条件建立方程即可.【题目详解】 解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.2、D【解题分析】根据二次函数的图象与性质即可求出答案.【题目详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【题目点拨】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.3、D【解题分析】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.4、D【解题分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【题目详解】分两种情况讨论:①当k <0时,反比例函数y=k x,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合; ②当k >0时,反比例函数y=k x ,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符. 分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【题目点拨】本题主要考查二次函数、反比例函数的图象特点.5、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6、D【解题分析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263,故选D.7、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【解题分析】A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【题目详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【题目点拨】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.9、A【解题分析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.10、D【解题分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【题目详解】阴影面积=() 603616103603π⨯-=π.故选D.【题目点拨】本题的关键是理解出,线段AB扫过的图形面积为一个环形.11、B【解题分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【题目详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、故选B.【题目点拨】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.12、D【解题分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可. 【题目详解】解:作AE ⊥BC 于E ,则四边形AECD 为矩形, ∴EC =AD =1,AE =CD =3, ∴BE =4,由勾股定理得,AB 22AE BE =5,∴四边形ABCD 的四条边之比为1:3:5:5, D 选项中,四条边之比为1:3:5:5,且对应角相等, 故选D . 【题目点拨】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、3(m-1)2 【解题分析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m +3=3(m 2-2m +1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).14、872【解题分析】由题意先求出DG 和FG 的长,再根据勾股定理可求得DF 的长,然后再证明△DGF ∽△DAI ,依据相似三角形的性质可得到DI 的长,最后依据矩形的面积公式求解即可. 【题目详解】∵四边形ABCD 、CEFG 均为正方形, ∴CD=AD=3,CG=CE=5, ∴DG=2,在Rt △DGF 中, DF=22DG FG +=222529+=, ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°, ∴∠FDG=∠IDA . 又∵∠DAI=∠DGF , ∴△DGF ∽△DAI , ∴23DF DG DI AD ==,即2923DI =,解得:DI=3292, ∴矩形DFHI 的面积是32987292=, 故答案为:872. 【题目点拨】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键. 15、12.2 【解题分析】∵△ABC 是边长为1的等腰直角三角形,∴S △ABC =12×1×1=12=11-1; 2211+2,22(2)(2)+,∴S △ACD =12221-1∴第n 个等腰直角三角形的面积是1n-1.∴S △AEF =14-1=4,S △AFG =12-1=8, 由这五个等腰直角三角形所构成的图形的面积为12+1+1+4+8=12.2.故答案为12.2. 16、1. 【解题分析】先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【题目详解】原式=212a a --÷()212a a --=()()a1a12a+--•()221aa--=1a1a+-,当a=3时,原式=3131+-=1,故答案为:1.【题目点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17、x<﹣2或0<x<2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.18、5【解题分析】过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.【题目详解】解:过点C作CH⊥AB于H,∵在Rt△ABC中,∠C=90,cosA=23,∴AC=AB•cosA=6,BC=35,在Rt△ACH中,AC=6,cosA=23,∴AH=AC•cosA=4,由旋转的性质得,AC=A'C,BC=B'C,∴△ACA'是等腰三角形,因此H也是AA'中点,∴AA'=2AH=8,又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,∴∠ACA'=∠BCB',∴△ACA'∽△BCB',∴‘'AC AABC BB=即68'35BB=,解得:BB'=45.故答案为:45.【题目点拨】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、x1 ="-1," x2 =5【解题分析】根据十字相乘法因式分解解方程即可.20、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.21、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解题分析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【题目详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元, ∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去). 