热处理箱式电阻炉的设计学习资料
热处理箱式电阻炉设计

热处理箱式电阻炉设计热处理是一种常见的金属加工方法,它通过控制材料的加热和冷却过程来改变材料的性能和组织结构。
箱式电阻炉是热处理领域中常用的设备之一,它具有结构简单、操作方便、加热均匀等优点。
本文将从箱式电阻炉的结构设计、加热方式、温度控制、安全性等方面进行探讨。
首先,箱式电阻炉的结构设计是其设计的重要方面之一、箱式电阻炉一般由炉体、加热元件、电控系统和保温材料组成。
炉体通常采用优质钢板焊接而成,具有良好的密封性能和耐高温性能。
加热元件一般采用镍铬合金电阻丝或电阻片,通过电流通过加热元件发热,实现对材料的加热。
电控系统一般由温度控制器和电源组成,用于控制加热元件的加热功率和温度的控制。
保温材料一般采用耐高温陶瓷纤维或石棉棉等材料,用于保持炉体内部的高温。
其次,加热方式是箱式电阻炉设计中需要考虑的重要问题之一、常见的加热方式包括顶部加热和底部加热。
顶部加热是指在箱式电阻炉的炉膛顶部布置加热元件,通过上方向下辐射热传导到炉膛内的材料上。
底部加热是指在箱式电阻炉的底部布置加热元件,通过下方向上辐射热传导到炉膛内的材料上。
两种加热方式各有优缺点,根据具体的工艺要求选择合适的加热方式。
在温度控制方面,箱式电阻炉设计需要考虑如何实现对温度的精准控制。
一般情况下,箱式电阻炉采用PID控制方式,即比例-积分-微分控制方式。
PID控制器可以根据温度的反馈信号自动调整加热功率和温度的设定值,从而实现对温度的精准控制。
此外,在箱式电阻炉设计中还需要考虑如何解决温度梯度的问题,以保证加热均匀性。
通常采用设置多个加热区域或者采用电磁感应加热的方式来解决温度梯度的问题。
最后,在设计箱式电阻炉时,安全性也是需要考虑的重要因素。
箱式电阻炉在加热过程中会产生高温,因此需要采取一系列的安全措施来防止事故的发生。
比如,在炉体外部设置保护层,以避免烤伤。
在电控系统中设置过温报警器和断电保护装置,以及温度超限自动切断电源,以确保炉体温度在安全范围内。
中温箱式电阻炉课程设计说明书

一、炉型的选择因为工件材料为低合金钢,热处理工艺为正火,对于低合金钢正火最高温度为【912+(30~50)】℃,选择中温炉(上限950℃)即可,同时工件没有特殊规定也不是长轴类,则选择箱式炉,并且无需大批量生产、工艺多变,则选择周期式作业。
综上所述,选择周期式中温箱式电阻炉。
二、炉膛尺寸的确定1、用炉底强度指标法计算炉底有效面积:查表得炉底强度h G =100Kg/(m 2·h )F 效=h gG 件=60100=0.6(m 2) 炉膛有效尺寸:L 效=效)(F 5.1~2L 效(m )=960mm炉膛有效宽度:B 效=效(F 2/3)~2/1B 效选择 1000m m ×600mm ×45mm/12mm 的炉底板,取B 效=0.6m2、 炉膛内腔砌墙尺寸炉膛宽度:B 砌=B 效+2×(0.1~0.15)B 砌=0.6+2×0.125=0.85 (m)炉膛长度:L 砌=L 效+0.16 =1.12(m )炉膛内高度:H 砌=(0.5~0.9)B 砌H 砌=0.8×0.85=0.68 (m )层数n=067.0108.03-⨯⨯砌B =10.1 选择10层∴炉膛高度H 砌=10×67+42+39=0.751(m)三、炉体结构设计与材料选择(一)、选择炉衬材料部分炉体包括炉壁、炉底、炉底、炉门、炉壳架几部分。
炉体通常用耐火层和保温层构成,尺寸与炉膛砌筑尺寸有关。
设计时应满足下列要求:(1)确定砌体的厚度尺寸要满足强度要求,并应与耐火砖、隔热保温砖的尺寸相吻合;(2)为了减少热损失和缩短升温时间,在满足强度要求的前提下,应尽量选用轻质耐火材料;(3)要保证炉壳表面温升小于50℃,否则会增大热损失,使环境温度升高,导致劳动条件恶化。
(二)、炉体结构设计和尺寸本炉设计为两层炉壁内层选用RNG-0.6型轻质粘土砖,其厚度S 1=115mm ;外层选用硅酸铝耐火纤维,体积密度λ2=105Kg/m 3厚度S 2待计算;RNG-0.6型轻质粘土砖:ρ1=600【Kg/ m 3】λ1=0.165+0.194×10-3t 均【w/(m ·℃)】C 1=0.836+0.263×10-3t 均【KJ/(Kg ·℃)】耐火纤维当t 3=60℃时,由表查得α∑=12.17【W/(㎡·℃)】∴ q=12.17×(50-20)=486.8(W/㎡)将上述各数据代入公式得: ()[]115.08.486950165.095010194.05.010194.02165.0165.010194.01t 233232⨯-⨯+⨯⨯⨯⨯⨯++-⨯=---=782(℃)代入数据解得:纤维层厚度:()107.0607828.4861S 2⨯-⨯==228(mm ) 取S 2=230mm(三)、炉顶的设计炉膛宽度为850mm ,采用拱顶,拱角60°的标准拱顶,拱顶式炉子最容易损坏的部位,受热时耐火砖发生膨胀,造成砌筑拱顶时,为了减少拱顶向两侧的压力,应采用轻质的楔形砖与标准直角砖混合砌筑。
热处理炉(箱式电阻炉)设计

