2013泰安一模文科数学
【Word版解析】山东省泰安市2013届高三上学期期末考试 数学文

高三年级考试数学试题(文)2013.1一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,0,1,0,1,2M N =-=,则如图所示韦恩图中的阴影部分所表示的集合为A.{}0,1B. {}1,0,1-C. {}1,2-D.{}1,0,1,2-【答案】C【解析】阴影部分为{}x x M N x M N ∈∉ 且,所以{1,0,1,M N =- ,{0,1}M N = ,所以{}{1,2}x x M N x M N ∈∉=- 且,选C.2.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为A.13B.12C.16D.1【答案】A【解析】由三视图可知,该几何体是四棱锥,底面为边长为1的正方形,高为1的四棱锥,所以体积为1111133⨯⨯⨯=,选A. 3.设0.533,log 2,cos2a b c ===,则 A.c <b a < B.c a b << C.a <b c <D.b <c a <【解析】0.531=>,,30log 21<<,,cos 20<,所以c b a <<,选A.4.设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于A.13-B.13C.3-D.3【答案】B【解析】因为a b ⊥,所以2c o s s i n a b αα=-= ,即t a n 2α=。
所以t a n 1211t a n ()41t a n 123πααα---===++,选B. 5. “1m =”是“直线0x y -=和直线0x my +=互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【答案】C【解析】当0m =时,直线0x my +=为0x =,此时两直线不垂直,所以0m ≠,所以0x my +=的斜率为1m -,若直线垂直,则有11m-=-,即1m =,所以“1m =”是“直线0x y -=和直线0x my +=互相垂直”的充要条件 ,选C.6.下列函数()f x 中,满足“对任意的()1212,0,,x x x x ∈+∞<当时,都有()()12f x f x <”的是 A.()1f x x=B.()244f x x x =-+C.()2xf x = D.()12log f x x =【答案】C【解析】由条件可知函数在(0,)+∞,函数()f x 递增,所以选C.7.函数212sin 4y x π⎛⎫=--⎪⎝⎭是 A.最小正周期为π的偶函数 B.最小正周期为π的奇函数 C.最小正周期为2π的偶函数D.最小正周期为2π的奇函数【解析】212s i n ()c o s 2()c o s (2)s i n 2442y x x x x πππ=--=-=-=,所以周期222T πππω===,所以函数为奇函数,所以选B. 8.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】A.若两条直线和同一个平面所成的角相等,则这两条直线可能平行,也可能相交或异面,所以错误。
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编2:函数

山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编2:函数一、选择题错误!未指定书签。
.(山东省日照市2013届高三第一次模拟考试数学(文)试题)函数()()lg 1f x x =-的大致图象是【答案】B 解析:答案B .易知()f x 为偶函数,故只考虑0x >时()lg(1)f x x =-的图象,将函数lg y x =图象向x 轴正方向平移一个单位得到()lg(1)f x x =-的图象,再根据偶函数性质得到()f x 的图象错误!未指定书签。
.(山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)函数121xf (x )ln x x =+-的定义域为( )A .(0,+∞)B .(1,+∞)[来源:] C .(0,1) D .(0,1) (1,+∞)【答案】要使函数有意义,则有001x x x ≥⎧⎪⎨>⎪-⎩,即0(1)0x x x ≥⎧⎨->⎩,所以解得1x >,即定义域为(1,]+∞,选B . [来源:]错误!未指定书签。
.(山东省淄博市2013届高三3月第一次模拟考试数学文试题)设定义在R 上的奇函数)(x f y =,满足对任意R t ∈都有)1()(t f t f -=,且]21,0[∈x 时,2)(x x f -=,则)23()3(-+f f 的值等于 ( )A .21-B .31-C .41-D .51-【答案】C错误!未指定书签。
.(山东省烟台市2013届高三3月诊断性测试数学文)函数f(x)=1nx-212x 的图像大致是【答案】【答案】B 函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得,01x <<,即增区间为(0,1).由21'()0x f x x -=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选 B .错误!未指定书签。
2013年高三数学文科一模试题(带答案)

2013年高三数学文科一模试题(带答案)2013年高三教学测试(一)文科数学试题卷注意事项:1.本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密封线内填写学校、班级、学号、姓名;2.本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件,互斥,那么棱柱的体积公式如果事件,相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式球的体积公式其中分别表示棱台的上底、下底面积,其中表示球的半径表示棱台的高第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i为虚数单位,则复数=A.iB.-iC.D.-2.函数的最小正周期是A.B.πC.2πD.4π3.执行如图所示的程序框图,则输出的结果是A.OB.-1C.D.4.已知α,β是空间中两个不同平面,m,n是空间中两条不同直线,则下列命题中错误的是A.若m//nm丄α,则n丄αB.若m//ααβ,则m//nC.若m丄α,m丄β,则α//βD.若m丄α,mβ则α丄β5如图,给定由6个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取2个点,则两点间的距离为2的概率是ABCD6.已知函数,下列命题正确的是A.若是增函数,是减函数,则存在最大值B.若存在最大值,则是增函数,是减函数C.若,均为减函数,则是减函数D.若是减函数,则,均为减函数7.已知a,b∈R,a.b≠O,则“a>0,b>0”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知双曲线c:,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N(异于原点O),若|MN|=,则双曲线C的离心率是A.B.C.2D.9已知在正项等比数列{an}中,a1=1,a2a4=16则|a1-12|+|a2-12|+…+|a8-12|=A224B225C226D25610.已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x)))=0},若存在x0∈B,x0A则实数b的取值范围是ABbCD非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.已知奇函数f(x),当x>0时,f(x)=log2(x+3),则f(-1)=__▲__12.已知实数x,y满足则z=2x+y的最小值是__▲__13.—个几何体的三视图如图所示,则该几何体的体积为__▲__14.某高校高三文科学生的一次数学周考成绩绘制了如右图的频率分布直方图,其中成绩在40,80]内的学生有120人,则该校高三文科学生共有__▲__人15.已知正数x,y满足则xy的最小值是=__▲__.16.已知椭圆C1:的左焦点为F,点P为椭圆上一动点,过点以F为圆心,1为半径的圆作切线PM,PN,其中切点为M,N则四边形PMFN 面积的最大值为__▲__.17.若是两个非零向量,且,则与的夹角的取值范围是__▲_.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟•18.(本题满分14分)在ΔABC中,a,b,c分别是角A,B,C所对的边,且a=c+bcosC.(I)求角B的大小(II)若,求a+c的值.19.(本题满分14分)已知等差数列{an}的公差不为零,且a3=5,a1,a2.a5成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2n-1bn=an求数列{bn}的通项公式20.(本题满分15分)如图,直角梯形ABCD中,AB//CD,=90°,BC=CD=,AD=BD:EC丄底面ABCD,FD丄底面ABCD且有EC=FD=2.(I)求证:AD丄BF:(II)若线段EC的中点为M,求直线AM与平面ABEF所成角的正弦值21(本题满分15分)已知函数f(x)=mx3-x+,以点N(2,n)为切点的该图像的切线的斜率为3(I)求m,n的值(II)已知.,若F(x)=f(x)+g(x)在0,2]上有最大值1,试求实数a的取值范围。
山东省泰安市2013届高三第一轮复习质量检测数学文(附答案)

泰安市高三第一轮复习质量检测数学试题(文科)2013.3一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,1,124x A B x =-=≤<,则A B ⋂等于 A.{}1,0,1-B.{}1C.{}1,1-D.{}0,1 2.复数311i i-+(i 为虚数单位)的模是B. C.5 D.8 3.下列命题中,是真命题的是A.00,0x x R e ∃∈≤B.2,2x x R x ∀∈>C.0a b +=的充要条件是1a b=- D.a >1,1b >是1ab >的充分条件 4.从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b ,则b a >的概率是 A.45 B.35 C.25 D.155.若程序框图如图所示,则该程序运行后输出k 的值是A.4B.5C.6D.76.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=- ⎪⎝⎭是 A.奇函数且图像关于点,02π⎛⎫ ⎪⎝⎭对称 B.偶函数且图像关于点(),0π对称C.奇函数且图像关于直线2x π=对称D.偶函数且图像关于点,02π⎛⎫ ⎪⎝⎭对称7.在2ABC AB ∆∠=中,A=60,且ABC ∆,则BC 的长为B.3 D.78.已知()1,6,2a b a b a ==⋅-= 则向量a b 与的夹角为 A.2π B.3π C.4π D. 6π 9.若,,0,a b R ab ∈>且则下列不等式中,恒成立的是A.a b +≥B.11a b +> C.2b a a b +≥ D.222a b ab +> 10.设函数()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是A.11x >-B.20x <C.32x >D.201x <<11.