答:每件乙服装进价的平均增长率为10%; (3)∵每件乙服装进价按平均增长率再次上调 ∴再次上调价格为:242×(1+10%)=266.2(元) ∵商场仍按9折出售,设定价为a 元时 0.9a-266.2>0 解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题 22、(1)y=﹣12(x+1)1;(1)点B (1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B ; 【解题分析】(1)根据待定系数法即可得出二次函数的解析式; (1)代入B (1,-1)即可判断; (3)根据题意设平移后的解析式为y=-12(x+1+m )1,代入B 的坐标,求得m 的植即可. 【题目详解】解:(1)∵二次函数y=a (x+m )1的顶点坐标为(﹣1,0), ∴m=1,∴二次函数y=a (x+1)1,把点A (﹣1,﹣12)代入得a=﹣12, 则抛物线的解析式为:y=﹣12(x+1)1.(1)把x=1代入y=﹣12(x+1)1得y=﹣92≠﹣1,所以,点B (1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣12(x+1+m )1, 把B (1,﹣1)代入得﹣1=﹣12(1+1+m )1, 解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B . 【题目点拨】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.23、(1)i )证明见试题解析;ii ;(2;(3)222(2p n m -=. 【解题分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CEBC CF==△CAE ∽△CBF ;ii )由AEBF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EFk BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =AC AEBC BF==BF =,得到2222222211()k k CE EF BE BF k k++=⨯=+,代入解方程即可;(3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(2AB BC AC =,222::1:1:(2EF FC EC =+,故22222222(2(2)(2(2p EF BE BF m m n =+=+=++=++,从而有222(2p n m -=+. 【题目详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵AC CEBC CF==,∴△CAE ∽△CBF ;ii )∵AEBF=,∴,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21AEBF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得104k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22n p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【题目点拨】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 24、 (1)见解析;(1)13【解题分析】试题分析:先用列表法写出点Q 的所有可能坐标,再根据概率公式求解即可. (1)由题意得 11-1 (1,-1)(1,-1)-1(1,-1)(1,-1)-2 (1,-2)(1,-2)(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=1 3 .考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.25、(39+93)米.【解题分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:3,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【题目详解】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵13EFiCF===tan∠ECF,∴∠ECF=30°,∴EF=12CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+103)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+103)米,∴AB=AH+HB=(35+103)米.答:楼房AB的高为(35+103)米.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.26、(1)详见解析;(2)详见解析;(3)3BC AB = 【解题分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论; (2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论. 【题目详解】 (1)∵AD=BD , ∴∠B=∠BAD , ∵AD=CD , ∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180° ∴∠B+∠C=90°, ∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形1122OA OB OC OD AC BD ∴===== AE CE ⊥ 90AEC ∴∠=︒12OE AC ∴=12OE BD ∴=90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE AB ∴=AE BC =3BC AB ∴=【题目点拨】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形.27、水坝原来的高度为12米【解题分析】试题分析:设BC=x 米,用x 表示出AB 的长,利用坡度的定义得到BD=BE ,进而列出x 的方程,求出x 的值即可.试题解析:设BC=x 米,在Rt △ABC 中,∠CAB=180°﹣∠EAC=50°,AB=≈=, 在Rt △EBD 中,∵i=DB :EB=1:1,∴BD=BE ,∴CD+BC=AE+AB ,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙市中考数学模拟试卷Modified by JACK on the afternoon of December 26, 20202017年长沙市中考数学模拟试卷(二)一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B. C.D.﹣12.下列各图中,∠1与∠2互为余角的是()A.B.C.D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形 B.矩形C.正方形D.圆4.据统计,2016年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.×106B.×107C.×107D.75×1055.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣6.下列说法中,正确的是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,908.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB 10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大B.越来越小C.先变大,后变小D.不变11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()A.12π﹣ B.4π﹣C.12π﹣9D.4π﹣912.