热处理炉设计一、 设计任务设计一箱式电阻炉,计算和确定主要项目,并绘出草图。
基本技术条件:(1)用途:低合金钢等的回火;(2)工件:中小型零件,小批量多品种,最长0.8m ;(3)最高工作温度为550℃;(4)炉外壁温度小于60℃;(5)生产率:120kg/h 。
设计计算的主要项目:(1) 确定炉膛尺寸;(2) 选择炉衬材料及厚度,确定炉体外形尺寸;(3) 计算炉子功率,进行热平衡计算,并与经验计算法比较;(4) 计算炉子主要经济技术指标(热效率,空载功率,空炉升温时间);(5) 选择和计算电热元件,确定其布置方法;(6) 写出技术规范。
二、 炉型选择根据设计任务给出的生产特点,选用低温(≦550℃)箱式热处理电阻炉,炉膛不通保护气氛,为空气介质。
三、 确定炉膛尺寸1. 理论确定炉膛尺寸(1) 确定炉底总面积炉底总面积的确定方法有两种:实际排料法和加热能力指标法。
本设计用加热能力指标法来确定炉底面积。
已知炉子生产率h kg P 120=,按教材表5-1选择适用于回火的一般箱式炉,其单位炉底面积生产率)(00120h m kg p ⋅=。
因此,炉子的炉底有效面积(可以摆放工件的面积)1F 可按下式计算:201 1.2100120m p P F === 通常炉底有效面积和炉底总面积之比值在0.75~0.85之间选择。
本设计取值0.85,则炉底总面积F 为: 21 1.41285.01.285.0m F F ≈== (2) 确定炉膛的长度和宽度 炉底长度和宽度之比BL 在3/2~2之间选择。
考虑到炉子使用时装、出料的方便,本设计取2=BL ,则炉子炉底长度和宽度分别为:m L B m F L 840.021.6802680.15.01.4125.0======(3) 确定炉膛高度 炉膛高度和宽度之比BH 在0.5~0.9之间选择,大炉子取小值,小炉子取大值。
本设计取中值0.7,则炉膛高度为:m B H 588.0840.07.07.0=⨯==2. 实际确定炉膛尺寸为方便砌筑炉子,需根据标准砖尺寸(230×113×65mm ),并考虑砌缝宽度(砌砖时两块砖之间的宽度,2mm )、上、下砖体应互相错开以及在炉底方便布置电热元件等要求,进一步确定炉膛尺寸。
箱式电阻炉1200℃设计