直线()2110x a y +++=的倾斜角的取值范围是 A.0,4π⎡⎤⎢⎥⎣⎦ B.3,4ππ⎡⎤⎢⎥⎣⎦ C.0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭ D.3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭12.设奇函数()[]1,1f x -在上是增函数,且()11f -=-,若函数,()221f x t at ≤-+对所有的[]1,1x ∈-都成立,则当[]1,1a ∈-时t 的取值范围是A.22t -≤≤B.1122t -≤≤ C.202t t t ≤-=≥或或 D.11022t t t ≤-=≥或或 二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置.13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 ▲ .14.正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则 ▲ .15.已知矩形ABCD 的顶点都在半径为5的球O 的球面上,且8,AB BC ==O —ABCD 的体积为 ▲ .16.设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的焦点相同,则此双曲线的方程为 ▲ .三、解答题:17.(本小题满分12分)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I )求数列{}n a 的通项公式;(II )证明:对任意21,,,k k k R N S S S +++∈成等差数列.18.(本小题满分12分)已知()sin ,,,,334x x m A A n f x m n f π⎛⎫⎫⎛⎫===⋅= ⎪⎪ ⎪⎝⎭⎭⎝⎭ 且 (1)求A 的值;(II )设α、()()30780,,3,3,cos 21725f f πβαπβπαβ⎡⎤⎛⎫∈+=-=-+ ⎪⎢⎥⎣⎦⎝⎭求的值.19.(本小题满分12分)如图,在四棱锥P —ABCD 中,平面PAB ⊥平面ABCD ,AB=AD ,60BAD ∠= ,E ,F 分别是AP ,AB的中点.求证:(I )直线EF//平面PBC ;(II )平面DEF ⊥平面PAB.20.(本小题满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (I )根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(II )将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.21.(本小题满分13分) 已知椭圆221:1164y x C +=,椭圆C 2以C 1的短轴为长轴,且与C 1有相同的离心率. (I )求椭圆C 2的方程;(II )设直线l 与椭圆C 2相交于不同的两点A 、B ,已知A 点的坐标为()2,0-,点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅= ,求直线l 的方程.22.(本小题满分13分)已知函数()()21.x f x ax x e =++ (I )若曲线()1y f x x ==在处的切线与x 轴平行,求a 的值,并讨论()f x 的单调性;(2)当0a =时,是否存在实数m 使不等式()214121mx x x f x mx +≥-++≥+和对任意[)0,x ∈+∞恒成立?若存在,求出m 的值,若不存在,请说明理由。
2013年山东省泰安市中考数学模拟试卷(一)

2013年山东省泰安市中考数学模拟试卷(一)一、仔细选一选(本题有15个小题,每小题3分,共45分)下面每小题只有一个是正确的.D3.(3分)化简的结果为()4.(3分)现掷A、B两枚均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字2.C D.5.(3分)已知下列命题:①若a>b,则ac>bc.②垂直于弦的直径平分弦.③平行四边形的对角线互相平分.④反比例函数y=,当k>0时,y随x的增大而减少.果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()B.97.(3分)已知4个数据:,,a,b,其中a、b是方程x﹣2x﹣1=0的两个根,则这4个数据的中位数C.8.(3分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()9.(3分)如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点)P运动的总路径的长为(.C D.,则2a﹣3b的值为()12.(3分)(2006•莱芜)已知方程组的解为过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为().C D.<15.(3分)若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为().C D.16.(3分)计算:=_________.17.(3分)我们知道多项式x2﹣3x+2可分解成(x﹣1)(x﹣2),所以方程x2﹣3x+2=0有两根x1=1,x2=2.已知多项式x3+3x2﹣3x+k有一个因式是x+2,则k=_________.18.(3分)若关于x的不等式的正整数解只有4个,则m的取值范围是_________.19.(3分)如图,直三棱柱ABC﹣A1B1C1的侧棱长和底面各边长均为2,其主视图是边长为2的正方形,则此直三棱柱左视图的面积为_________.20.(3分)P(x,y)位于第二象限,并且y≤x+3,x,y为整数,写出所有符合上述条件的点P的坐标:_________.21.(3分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为_________.经过点C的“蛋圆”的切线的解析式为_________.三.全面答一答(本题有8个小题,共57分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.22.(7分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如表(未完成):注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?23.(8分)图,在平面直角坐标系中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是x轴上一点,且满足△AP0为等腰三角形,直接写出点P的坐标.24.(8分)(2011•泰州)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°.(1)求证:GF⊥OC;(2)求EF的长(结果精确到0.1m).(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)25.(10分)(2006•淄博)近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份汽油的价格.26.(12分)已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.(1)求证:△ABD∽△ADE;(2)若AB=8cm,AE=6cm,求△DAF的面积.27.(12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD 分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.2013年山东省泰安市中考数学模拟试卷(一)参考答案与试题解析一、仔细选一选(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种的方法来选择正确答案.D×=1的倒数是.、∵()3.(3分)化简的结果为()﹣设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么各掷一次所确定的点P落在已知抛物线y=﹣x2+4x .C D.=,P=①若a>b,则ac>bc.②垂直于弦的直径平分弦.③平行四边形的对角线互相平分.④反比例函数y=,当k>0时,y随x的增大而减少.y=y=果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()7.(3分)已知4个数据:,,a,b,其中a、b是方程x﹣2x﹣1=0的两个根,则这4个数据的中位C.,﹣,,,+1+)8.(3分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()=9.(3分)如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为().C D.x=x=x与直线x=x,时,﹣,﹣)﹣=的对称点x=)的交点是++﹣C=1+,==运动的总路径的长为10.(3分)(2012•唐山二模)如图,已知⊙O是正方形ABCD的外接圆,点E是AD上任意一点,则∠BEC的度数为()BEC=是()12.(3分)(2006•莱芜)已知方程组的解为,则2a﹣3b的值为()代入原方程组,.×该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为().C D.<>.15.(3分)若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为().C D.,﹣完整地填写答案.16.(3分)计算:=6.17.(3分)我们知道多项式x﹣3x+2可分解成(x﹣1)(x﹣2),所以方程x﹣3x+2=0有两根x1=1,x2=2.已知多项式x3+3x2﹣3x+k有一个因式是x+2,则k=﹣10.18.(3分)若关于x的不等式的正整数解只有4个,则m的取值范围是.<.故答案是.19.(3分)如图,直三棱柱ABC﹣A1B1C1的侧棱长和底面各边长均为2,其主视图是边长为2的正方形,则此直三棱柱左视图的面积为.×=×=220.(3分)P(x,y)位于第二象限,并且y≤x+3,x,y为整数,写出所有符合上述条件的点P的坐标:(﹣2,1)(﹣1,2)(﹣1,1).那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为y=x2﹣2x﹣3.经过点C的“蛋圆”的切线的解析式为y=.,联立组成方程组,k=)的解析式斜率为切线的解析式斜率为=.困难,那么把自己能写出的解答写出一部分也可以.22.(7分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如表(未完成):注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?23.(8分)在平面直角坐标系中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是x轴上一点,且满足△AP0为等腰三角形,直接写出点P的坐标.,,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°.(1)求证:GF⊥OC;(2)求EF的长(结果精确到0.1m).(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)=≈小明计算今年5月份汽油的价格.26.(12分)已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.(1)求证:△ABD∽△ADE;(2)若AB=8cm,AE=6cm,求△DAF的面积.=)得=AD×27.(12分)(2011•徐州)如图,已知二次函数y=x+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD 分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.菁优网2ש2010-2014 菁优网。