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.二、填空题(每题3d分)13.分解因式:2x2﹣8=______.14.如图所示,在?ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=______.15.化简: +2=______.16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是______.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=______.18.规定一种新的运算:ab=,则12=______.三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1女(次)45 40 36 32 28 25 22 20 <19注:次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.2017年长沙市中考数学模拟试卷(二)参考答案与试题解析一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B. C.D.﹣1【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵>1,∴0<<1<,∴最大的数是,故选;B.2.下列各图中,∠1与∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.故选C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形 B.矩形C.正方形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称图形但不是轴对称图形,故本选项正确;B、矩形是中心对称图形也是轴对称图形,故本选项错误;C、正方形是中心对称图形也是轴对称图形,故本选项错误;D、圆是中心对称图形也是轴对称图形,故本选项错误.故选A.4.据统计,2016年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.×106B.×107C.×107D.75×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据7500000用科学记数法表示为×106.故选A.5.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣【考点】不等式的解集;解一元一次不等式.【分析】先将x=﹣2代入不等式,得到关于a的一元一次不等式,求得a的取值范围即可.【解答】解:∵不等式ax﹣3x+2>5的一个解是﹣2∴﹣2a+6+2>5∴﹣2a>﹣3∴a<故选A.6.下列说法中,正确的是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根一定大于0,错误,0的算术平方根是0;D、任何数都有立方根,故错误;故选:B.7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【考点】多边形内角与外角.【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选D.9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB【考点】两点间的距离.【分析】根据线段中点的性质,可得CD、BD与AB、BC的关系,可得答案.【解答】解:由C是线段AB的中点,D是线段CB的中点,得AC=CB,CD=DB.A、CD=CB﹣BD=AC﹣BD,故A正确;B、CD=CB﹣BD=AB﹣BD,故B正确;C、AC+BD=BC+CD,故C正确;D、CD=BC=AB,故D错误;故选:D.10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大B.越来越小C.先变大,后变小D.不变【考点】反比例函数系数k 的几何意义.【分析】由点A 在反比例函数图象上以及AB ⊥x 轴于点B ,结合反比例函数系数k 的几何意义即可得出S △ABO =|k |,由此即可得出结论.【解答】解:∵点A 是反比例函数y=图象上的一点,且AB ⊥x 轴于点B ,∴S △ABO =|k |,∴点A 从左往右移动的过程中,△ABO 的面积不变.故选D .11.如图,扇形AOB 是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为( )A .12π﹣B .4π﹣C .12π﹣9D .4π﹣9【考点】圆锥的计算.【分析】首先求得展开扇形的圆心角的度数,从而求得圆心到线AB 的长,用扇形的面积减去三角形的面积即可求得阴影部分的面积.【解答】解:由题意知:弧长=圆锥底面周长=2×2π=4πcm ,扇形的圆心角=弧长×180÷母线长÷π=4π×180÷6π=120°.作OC ⊥AB 于点C ,∴OC=OA=3,AB=2AC=2×3=6, ∴S 阴影=S 扇形﹣S △AOB =﹣×3×6=12π﹣9, 故选C .12.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线m ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据已知得出S与x之间的函数关系式,进而得出函数是二次函数,当x=﹣=2时,S取到最小值为: =0,即可得出图象.【解答】解:∵A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A 点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S△ABP=×PA×AB=(2﹣x)(﹣x+2)=x2﹣2x+2,故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为: =0,根据图象得出只有D符合要求.故选:D.二、填空题(每题3d分)13.分解因式:2x2﹣8=2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).14.如图所示,在?ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=2.【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AD=BC=6,DC=AB=4,AD∥BC,推出∠DAE=∠BEA,根据AE平分∠BAD,能证出∠BAE=∠BEA,根据等腰三角形的判定得到AB=BE=4,根据EC=BC﹣BE,代入即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,DC=AB=4,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=4,∴EC=BC﹣BE=6﹣4=2,故答案为:2.15.化简: +2=.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=,故答案为:16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是.【考点】概率公式.【分析】用黄球的个数除以球的总个数可得.【解答】解:∵不透明的袋中有除颜色外没有其他任何区别的3个红球和11个黄球,共14个球,其中黄球有11个,∴从口袋中随机取出一个球,则取到黄球的概率是,故答案为:.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=6.【考点】圆周角定理;解直角三角形.