箱式电阻炉1200℃设计简介箱式电阻炉是一种常用的实验设备,主要用于高温实验和热处理。
本文将介绍设计一个箱式电阻炉,能够达到1200℃的温度。
设计要求为了满足1200℃的工作温度,我们需要考虑以下设计要求:1.炉体材料应具备较高的耐高温性能;2.保温层要能有效减少热量的散失;3.控温系统要精确而稳定;4.安全性能要高,包括过热保护和漏电保护。
设计方案1. 炉体材料选择炉体材料需要具备较高的耐高温性能,一般可以选择使用耐火砖或高温陶瓷材料。
耐火砖具有良好的耐高温和隔热性能,但相对较重;高温陶瓷材料则轻盈且性能稳定。
根据实际需求和预算情况,可以选择适合的炉体材料。
2. 保温层设计保温层的设计可以采用多层结构,以确保热量的有效保持。
常用的保温材料包括氧化铝纤维、硅酸钙纤维、硅酸铝纤维等。
保温材料的厚度和密度需要根据实际情况进行调整,以达到理想的保温效果。
3. 控温系统控温系统是箱式电阻炉的核心组成部分,它决定了炉内温度的精确性和稳定性。
常用的控温系统包括PID控制器和温度传感器。
PID控制器能够根据温度误差自动调整炉内的加热功率,以达到设定的温度值。
温度传感器负责实时监测炉内温度,将数据反馈给PID控制器。
通过合理的参数设置和精确的传感器,可以实现精确控温。
4. 安全性能为了保证使用过程中的安全性,必须配置过热保护和漏电保护装置。
过热保护装置可以设置在温度传感器附近,一旦探测到异常高温,就会自动切断加热源的电源,以防止火灾发生。
漏电保护装置则用于检测漏电情况,一旦检测到漏电,将自动切断电源以保证人身安全。
总结设计一个能够达到1200℃的箱式电阻炉需要考虑炉体材料、保温层设计、控温系统和安全性能等方面的要求。
选择合适的耐火材料、设计适当的保温层、配置精确稳定的控温系统和安全保护装置,可以实现高温实验和热处理的需求,同时确保使用过程的安全性。
希望本文对设计1200℃箱式电阻炉有所帮助。
热处理炉(箱式电阻炉)设计

热处理炉设计一、 设计任务设计一箱式电阻炉,计算和确定主要项目,并绘出草图。
基本技术条件:(1)用途:低合金钢等的回火;(2)工件:中小型零件,小批量多品种,最长0.8m ;(3)最高工作温度为550℃;(4)炉外壁温度小于60℃;(5)生产率:120kg/h 。
设计计算的主要项目:(1) 确定炉膛尺寸;(2) 选择炉衬材料及厚度,确定炉体外形尺寸;(3) 计算炉子功率,进行热平衡计算,并与经验计算法比较;(4) 计算炉子主要经济技术指标(热效率,空载功率,空炉升温时间);(5) 选择和计算电热元件,确定其布置方法;(6) 写出技术规范。
二、 炉型选择根据设计任务给出的生产特点,选用低温(≦550℃)箱式热处理电阻炉,炉膛不通保护气氛,为空气介质。
三、 确定炉膛尺寸1. 理论确定炉膛尺寸(1) 确定炉底总面积炉底总面积的确定方法有两种:实际排料法和加热能力指标法。
本设计用加热能力指标法来确定炉底面积。
已知炉子生产率h kg P 120=,按教材表5-1选择适用于回火的一般箱式炉,其单位炉底面积生产率)(00120h m kg p ⋅=。
因此,炉子的炉底有效面积(可以摆放工件的面积)1F 可按下式计算:201 1.2100120m p P F === 通常炉底有效面积和炉底总面积之比值在0.75~0.85之间选择。
本设计取值0.85,则炉底总面积F 为: 21 1.41285.01.285.0m F F ≈== (2) 确定炉膛的长度和宽度 炉底长度和宽度之比BL 在3/2~2之间选择。
考虑到炉子使用时装、出料的方便,本设计取2=BL ,则炉子炉底长度和宽度分别为:m L B m F L 840.021.6802680.15.01.4125.0======(3) 确定炉膛高度 炉膛高度和宽度之比BH 在0.5~0.9之间选择,大炉子取小值,小炉子取大值。
本设计取中值0.7,则炉膛高度为:m B H 588.0840.07.07.0=⨯==2. 实际确定炉膛尺寸为方便砌筑炉子,需根据标准砖尺寸(230×113×65mm ),并考虑砌缝宽度(砌砖时两块砖之间的宽度,2mm )、上、下砖体应互相错开以及在炉底方便布置电热元件等要求,进一步确定炉膛尺寸。
(完整word版)箱式电阻炉课程设计