山东省各地市2013届高三文科数学试题分类汇编3:三角函数_Word版含答案

山东省各地市2013届高三文科数学试题分类汇编3:三角函数一、选择题1 .(【解析】山东省泰安市2013届高三上学期期末考试数学文)函数()()sin f x A x ωϕ=+(其中0,2A πϕ><)的图象如图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A .向右平移6π个长度单位 B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向左平移12π个长度单位【答案】A 【解析】由图象可知1A =,741234T πππ=-=,即周期2T ππω==,所以2ω=,所以函数为()()sin 2f x x ϕ=+.又77()sin(2)11212f ππϕ=⨯+=-,即sin()16πϕ+=,所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈,因为2πϕ<,所以当0k =时,3πϕ=,所以()sin(2)3f x x π=+.()sin 2sin[2()]63g x x x ππ==-+,所以只需将()f x 的图象向右平移6π,即可得到()sin 2g x x =的图象,所以选A .2 .(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)定义12142334a a a a a a a a =-,若函数sin 2 cos2x () 1 x f x =,则将()f x 的图象向右平移3π个单位所得曲线的一条对称轴的方程是( )A .6x π=B .4x π=C .2x π=D .x π=【答案】A 由定义可知,()2cos 22sin(2)6f x x x x π=-=-,将()f x 的图象向右平移3π个单位得到52sin[2()]2sin(2)366y x x πππ=--=-,由52,62x k k Z πππ-=+∈得对称轴为2,32k x k Z ππ=+∈,当1k =-时,对称轴为2326x πππ=-=,选A .3 .(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知,(0,)2παβ∈,满足tan()4tan αββ+=,则tan α的最大值是( )A .14B .34CD .32【答案】B 由tan()4tan αββ+=tan tan 4tan 1tan tan αββαβ+=-,得23tan tan 14tan βαβ=+,因为(0,)2πβ∈,所以tan 0β>.所以33tan 144tan tan αββ=≤=+,当且仅当14tan tan ββ=,即21tan 4β=,1tan 2β=时,取等号,所以tan α的最大值是34,所以选 B .4 .(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.【答案】C 'cos y x =,即()cos g x x =,所以22()cos yx g x x x ==,为偶函数,图象关于y 轴对称,所以排除A, B .当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选 C .5 .(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)在,2ABC AB ∆∠=中,A=60,且ABC ∆,则BC 的长为 ( )AB .3CD .7【答案】 A11sin 60222S AB AC AC =⨯⋅=⨯=,所以1AC =,所以2222cos 603BC AB AC AB AC =+-⋅= ,,所以BC =,选A .6 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))函数x x y sin =在[]ππ,-上的图象是【答案】A 【解析】函数x x y sin =为偶函数,所以图象关于y 对称,所以排除D .当2x π=时,02y π=>,排除 B .当34x π=时,3sin 44422y πππππ===<,排除C,选A .7 .(山东省烟台市2013届高三3月诊断性测试数学文)设ω是正实数,函数f(x)=2cos x ω在x∈20,3π⎡⎤⎢⎥⎣⎦上是减函数,那么ω的值可以是 ( )A .12B .2C .3D .4【答案】因为函数在[0,]4T 上递增,所以要使函数f(x)=2cos )0(>ωωx 在区间20,3π⎡⎤⎢⎥⎣⎦上单调递减,则有234T π≤,即83T π≥,所以283T ππω=≥,解得34ω≤,所以ω的值可以是12,选 ( )A .8 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)ABC ∆中,三边长a ,b ,c 满足333c b a =+,那么ABC ∆的形状为 ( )A .锐角三角形B .钝角三角形C .直角三角形D .以上均有可能【答案】A 【解析】由题意可知,c a c b >>,即角C 最大.所以332222a b a a b b ca cb +=+<+,即322c ca cb <+,所以222c a b <+.根据余弦定理得222cos 02a b c C ab +-=>,所以02C π<<,即三角形为锐角三角形,选A .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知ABC ∆中,三个内角A,B,C 的对边分别为a,b,c,若ABC ∆的面积为S,且()222,tan S a b c C =+-则等于 ( )A .34 B .43 C .43-D .34-【答案】C 由()222S a b c =+-得22222S a b ab c =++-,即22212sin 22ab C a b ab c ⨯=++-,所以222sin 2ab C ab a b c -=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +--===-,所以sin cos 12C C +=,即22cos sin cos 222C C C =,所以tan 22C =,即222tan2242tan 1231tan 2CC C ⨯===---,选C .10.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)将函数sin y x =的图象向左平移(02)ϕϕπ≤<个单位后,得到函数sin()6y x π=-的图象,则ϕ等于( )A .6πB .56π C .76π D .116π【答案】D 【解析】将函数sin y x =的图象向左平移(02)ϕϕπ≤<个单位后,得到函数sin()6y x π=-的图象,即将sin()6y x π=-向右平移(02)ϕϕπ≤<吗,得到sin()sin 6y x x πϕ=--=,所以26k πϕπ+=,所以2,6k k Z πϕπ=-∈,又02ϕπ≤<,定义当1k =时,11266ππϕπ=-=,选 D . 11.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知1sin()23πα+=,则cos(2)πα+的值为 ( )A .79-B .79C .29D .23-【答案】B 【解析】由1sin()23πα+=得1sin()cos 23παα+==.所以227cos(2)cos 2(2cos 1)12cos 9παααα+=-=--=-=,选B . 12.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)函数sin ((,0)(0,))xy x x=∈-π⋃π的图象大致是【答案】A 函数为偶函数,所以图像关于y 轴对称,排除B,C .当x π→时, sin 0xy x=→,所以选A .13.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)把函数sin y x =的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移4π个单位长度,得到的函数图象对应的解析式是 ( )A .cos2y x =B .sin 2y x =-C .sin(2)4y x π=-D .sin(2)4y x π=+【答案】A 把函数sin y x =的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,得到sin 2y x =,再把所得函数图象向左平移4π个单位长度,得到的函数图象对应的解析式sin 2()sin(2)cos 242y x x x ππ=+=+=,选A .14.(【解析】山东省济南市2013届高三3月高考模拟文科数学)已知函数)0)(6sin(2)(>-=ωπωx x f 的最小正周期为π,则)(x f 的单调递增区间 ( )A .)](65,3[Z k k k ∈++ππππ B .)](32,62[Z k k k ∈+-ππππC .)](6,3[Z k k k ∈+-ππππD .)](3,6[Z k k k ∈+-ππππ【答案】D因为2T ππω==,所以2ω=,所以函数为()2sin(2)6f x x π=-,由222262k x k πππππ-+≤-≤+,得63k x k ππππ-+≤≤+,即函数的单调递增区间是[,]()63k k k Z ππππ-++∈,选D .15.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))已知,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα则)4tan(απ-等于( )A .7B .71C .71-D .7- 【答案】B 【解析】因为34(,),cos ,25αππα∈=-所以sin 0α<,即33sin tan 54αα=-=,.所以311tan 14tan()341tan 71+4πααα---===+,选 B . 16.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))要得到函数)23sin(-=x y 的图象,只要将函数x y 3sin =的图象 ( )A .向左平移2个单位B .向右平移2个单位C .向左平移32个单位 D .向右平移32个单位 【答案】D 【解析】因为2sin(32)sin 3()3y x x =-=-,所以只需将函数x y 3sin =的图象向右平移32个单位,即可得到)23sin(-=x y 的图象,选 D .17.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)函数ln sin (,0)y x x x =-≠∣∣π<<π且的图象大致是( )A .B .C .D .