【分析】根据圆周角定理得到∠D=∠A,设BC=3x,根据正弦的定义得到AB=5x,根据勾股定理计算即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,由圆周角定理得,∠D=∠A,又sinD=,∴sinA=,即=,设BC=3x,则AB=5x,由勾股定理得,(5x)2﹣(3x)2=82,解得,x=2,则BC=6,故答案为:6.18.规定一种新的运算:ab=,则12=﹣.【考点】有理数的混合运算.【分析】根据2大于1,利用题中的新定义计算即可得到结果.【解答】解:∵2>1,∴12=﹣1=﹣,故答案为:﹣三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣2+﹣2+1=﹣1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,将已知等式代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣b2+2ab﹣a2=3a2﹣2ab,由3a=2b,得到a=b,则原式=b2﹣b2=0.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值 16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1女(次)45 40 36 32 28 25 22 20 <19注:次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由表格即可知答案;(2)根据“优秀”的人数及其占被调查学生的百分比可得总人数,总人数乘以“不合格”的百分比可得对应人数,由个等级人数之和等于总人数可得“良好”的人数,补全条形图;(3)用样本中“优秀”的人数所占百分比乘以全校总人数可得.【解答】解:(1)由表可知,她一分钟做了28次仰卧起坐;(2)一共抽取学生有:10÷20%=50(人),“不合格”的学生有50×10%=5(人),“良好”的学生有50﹣10﹣15﹣5=20(人),补全统计图如图:(3)800×20%=160(人),答:根据抽样结果估计,全校有160名学生能够取得优秀.22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.【考点】切线的判定.【分析】(1)作OC⊥PD于C,根据角平分线的性质得出OC=OA,即可判定PD是⊙O 的切线;(2)根据已知求得AD,PC,根据勾股定理求得PD,得出CD,设半径为x,则OD=8﹣x,在RT△ODC中,根据勾股定理得出(8﹣x)2=x2+42,解得半径为3,然后根据勾股定理求得OP,进而证得△POA∽△DOE,根据相似三角形的性质即可求得.【解答】(1)证明:作OC⊥PD于C,∵OP是∠APD的角平分线,OA⊥PA,OC⊥PD,∴OC=OA,∴PD是⊙O的切线;(2)解:∵PA=6,tan∠PDA==,∴AD=8,∴PD==10,∵PA⊥OA,∴PA是⊙O的切线,∵PD是⊙O的切线,∴PC=PA=6,∴CD=PD﹣PC=4,设半径为x,则OD=8﹣x,在RT△ODC中,OD2=OC2+CD2,∴(8﹣x)2=x2+42,解得x=3,∴半径OA=3,∴OD=8﹣3=5,在RT△AOP中,OP==3,∵∠PAO=∠E=90°,∠POA=∠DOE,∴△POA∽△DOE,∴=,即=,∴OE=.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得 2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.方案二:购买3辆A型车和3辆B型车所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.【考点】全等三角形的判定;等边三角形的性质.【分析】(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.【解答】(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?【考点】二次函数综合题.【分析】(1)令二次函数解析式中y=0,根据根与系数的关系可得出“x1+x2=﹣,x1x2=”,利用配方法即可求出|x2﹣x1|的值,由此即可得出结论;(2)利用配方法将二次函数解析式转化成顶点式,由此即可求出点C的坐标,再根据等腰直角三角形的性质可得出2×||=,利用换元解方程即可求出b2﹣4ac的值;(3)由(2)的结论即可得出关于k的方程,解方程即可得出抛物线的解析式,画出函数图象,由此可得出若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,结合(1)(2)的结论即可得出关于n的一元二次方程,解方程即可得出结论.【解答】解:(1)令y=ax2+bx+c(a≠0)中y=0,则有ax2+bx+c=0,∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),∴x1+x2=﹣,x1x2=,∴|x2﹣x1|===.(2)∵二次函数y=ax2+bx+c=a+,∴点C的坐标为(﹣,),∵△ABC为等腰直角三角形,∴2×||=,令=m,则有m2﹣2m=0,解得:m=2,或m=0,∵二次函数与x轴有两个不相同的交点,∴m==2,∴b2﹣4ac=4.(3)∵∠ACB=90°,∴b2﹣4ac=k2﹣4=4,解得:k=±2.选k=﹣2,画出图形,如图所示.若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,由(1)可知AB==2,由(2)可知点C(﹣,),即(,﹣1﹣n),∵△ABC为等腰三角形,且∠ACB=60°,∴﹣y C=AB,即1+n=,解得:n=﹣1(舍去),或n=2.故将抛物线往下平移2个单位长度,能使∠ACB=60°.26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)用t可表示出BN、OM,则可表示出CN,又由△OAC为等腰直角三角形,MN⊥OA,可得到CN=NQ,AP=PQ,当M、P重合时,则有AM=PQ,可得到关于t的方程,可求得t;(2)由(1)可用t分别表示出AM、PQ,可表示出△AQM的面积,再利用二次函数的性质可求得其最大值;(3)由于∠OAC=45°,故当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,当QM⊥OA时,则M、P重合,由(1)可得到t的值,当MQ⊥AQ时,则有MP=PQ,可得到关于t的方程可,可求得t的值.【解答】解:(1)∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∵OA∥BC,∴∠BCA=∠OAC=45°,∵NP⊥OA,∴CN=NQ,PQ=AP,当运动t秒时,则有BN=t,OM=2t,且BC=3,∴CN=NQ=BC﹣BN=3﹣t,AP=PQ=PN﹣NQ=4﹣(3﹣t)=t+1,AM=OA﹣OM=4﹣2t,当M和P重合时,则有AM=PQ,即t+1=4﹣2t,解得t=1,∴当t的值为1秒时,M和P两点重合;(2)当运动时间为t秒时,由(1)可知PQ=t+1,AM=4﹣2t,∴S=AM?PQ=(t+1)(4﹣2t)=﹣(t﹣)2+,∵OA=4,∴M点的运动时间最大为2秒,∴0≤t≤2,∴当t=时,S max=,综上可知S=﹣(t﹣)2+(0≤t≤2),当t=时S有最大值;(3)∵∠OAC=45°∴当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,①当QM⊥OA时,则M、P重合,由(1)可得到t=1,此时NQ=3﹣t=2;②当MQ⊥AQ时,则有MP=PQ,由(1)可知AM=4﹣2t,AP=t+1,∴PM=AM﹣AP=(4﹣2t)﹣(t+1)=3﹣3t,又PQ=t+1,∴3﹣3t=t+1,解得t=,此时NQ=3﹣t=;综上当t的值为1秒或秒时,△AQM为直角三角形,NQ的长分别为2或.。