【答案】C 因为sin 1x ≤且sin 0x ≠,所以ln sin 0x ≤,所以选C .18.(【解析】山东省泰安市2013届高三上学期期末考试数学文)设向量()()cos ,1,2,sin a b αα=-=,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于( )A .13-B .13C .3-D .3【答案】B 【解析】因为a b ⊥ ,所以2cos sin 0a b αα=-=,即tan 2α=.所以tan 1211tan()41tan 123πααα---===++,选 B .19.(【解析】山东省实验中学2013届高三第二次诊断性测试数学文试题)已知53)4cos(=-x π,则x 2sin = ( )A .2518 B .257 C .-257 D .2516-【答案】C 【解析】因为2sin 2cos(2)cos 2()2cos ()1244x x x x πππ=-=-=--,所以23187sin 22()1152525x =⨯-=-=-,选 C .20.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)函数x xy sin 3+=的图象大致是【答案】C 解:函数()sin 3xy f x x ==+为奇函数,所以图象关于原点对称,排除B .当x →+∞时,0y >,排除 D .1'()cos 3f x x =+,由1'()cos 03f x x =+=,得1cos 3x =-,所以函数()sin 3xy f x x ==+的极值有很多个,所以选C . 21.(【解析】山东省泰安市2013届高三上学期期末考试数学文)函数212sin 4y x π⎛⎫=--⎪⎝⎭是 ( ) A .最小正周期为π的偶函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数D .最小正周期为2π的奇函数【答案】B 【解析】212sin ()cos 2()cos(2)sin 2442y x x x x πππ=--=-=-=,所以周期222T πππω===,所以函数为奇函数,所以选 B .22.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)下列函数中周期为π且为偶函数的是( )A .)22sin(π-=x yB .)22cos(π-=x yC .)2sin(π+=x yD .)2cos(π+=x y【答案】A sin(2)cos 22y x x π=-=-为偶函数,且周期是π,所以选( )A .23.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)在△ABC 中,角A,B,C所对的边分别为a,b,c,若222sin A sin C sin B A sinC +-=,则角B 为( )A .6πB .3π C .23π D .56π 【答案】A由正弦定理可得222a cb +-=,所以222cos 2a c b B ac +-===,所以6B π=,选 ( )A .24.(【解析】山东省实验中学2013届高三第二次诊断性测试数学文试题)已知21)4tan(-=+πα,且παπ<<2,则)4sin(cos 22sin 2πααα--等于( )A .552 B .1053-C .552-D .10103-【答案】C【解析】2sin 22cos sin()4αααπα--,由21)4tan(-=+πα得tan 11=1tan 2αα+--,解得tan =3α-,因为παπ<<2,所以解得cos =α,所以2sin 22cos cos (sin()4αααπα--,选 C .25.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=- ⎪⎝⎭是( )A .奇函数且图像关于点,02π⎛⎫⎪⎝⎭对称 B .偶函数且图像关于点(),0π对称C .奇函数且图像关于直线2x π=对称 D .偶函数且图像关于点,02π⎛⎫⎪⎝⎭对称 【答案】C 当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,即2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,所以()()3sin()04f x A x A π=->,所以333()sin()sin 444y f x A x A x πππ=-=--=-,所以函数为奇函数且图像关于直线2x π=对称,选C .26.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)△ABC 中,21cos 2,A A =-则A 的值为 ( )A .23π B .6πC .4πD .3π【答案】D 由21cos 2,A A =-得22cos 1cos 21(12sin )2sin A A A A A =-=--=,sin A A =,即tan A =所以3A π=,选 D .27.(山东省威海市2013届高三上学期期末考试文科数学)函数()sin(2),(||)2f x x πϕϕ=+<向左平移6π个单位后是奇函数,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为 ( )A .B .12-C .12D 【答案】【答案】A 函数()sin(2),(||)2f x x πϕϕ=+<向左平移6π个单位后得到函数为()sin[2()]sin(2)663f x x x πππϕϕ+=++=++,因为此时函数为奇函数,所以,3k k Z πϕπ+=∈,所以,3k k Z πϕπ=-+∈.因为||2πϕ<,所以当0k =时,3πϕ=-,所以()sin(2)3f x x π=-.当02x π≤≤,所以22333x πππ-≤-≤,即当233x ππ-=-时,函数()sin(2)3f x x π=-有最小值为sin()3π-=,选 ( )A .28.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )若函数3f (x )sin(x )πω=+的图象向右平移3π个单位后与原函数的图象关于x 轴对称,则ω的最小正值是( )A .12B .1C .2D .3【答案】D 【解析】若函数向右平移3π个单位后与原函数的图象关于x 轴对称,则平移的大小为23T π=,所以23T π=,所以223T ππω==,即3ω=,所以选 D .29.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)函数()sin()f x A x ωϕ=+其中(02A πϕ><,)的图象如图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A .向右平移6π个长度单位 B .向右平移3π个长度单位 C .向左平移6π个长度单位D .向左平衡3π个长度单位【答案】A 【解析】由图象可知71,41234T A πππ==-=,即T π=,又2T ππω==,所以2ω=,所以()sin(2)f x x ϕ=+,由77()sin(2)11212f ππϕ=⨯+=-,得7in()16πϕ+=-,即73262k ππϕπ+=+,即23k πϕπ=+,因为2πϕ<,所以3πϕ=,所以()sin(2)3f x x π=+.因为()sin 2sin[2()]63g x x x ππ==-+,所以只需将()f x 的图象向右平移6π个长度单位,即可得到()sin 2g x x =的图象,所以选( )A .30.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)将函数f(x)=3sin(4x+6π)图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数y= g(x)的图象,则y=g(x)图象的一条对称轴是 ( )A .x=12πB .x=6πC .x=3πD .x=23π【答案】【解析】将函数f(x)=3sin(4x+6π)图象上所有点的横坐标伸长到原来的2倍,得到函数3sin(2)6y x π=+,再向右平移6π个单位长度,得到3sin[2()]3sin(2)666y x x πππ=-+=-,即()3sin(2)6g x x π=-.当3x π=时,()3sin(2)3sin 33362g ππππ=⨯-==,所以3x π=是一条对称轴,选C .31.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在△ABC 中,内角 ( )A .B .C 的对边分别为a 、b 、c,且222222c a b ab =++,则△ABC是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A 【解析】由222222c a b ab =++得,22212a b c ab +-=-,所以222112cos 0224aba b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选 ( )A .32.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)已知53)4sin(=+x π,则x 2sin 的值为 ( )A .2524-B .2524 C .257-D .257 【答案】C 解:27sin 2sin[2()]cos 2()[12sin ()]424425x x x x ππππ=+-=-+=--+=-,选C .33.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)函数()2tan 22f x x x ππ⎛⎫=--⎪⎝⎭在,上的图象大致为【答案】C 函数()2tan f x x x =-为奇函数,所以图象关于原点对称,所以排除A,B .当2x π→时,0y <,所以排除D,选C .34.(【解析】山东省德州市2013届高三3月模拟检测文科数学)函数2cos ()4y x π=+的图象沿x 轴向右平移a 个单位(0)a >,所得图象关于y 轴对称,则a 的最小值为 ( )A .πB .34πC .2πD .4π【答案】D 21cos(2)1sin 2112cos ()sin 242222x x y x x ππ++-=+===-,函数向右平移a 个单位得到函数为1111sin 2()sin(22)2222y x a x a =--=--,要使函数的图象关于y 轴对称,则有2,2a k k Z ππ-=+∈,即,42k a k Z ππ=--∈,所以当1k =-时,得a 的最下值为4π,选 D .35.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)设a,b 是不同的直线,βα、是不同的平面,则下列命题:①若βα//,//,b a b a 则⊥ ②若ββαα⊥⊥a a 则,,// ③若αβαβ//,,a a 则⊥⊥ ④若βαβα⊥⊥⊥⊥则,,,b a b a 其中正确命题的个数是( )A .0B .1C .2D .3【答案】B 解:①当,//,a b a α⊥时b 与β可能相交,所以①错误.②中a β⊥不一定成立.③中a α⊂或//a α,所以错误.④正确,所以正确的个数有1个,所以选 B .36.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)将函数sin y x =的图象向右平移2π个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为 ( )A .1sin y x =-B .1sin y x =+C .1cos y x =-D .1cos y x =+【答案】C 函数sin y x =的图象向右平移2π个单位长度,得到函数为sin()2y x π=-,再向上平移1个单位长度,得到sin()11cos 2y x x π=-+=-,选C .37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)在ABC ∆中,若ab b c a 3222=+-,则C=( )A .30°B .45°C .60°D .120°【答案】A 解:由ab b c a 3222=+-得,222cos 2a b c C ab +-===,所以30C =,选( )A .38.(【解析】山东省济南市2013届高三上学期期末考试文科数学)把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横 坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=-⎪⎝⎭B.sin 26x y π⎛⎫=+ ⎪⎝⎭C .sin(2)6y x π=-D .sin(2)6y x π=+【答案】D 解:函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得到sin()6y x π=+,再把所得图象上所有点的横坐标缩短到原来的12倍,得到sin(2)6y x π=+,选 D .二、填空题39.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))已知三角形的一边长为4,所对角为60°,则另两边长之积的最大值等于_______.【答案】16【解析】设另两边为,a b ,则由余弦定理可知22242cos 60a b ab =+-,即2216a b ab =+-,又22162a b ab ab ab ab =+-≥-=,所以16ab ≤,当且仅当4a b ==时取等号,所以最大值为16.40.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)在ABC ∆中,a,b,c 分别是角A,B,C的对边,若21,3b c C π==∠=,则ABC S ∆=____.解:因为c b >,所以B C <所以由正弦定理得sin sin b c B C =,即12sin B ==,即1sin 2B =,所以6B π=,所以2636A ππππ=--=.所以111sin 222ABC S bc A ∆===41.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)设()y f t =是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数sin()y h A x ωφ=++的图象.最能近似表示表中数据间对应关系的函数是_______.【答案】 5.0 2.5sin6y t π=+由数据可知函数的周期12T =,又212T πω==,所以6πω=.函数的最大值为7.5,最小值为2.5,即7.5, 2.5h A h A +=-=,解得 5.0, 2.5h A ==,所以函数为() 5.0 2.5sin()6y f x t πφ==++,又(3) 5.0 2.5sin(3)7.56y f πφ==+⨯+=,所以sin()cos 12πφφ+==,即2,k k Z φπ=∈,所以最能近似表示表中数据间对应关系的函数是5.0 2.5sin6y t π=+.42.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知cos4α-sin 423α=,(0,)2πα∈,则cos(2)3πα+=___________.【答案】【解析】由cos4α-sin423α=得2cos23α=,所以sin2α=,所以112cos(2)cos2sin23223πααα+==⨯.43.(【解析】山东省德州市2013届高三3月模拟检测文科数学)已知锐角,αβ满足3tan tan()ααβ=+,则tanβ的最大值为___________.【答案】因为tan()tantan tan()1tan()tanαβαβαβααβα+-=+-=++,所以2tan()tan2tantan1tan()tan13tanαβααβαβαα+-==+++,即2tan13tantanβαα=+,因为(0,)2πα∈,所以tan0α>.所以2tan13tantanβαα=≤=+,当且仅当13tantanαα=,即21tan3α=,tanα=时,取等号,所以tanβ.44.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知函数)(xgy=的图象由xxf2sin)(=的图象向右平移)0(πϕϕ<<个单位得到,这两个函数的部分图象如图所示,则ϕ=____________.【答案】3π【解析】函数xxf2sin)(=的图象在y轴右侧的第一个对称轴为22xπ=,所以4xπ=.8π关于4xπ=对称的直线为38xπ=,由图象可知,通过向右平移之后,横坐标为38xπ=的点平移到1712xπ=,所以1732483πππϕ=-=.45.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知角α的终边上一点的坐标为)65cos,65(sinππ,则角α的最小正值为_____________.【答案】32π【解析】因为点的坐标为1(,2,所以tan α=,即,3k k Z παπ=-+∈,所以当1k =时,得角α的最小正值为233πππ-+=. 46.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)若△ABC 的边,,a b c 满足2224a b c +-=,且C =60°,则ab 的值为_________.【答案】4 由余弦定理得222cos 2a b c C ab +-=,即1422ab=,解得4ab =.47.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知一个半径为Im 的半圆形工件,未搬动前如图所示(直径平行于地面放置),搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移40m,则圆心D 所经过的路线长是_______m.【答案】40π+开始到直立圆心O 的高度不变,所走路程为14圆弧,从直立到扣下正好是一个旋转的过程,所以从开始到直立可以设想为一个球的球心在转动过程中是平直前进的, O 走的是线段,线段长为14圆弧,从直立到扣下,球心走的是14即球在无滑动旋转中通过的路程为12圆弧,为π;再将它沿地面平移40米,则圆心O 所经过的路线长是:(π+40)米.48.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c,且a=1,b=2,1cos 4C =,则sinB 等于 _________【答案】【解析】,由余弦定理得2222cos 4c a b ab C =+-=,即2c =.由1cos 4C =得,sin C =.由正弦定理得sin sin b cB C=,得sin 2sin 2b C B c ===.(或者因为2c =,所以2b c ==,即三角形为等腰三角形,所以sin sin B C ==49.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)在ABC ∆中,角A,B,C 新对的边分别为a,b,c,若cos cos sin a B b A c C +=,222b c a +-=,则角B=________.【答案】60由222b c a +-=得222cos 2b c a A bc +-===,所以30A = .由正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin sin A B C C C +==,解得sin 1C =,所以90C = ,所以60B = .50.(【解析】山东省实验中学2013届高三第二次诊断性测试数学文试题)已知81cos sin =⋅θθ,且24πθπ<<,则θθsin cos -的值为___________【答案】【解析】当24πθπ<<时,sin cos θθ>,所以cos sin 0θθ-<,又213(cos sin =12sin cos =1=44θθθθ---),所以cos sin =θθ-. 51.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))设tan ,tan a b 是方程2450x x --=的两个根,则tan()a b +的值为________.【答案】23解:由题意知tan tan 4,tan tan 5a b a b +==-,所以tan tan 442tan()1tan tan 1(5)63a b a b a b ++====---.52.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在△ABC 中,角A,B,C 的对边为a,b,c,若45a b B ===︒,则角A=_______.【答案】60 或120【解析】由正弦定理可知sin sin a bA B=,2==,所以sin A =,因为a b >,所以45A > ,所以60A = 或120A = .53.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)已知函数⎥⎦⎤⎢⎣⎡∈--+=2,412cos 3)4(sin 2)(2πππx x x x f ,则)(x f 的最小值为_________.【答案】1解:2()2sin ()211cos 2()2144f x x x x x ππ=+-=-+--cos(2)2sin 222sin(2)23x x x x x ππ=-+=-=-,因为42x ππ≤≤,所以22633x πππ≤-≤,所以sinsin(2)sin632x πππ≤-≤,即1sin(2)123x π≤-≤,所以12sin(2)23x π≤-≤,即1()2f x ≤≤,所以)(x f 的最小值为1.三、解答题54.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))已知函数),0(sin )6cos()6cos()(R x x x x x f ∈>--++=ωωπωπω的最小正周期为π2.(I)求函数)(x f 的对称轴方程;(II)若36)(=θf ,求)23cos(θπ+的值. 【答案】55.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)在ABC ∆内,c b a ,,分别为角CB A ,,所对的边,c b a ,,成等差数列,且c a 2=.(Ⅰ)求A cos 的值;(Ⅱ)若4153=∆ABC S ,求b 的值. 【答案】解(Ⅰ)因为a,b,c 成等差数列,所以a+c=2b,又c a 2=,可得c b 23=, 所以412324492cos 2222222-=⨯-+=-+=c c c c bc a c b A , (Ⅱ)由(Ⅰ)41cos -=A ,),(π0∈A ,所以415sin =A ,因为,sin 214153A bc S S ABC ABC ==∆∆,所以41534152321sin 212=⨯==∆c A bc S ABC , 得42=c ,即3,2==b c56.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知a b c ,,为ABC △的内角A B C,,的对边,满足A CB AC B cos cos cos 2sin sin sin --=+,函数()sin f x x ω=(0)ω>在区间[0,]3π上单调递增,在区间2[,]33ππ上单调递减.(Ⅰ)证明:a c b 2=+;(Ⅱ)若A f cos )9(=π,证明ABC △为等边三角形.【答案】解:(Ⅰ)ACB AC B cos cos -cos -2sin sin sin =+ ∴sin cos sin cos 2sin -cos sin -cos sin B A C A A B A C A += ∴sin cos cos sin sin cos cos sin 2sin B A B A C A C A A +++=sin ()sin ()2sin A B A C A +++=sin sin 2sin C B A += 所以2b c a +=(Ⅱ)由题意知:由题意知:243ππω=,解得:32ω=, 因为1()sin cos 962f A ππ===, (0,)A π∈,所以3A π=由余弦定理知:222-1cos 22b c a A bc +==所以222-b c a bc += 因为2b c a +=,所以222-()2b c b c bc ++=, 即:22-20b c bc +=所以b c = 又3π=A ,所以ABC △为等边三角形57.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点1)P -. (1)求sin 2tan αα-的值:(2)若函数()sin 2cos cos 2sin f x x x αα=+g g ,求()f x 在20,3π⎡⎤⎢⎥⎦⎣上的单调递增区间. 【答案】58.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知函数32f (x )cos(x )sin(x )ππ=---.(I)求函数f (x )的最小正周期;(Ⅱ)若02(,)πα∈,且365f ()πα+=,求2f ()α的值. 【答案】59.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()2cos 2sin 1,.f x x x x x R =+-∈(I)求函数()f x 的最小正周期和单调递增区间;(II)将函数()y f x =的图象上各点的纵坐标保持不变,横坐标缩短到原来的12,再把所得到的图象向左平移6π个单位长度,得到函数()y g x =的图象,求函数()y g x =在区间,612ππ⎡⎤-⎢⎥⎣⎦上的值域. 【答案】60.(山东省威海市2013届高三上学期期末考试文科数学)在ABC ∆中,角,,A B C 所对应的边分别为c b a ,,,,A B 为锐角且B A <,sin A =3sin 25B =.(Ⅰ)求角C 的值;(Ⅱ)若1b c +=+,求c b a ,,的值.【答案】解:(Ⅰ)∵A 为锐角,sinA =∴cos A ==∵B A <,sin A =<,∴45B <∵3sin 25B =,∴4cos 25B ==∴cosB ==,sin B =cos cos()cos cos sin sinC A B A B A B =-+=-+==∴135C =(Ⅱ)由正弦定理sin sin sin a b ck A B C===∴b c k +=+,解得k =∴1,a b c ===61.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知函数x x x f cos sin 1)(+=.(Ⅰ)求函数)(x f 的最小正周期和单调递减区间; (Ⅱ)若2tan =x ,求)(x f 的值.【答案】解:(Ⅰ)已知函数即ππ==∴+=22,2sin 211)(T x x f , 令)(223222Z k k x k ∈+<<+ππππ,则)(434Z k k x k ∈+<<+ππππ, 即函数)(x f 的单调递减区间是)](43,4[Z k k k ∈++ππππ;(2)由已知1tan 1tan tan cos sin cos cos sin sin 222222+++=+++=x x x x x x x x x y , ∴当2tan =x 时,571212222=+++=y 62.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知函数()1sin cos f x x x =+.(1)求函数()f x 的最小正周期和单调递减区间; (2)若tan 2x =,求()f x 的值.【答案】解答:(1)已知函数1()1sin 22f x x =+,∴22T ππ==, 令322222k x k ππππ+≤≤+,则3()44k x k k Z ππππ+≤≤+∈,即函数()f x 的单调递减区间是3[,]()44k k k ππππ++∈Z ;(2)由已知222222sin sin cos cos tan tan 1sin cos tan 1x x x x x x y x x x ++++==++,∴当tan 2x =时,222217521y ++==+ 63.(【解析】山东省实验中学2013届高三第二次诊断性测试数学文试题)已知函数x x x x f cos sin sin 3)(2+-=(1)求)625(πf 的值. (2)设2341)2(0-=∈απαf ),,(,求αsin 的值 【答案】64.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知函数2()22cos 1,f x x x x =--∈R .(Ⅰ)求函数()f x 的最小正周期和最小值;(Ⅱ)在ABC 中,,,A B C 的对边分别为,,a b c ,已知()0,sin 2sin c f C B A ===,求,a b 的值.【答案】65.(【解析】山东省实验中学2013届高三第二次诊断性测试数学文试题)已知角α终边经过点)0)(2,(≠-x x p 且x 63cos =α,求ααtan ,sin 的值 【答案】66.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,且满足b 2 +C 2 -a 2= bc.(1)求角A 的值;(2)若,设角B 的大小为x,△ABC 周长为y,求y=f(x)的最大值.【答案】67.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )在△ABC 中,已知A=4π(I)求cosC 的值;(Ⅱ)若为AB 的中点,求CD 的长.【答案】解:(Ⅰ)552cos =B 且(0,)B π∈,∴55cos 1sin 2=-=B B )43cos()cos(cos B B A C -=--=ππ 1010552255222sin 43sin cos 43cos-=⋅+⋅-=+=B B ππ (Ⅱ)由(Ⅰ)可得10103)1010(1cos 1sin 22=--=-=C C 由正弦定理得sin sin BC AB A C =,即101032252AB=,解得6=AB 在BCD ∆中,55252323)52(222⨯⨯⨯-+=CD 5=, 所以5=CD68.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知函数2()cossin (0,0)2222x x x f x ωϕωϕωϕπωϕ+++=+><<.其图象的两个相邻对称中心的距离为2π,且过点(,1)3π.(I) 函数()f x 的达式;(Ⅱ)在△ABC 中.a 、b 、c 分别是角A 、B 、C 的对边,a =,ABC S ∆=,角C 为锐角.且满7()2126C f π-=,求c 的值.【答案】解:(Ⅰ)1())[1cos()]2f x x x ωϕωϕ++-+ π1sin()62x ωϕ=+-+两个相邻对称中心的距离为π2,则πT =, 2ππ,0,2,||ωωω∴=>∴= 又()f x 过点π(,1)3,2ππ1π1sin 1,sin 36222j j 骣骣鼢珑\-++=+=鼢珑鼢珑桫桫即, 1cos 2j \=, πππ10,,()sin(2)2362f x x j j <<\=\=++Q(Ⅱ)πππ117sin sin 21266226C f C C 骣骣鼢珑-=-++=+=鼢珑鼢珑桫桫, 2sin 3C \=,π0,cos 2C C <<\=Q又112sin 223ABC a S ab C b D ===?,6b \=,由余弦定理得2222cos 21c a b ab C =+-=,c \=69.(山东省烟台市2013届高三3月诊断性测试数学文)已知函数sin2x-cos 2x-12,x∈R . (1)求函数f(x)的最小值,及取最小值时x 的值;(2)设△ABC 的内角A,B,C 的对边分别为a,b,c 且,f(C)=0,若sinB=2sinA,求a,b 的值.【答案】70.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知函数()()21cos cos 02f x x x x ωωωω=+-> ,其最小正周期为.2π(I)求()f x 的表达式;(II)将函数()f x 的图象向右平移8π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围.【答案】解:(I)21()cos cos 2f x x x x ωωω=⋅+-cos2112sin(2)226x x x ωπωω+=+-=+ 由题意知)(x f 的最小正周期2T π=,222T πωπωπ===所以2=ω 所以()sin 46f x x π⎛⎫=+⎪⎝⎭(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到)34sin(π-=x y 的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到)32sin(π-=x y 的图象.所以)32sin()(π-=x x g因为02x π≤≤,所以22333x πππ-≤-≤()0g x k +=在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图象可知k ≤-<或1k -=所以k <≤或1k =- 71.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)已知()sin ,,,,334x x m A A n f x m n f π⎛⎫⎫⎛⎫===⋅=⎪⎪ ⎪⎝⎭⎭⎝⎭且(1)求A 的值; (II)设α、()()30780,,3,3,cos 21725f f πβαπβπαβ⎡⎤⎛⎫∈+=-=-+ ⎪⎢⎥⎣⎦⎝⎭求的值.【答案】72.(【解析】山东省济南市2013届高三3月高考模拟文科数学)在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,且满足cos (3)cos b C a c B =-.(1)求B cos ;(2)若4BC BA ⋅=,b =,求边a ,c 的值.【答案】解:(1)由正弦定理和cos (3)cos b C a c B =-,得sin cos (3sin sin )cos B C A C B =-,化简,得sin cos sin cos 3sin cos B C C B A B +=即sin3sin cos B C A B +=(), 故sin 3sin cos A A B =.所以1cos =3B (2)因为4BC BA ⋅=, 所以4cos ||||=⋅⋅=⋅B BA BC BA BC所以12BC BA ⋅=,即12ac =. (1) 又因为2221cos =23a cb B ac +-=, 整理得,2240a c +=. (2)联立(1)(2) 224012a c ac ⎧+=⎨=⎩,解得26a c =⎧⎨=⎩或62a c =⎧⎨=⎩73.(【解析】山东省德州市2013届高三3月模拟检测文科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知角,sin 3sin .3A B C π==(1)求tan C 的值;(2)若a =求△ABC 的面积.【答案】74.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)设函数().,(2cos 1),(cos 2),f x a b a x b x x x R ===∈其中向量(1)求函数()f x 的单调减区间; (2)若[,0]4x π∈-,求函数()f x 的值域;【答案】75.(【解析】山东省泰安市2013届高三上学期期末考试数学文)ABC ∆的内角A 、B 、C 所对的边分别为,,a b c且sin sin sin sin a A b B c C B += (I)求角C;(II)cos 4A B π⎛⎫-+⎪⎝⎭的最大值. 【答案】76.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)已知ABC ∆的角A 、B 、C,所对的边分别是a 、b 、c,且3π=C ,设向量m (a,b),n (sin B,sin A),p=b-2,a-2)==(.(1)若m //n,求B;(2)若ABC m p,S ∆⊥=求边长c.【答案】证明:(1)B b A a n m sin sin ,//=∴由正弦定理得b a b a ==即22又3π=c3π=∆∴B ABC 为等边三角形由题意可知0)2()2(,0.=-+-=a b b a p m 即ab b a =+∴①由正弦定理和①②得,ab c .sin .213=23sin ,3=∴=C C π4=∴ab ②2412163)(2222=∴=-=-+=-+=∴c ab b a ab b a c77.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知函数())cos()cos 44f x x x x x ππ=+-+.(I)求()f x 的最小正周期和最大值;(Ⅱ)在给出的坐标系中画出函数()y f x =在[]0,π上的图象,并说明()y f x =的图象 是由sin 2y x =的图象怎样变换得到的.【答案】78.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知向量1sin ,,cos 2x x ⎛⎛⎫= ⎪ ⎝⎭⎝ a =b ,()f x =⋅ a b .(1)求函数()y f x =的解析式;(2)求函数()y f x =的单调递增区间.【答案】解:(1)()f x =⋅a b 1sin 2x x =+sin coscos sin33x x ππ=+sin()3x π=+(2)由22232k x k πππππ-+≤+≤+,k Z ∈得52266k x k ππππ-+≤≤+,k Z ∈ ∴函数()y f x =的单调递增区间是5[2,2]66k k ππππ-++,k Z ∈79.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))若函数2()22cos f x x x m =++在区间[0,]2π上的最大值为2,将函数()f x 图象上所有点的横坐标伸长为原来的2倍(纵坐标保持不变),再将图象上所有的点向右平移6π个单位,得到函数()g x 的图象. (1)求函数()f x 解析式;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c,又8(),225g A b π-==,△ABC 的面 积等于3,求边长a 的值, 【答案】80.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知函数()sin(),0,||.2f x x πωϕωϕ=+><其中(l)若3cossin()sinsin 0,424πππϕϕϕ+-=求的值; (2)在(1)的条件下,若函数f(x)的图象的两条相邻对称轴之间的距离等于3π,求函数f(x)的解析式;并求最小的正实数m,使得函数f(x)的图象向右平移m 个单位后所对应的函数是偶函数.【答案】81.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知2,0(1,sin()),(cos sin ),2x x x x ωωωωπ∈=+=R >,u v 函数1()2=⋅-f x u v 的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间[0,]2π上的值域.【答案】解:(Ⅰ)依据题意,211()(1,sin())(cos )222f x x x x ωωω=-=+⋅- πu v21cos cos 2x x x ωωω=+⋅-1cos 212221cos 222x x x x ωωωω+=+-=+sin(2)6x ω=+π.0ω >,函数的最小正周期T =π,。
【Word版解析】【2013泰安市一模】山东省泰安市2013届高三第一轮复习质量检测 数学(文)试题

泰安市高三第一轮复习质量检测数学试题(文科)2013.3一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,1,124xA B x =-=≤<,则A B ⋂等于A.{}1,0,1-B.{}1C.{}1,1-D.{}0,1【答案】B{}124{02}x B x x x =≤<=≤<,所以{1}A B ⋂=,选B.2.复数311i i-+(i 为虚数单位)的模是B.C.5D.8【答案】A31(31)(1)24121(1)(1)2i i i i i i i i ---+===+++-,所以31121i i i -=+=+ A. 3.下列命题中,是真命题的是 A.00,0x x R e∃∈≤B.2,2x x R x ∀∈> C.0a b +=的充要条件是1ab=-D.a >1,1b >是1ab >的充分条件【答案】DA 因为0x e >,所以A 错误。
B 当1x =-时,1212,(1)12-=-=,所以B 错误。
C 当0a b ==时,1ab=-不成立,所以C 错误,选D. 4.从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b ,则b a >的概率是 A.45B.35C.25D.15【答案】C从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选C.5.若程序框图如图所示,则该程序运行后输出k 的值是A.4B.5C.6D.7【答案】B第一次35116,1n k =⨯+==;第二次168,22n k ===;第三次84,32n k ===;第四次42,42n k ===;第五次21,52n k ===此时满足条件输出5k =,选B. 6.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是 A.奇函数且图像关于点,02π⎛⎫⎪⎝⎭对称 B.偶函数且图像关于点(),0π对称 C.奇函数且图像关于直线2x π=对称D.偶函数且图像关于点,02π⎛⎫⎪⎝⎭对称 【答案】C 当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,即2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,所以()()3s i n ()04fx A x A π=->,所以333()sin()sin 444y f x A x A x πππ=-=--=-,所以函数为奇函数且图像关于直线2x π=对称,选C.7.在,2ABC AB ∆∠=中,A=60,且ABC ∆,则BC 的长为B.3D.7【答案】A11sin 6022222S AB AC AC =⨯⋅=⨯⨯=,所以1AC =,所以2222c o s 603BC A B A C A B A=+-⋅= ,,所以BC =,选A. 8.已知()1,6,2a b a b a ==⋅-= 则向量a b与的夹角为A.2π B.3πC.4π D.6π 【答案】B2()2a b a a b a ⋅-=⋅-= ,所以3a b ⋅= ,所以31cos ,162a b a b a b ⋅<>===⨯,所以,3a b π<>= ,选B.9.若,,0,a b R ab ∈>且则下列不等式中,恒成立的是 A.a b +≥ B.11a b +>C.2b a a b +≥D.222a b ab +> 【答案】C 因为0ab >,所以0,0baa b>>,即2b a a b +≥=,所以选C. 10.设函数()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是 A.11x >-B.20x <C.32x >D.201x <<【答案】D∵函数()()3402f x x x a a =-+<<,∴f ′(x )=3x 2﹣4.令f ′(x )=0,得 x=±.∵当3x <-时,'()0f x >;在(33-上,'()0f x <;在()3+∞上,'()0f x >.故函数在(,)3-∞-)上是增函数,在(33-上是减函数,在()3+∞上是增函数.故()3f -是极大值,(3f 是极小值.再由f (x )的三个零点为x 1,x 2,x 3,且123,x x x <<得 x 1<﹣,﹣<x 2,x 3>.根据f (0)=a >0,且f ()=a ﹣<0,得>x 2>0.∴0<x 2<1.选D.11.直线()2110x a y +++=的倾斜角的取值范围是 A.0,4π⎡⎤⎢⎥⎣⎦B. 3[,)4ππ C.0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭D.3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】B直线的斜截式方程为221111y x a a =--++,所以斜率为211k a =-+,即21tan 1a α=-+,所以1tan 0α-≤<,解得34παπ≤<,即倾斜角的取值范围是3[,)4ππ,选B.12.设奇函数()[]1,1f x -在上是增函数,且()11f -=-,若函数,()221f x t at ≤-+对所有的[]1,1x ∈-都成立,则当[]1,1a ∈-时t 的取值范围是 A.22t -≤≤B.1122t -≤≤ C.202t t t ≤-=≥或或D.11022t t t ≤-=≥或或【答案】C因为奇函数()[]1,1f x -在上是增函数,且()11f -=-,所以最大值为(1)1f =,要使()221f x t at ≤-+对所有的[]1,1x ∈-都成立,则2121t at ≤-+,即220t at -≥,即(2)0t t a -≥,当0t =时,不等式成立。
山东省泰安市高三第一轮复习质量检测(一模)数学(文科)试题

山东省泰安市2013届高三第一轮复习质量检测(一模)数学(文科)试题2013.3一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,1,124xA B x =-=≤<,则A B ⋂等于A.{}1,0,1-B.{}1C.{}1,1-D.{}0,1【答案】B{}124{02}x B x x x =≤<=≤<,所以{1}A B ⋂=,选B.2.复数311i i-+(i 为虚数单位)的模是B.C.5D.8【答案】A31(31)(1)24121(1)(1)2i i i i i i i i ---+===+++-,所以31121i i i-=+=+,选A. 3.下列命题中,是真命题的是 A.00,0xx R e ∃∈≤B.2,2x x R x ∀∈>C.0a b +=的充要条件是1ab=-D.a >1,1b >是1ab >的充分条件【答案】DA 因为0x e >,所以A 错误。
B 当1x =-时,1212,(1)12-=-=,所以B 错误。
C 当0a b ==时,1ab=-不成立,所以C 错误,选D. 4.从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b ,则b a >的概率是 A.45B.35C.25D.15【答案】C从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选C.5.若程序框图如图所示,则该程序运行后输出k 的值是A.4B.5C.6D.7【答案】B第一次35116,1n k =⨯+==;第二次168,22n k ===;第三次84,32n k ===;第四次42,42n k ===;第五次21,52n k ===此时满足条件输出5k =,选B. 6.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是 A.奇函数且图像关于点,02π⎛⎫⎪⎝⎭对称 B.偶函数且图像关于点(),0π对称 C.奇函数且图像关于直线2x π=对称D.偶函数且图像关于点,02π⎛⎫⎪⎝⎭对称 【答案】C 当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,即2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,所以()()3s i n ()04f x A x A π=->,所以333()s i n ()s i n 444y f x A x A x πππ=-=--=-,所以函数为奇函数且图像关于直线2x π=对称,选C.7.在,2ABC AB ∆∠= 中,A=60,且ABC ∆的面积为2,则BC 的长为B.3D.7【答案】A11sin 60222S AB AC AC =⨯⋅=⨯=,所以1AC =,所以2222c o s 63BCA BA C AB AC =+-⋅,,所以BC ,选A. 8.已知()1,6,2a b a b a ==⋅-=则向量a b 与的夹角为A.2π B.3πC.4π D.6π 【答案】B2()2a b a a b a ⋅-=⋅-= ,所以3a b ⋅= ,所以31cos ,162a b a b a b ⋅<>===⨯,所以,3a b π<>=,选B.9.若,,0,a b R ab ∈>且则下列不等式中,恒成立的是 A.a b +≥ B.11a b +> C.2b a a b +≥ D.222a b ab +>【答案】C因为0ab >,所以0,0b a a b >>,即2b a a b +≥=,所以选C. 10.设函数()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是 A.11x >-B.20x <C.32x >D.201x <<【答案】D∵函数()()3402f x x x a a =-+<<,∴f ′(x )=3x 2﹣4.令f ′(x )=0,得 x=±.∵当x <'()0f x >;在(上,'()0f x <;在)+∞上,'()0f x >.故函数在(,3-∞-)上是增函数,在(33-上是减函数,在()3+∞上是增函数.故(3f -是极大值,(3f 是极小值.再由f (x )的三个零点为x 1,x 2,x 3,且123,x x x <<得 x 1<﹣,﹣<x 2,x 3>. 根据f (0)=a >0,且f ()=a ﹣<0,得>x 2>0.∴0<x 2<1.选D.11.直线()2110x a y +++=的倾斜角的取值范围是A.0,4π⎡⎤⎢⎥⎣⎦B. 3[,)4ππ C.0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭D.3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】B直线的斜截式方程为221111y x a a =--++,所以斜率为211k a =-+,即21tan 1a α=-+,所以1tan 0α-≤<,解得34παπ≤<,即倾斜角的取值范围是3[,)4ππ,选B.12.设奇函数()[]1,1f x -在上是增函数,且()11f -=-,若函数,()221f x t at ≤-+对所有的[]1,1x ∈-都成立,则当[]1,1a ∈-时t 的取值范围是A.22t -≤≤B.1122t -≤≤ C.202t t t ≤-=≥或或D.11022t t t ≤-=≥或或【答案】C因为奇函数()[]1,1f x -在上是增函数,且()11f -=-,所以最大值为(1)1f =,要使()221f x t at ≤-+对所有的[]1,1x ∈-都成立,则2121t a t ≤-+,即220t at -≥,即(2)0t t a -≥,当0t =时,不等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰安市高三第一轮复习质量检测数学试题(文科)
2013.3
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,1,12
4x
A B x =-=≤<,则A B ⋂等于
A.
{}1,0,1-
B.
{}1
C.
{}1,1-
D.
{}0,1
2.复数31
1i i
-+(i 为虚数单位)的模是
B.
C.5
D.8
3.下列命题中,是真命题的是 A.0
0,0x x R e
∃∈≤
B.2,2x x R x ∀∈>
C.0a b +=的充要条件是1a
b =- D.a >1,1b >是1ab >的充分条件
4.从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b ,则b a >的概率是
A.
45
B.
35
C.25
D.
15
5.若程序框图如图所示,则该程序运行后输出k 的值是 A.4 B.5 C.6 D.7
6.当4
x π
=
时,函数
()()()sin 0f x A x A ϕ=+>取得最小
值,则函数
34y f x π⎛⎫=- ⎪⎝⎭
是
A.奇函数且图像关于点,02π⎛⎫ ⎪⎝⎭
对称
B.偶函数且图像关于点
(),0π对称
C.奇函数且图像关于直线2
x π
=
对称
D.偶函数且图像关于点,02π⎛⎫
⎪⎝⎭
对称
7.在2ABC AB ∆∠=
中,A=60
,且ABC ∆的面积为
2
,则BC 的长为
B.3
D.7
8.已知(
)
1,6,2a b a b a ==⋅-= 则向量a b
与的夹角为
A.
2
π B.
3
π
C.
4
π D.
6
π 9.若,,0,a b R ab ∈>且则下列不等式中,恒成立的是
A.a b +≥
B.11
a b +>
C.2b a a b +≥
D.222a b ab +> 10.设函数
()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是
A.11x >-
B.2
0x <
C.3
2x >
D.2
01x <<
11.直线()2
110x a
y +++=的倾斜角的取值范围是
A.0,
4π⎡⎤⎢⎥⎣⎦
B.3,4ππ⎡⎤⎢
⎥⎣⎦
C.0,
,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭
D.3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢
⎢⎣⎭⎣⎭
12.设奇函数
()[]1,1f x -在上是增函数,
且()11f -=-,若函数,()2
21f x t at ≤-+对所有的[]1,1x ∈-都成立,则当[]1,1a ∈-时t 的取值范围是
A.22t -≤≤
B.1122t -
≤≤ C.202t t t ≤-=≥或或
D.11022
t t t ≤-=≥或或
二、填空题:本大题共4个小题,每小题4分,共16分.请把答案填在答题纸的相应位置.
13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 ▲ . 14.正项数列
{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则 ▲ .
15.已知矩形ABCD 的顶点都在半径为5的球O 的球面上,且8,AB BC ==,则棱锥O —ABCD 的体
积为 ▲ .
16.设双曲线
22
1x y m n
+=的离心率为2,且一个焦点与抛物线28x y =的焦点相同,则此双曲线的方程为 ▲ .
三、解答题:
17.(本小题满分12分) 设等比数列
{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列. (I )求数列
{}n a 的通项公式;
(II )证明:对任意21,,,k k k R N
S S S +
++∈成等差数列.
18.(本小题满分12分)
已知(
)sin ,,,,334x x m A A n f x m n f π⎛⎫⎫⎛⎫===⋅= ⎪⎪ ⎪⎝⎭⎭⎝⎭
且
(1)求A 的值; (II )设α、()()30780,
,3,3,cos 21725f f πβαπβπαβ⎡⎤
⎛⎫∈+=-=-+ ⎪⎢⎥⎣⎦⎝⎭
求的值.
19.(本小题满分12分)
如图,在四棱锥P —ABCD 中,平面PAB ⊥平面ABCD ,AB=AD ,60BAD ∠=
,E ,F 分别是AP ,AB 的中点. 求证:(I )直线EF//平面PBC ;
(II )平面DEF ⊥平面PAB.
20.(本小题满分12分)
电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):
将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (I )根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
(II )将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率
.
21.(本小题满分13分)
已知椭圆22
1:
1164
y x C +=,椭圆C 2以C 1的短轴为长轴,且与C 1有相同的离心率. (I )求椭圆C 2的方程;
(II )设直线l 与椭圆C 2相交于不同的两点A 、B ,已知A 点的坐标为
()2,0-,点()00,Q y 在线段AB 的
垂直平分线上,且4QA QB ⋅=
,求直线l 的方程.
22.(本小题满分13分) 已知函数
()()21.x f x ax x e =++
(I )若曲线()1y f x x =
=在处的切线与x 轴平行,求a 的值,并讨论()f x 的单调性;
(2)当0a =时,是否存在实数m 使不等式()2
14121mx x x f x mx +≥-++≥+和对任意[)0,x ∈+∞恒
成立?若存在,求出m 的值,若不存在,请说明理由。