一、设计任务书题目:设计一台中温箱式热处理电阻炉;炉子用途:中小型零件的热处理;材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理;生产率:160 kg/h;生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产;要求:完整的设计计算书一份和炉子总图一张。
二、炉型的选择根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度,不通保护气氛.三、确定炉体结构及尺寸1.炉底面积的确定因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法.已知生产率p为160 kg/h,按照教材表5—1选择箱式炉用于正火和淬火时的单位面积生产率p0为120 kg/(m2﹒h),故可求得炉底有效面积:由于有效面积与炉底总面积存在关系式,取系数上限,得炉底实际面积:2.炉底长度和宽度的确定由于热处理箱式电阻炉设计时应考虑出料方便,取,因此,可求得:根据标准砖尺寸,为便于砌砖,取,如总图所示。
3。
炉膛高度的确定按照统计资料,炉膛高度与宽度之比通常在之间,根据炉子工作条件,取。
因此,确定炉膛尺寸如下:长宽高为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为:4。
炉衬材料及厚度的确定由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖.炉顶采用轻质粘土砖,密度为的普通硅酸铝纤维毡,膨胀珍珠岩。
炉底采用三层轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖和膨胀珍珠岩复合炉衬.炉门用轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖。
炉底隔砖采用重质粘土砖,电热元件搁砖选用重质高铝砖。
炉底板材料选用耐热钢,根据炉底实际尺寸给出,分三块或者四块,厚.四、砌体平均表面积计算砌体外廓尺寸如下:试中——拱顶高度,此炉子采用60°标准拱顶,取拱弧半径,则f可由求得.1.炉顶平均面积2。
炉墙平均面积炉墙面积包括侧墙及前后墙,为简化计算,将炉门包括在前墙内。
箱式电阻炉设计(修改版)

佳木斯大学热处理设备课程设计(说明书)题目:热处理箱式电阻炉的设计(生产率110kg/h,温度≤600℃)院(系):材料科学与工程学院专业班级:金属一班学号:**********学生姓名:位来指导教师:**起止时间:2012-11-19~2012-12-10课程设计任务及评语目录一、炉型的选择 (1)二、确定炉体结构和尺寸 (1)三、砌体平均表面积计算 (2)四、计算炉子功率 (2)五、炉子热效率计算 (5)六、炉子空载功率计算 (5)七、空炉升温时间计算 (5)八、功率的分配与接线 (6)九、电热元件材料选择及计算 (6)十、电热体元件图 (7)十一、电阻炉装配图 (7)十二、电阻炉技术指标 (7)参考文献 (8)设计任务:按工作要求可设计一台热处理电阻炉,其技术要求为:(1)用途:中低碳钢、合金钢毛坯或零件的淬火、正火处理,处理对象为中小型零件,无定型产品,处理批量为多品种,小批量;(2)生产率:110kg/h;(3)工作温度:最高使用温度≤600℃;(4)生产特点:周期式成批装料,长时间连续生产。
一、炉型的选择根据设计任务给出的技术要求和生产特点,本设计宜选用箱式热处理电阻炉。
二、确定炉体结构和尺寸1.炉底面积的确定根据所学知识炉底面积用炉底强度来计算。
生产率为110kg/h,即可选择箱式炉用于淬火和正火时的单位面积炉底强度h为115kg/(m2·h),故可求得炉底有效面积F1 = P/h= 110/115 = 0.96m2K为有效面积与炉底总面积的比例系数,K=F/F1=0.75~0.85,我们取系数为0.84,则炉底实际面积:F = F1/0.84 =0.96/0.84 =1.14m22.炉底长度和宽度的确定考虑到工作时的状态,长度与宽度之比L/B=3:2,因此可知B =930m,L =1310m。
又因为要考虑便于砌砖,根据标准砖尺寸,取L =1380mm,B =920mm。
箱式电阻炉课程教学设计

一、设计任务书题目:设计一台中温箱式热处理电阻炉; 炉子用途:中小型零件的热处理;材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理; 生产率:160 kg/h ;生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。
二、炉型的选择根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度950℃,不通保护气氛。
三、确定炉体结构及尺寸 1.炉底面积的确定因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。
已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于正火和淬火时的单位面积生产率p 0为 120 kg/(m 2﹒h),故可求得炉底有效面积:F 1=P P 0=160120=1.33 m 2 由于有效面积与炉底总面积存在关系式F 1F ⁄=0.75~0.85,取系数上限,得炉底实际面积:F =F 1=1.33=1.57 m 2 2.炉底长度和宽度的确定由于热处理箱式电阻炉设计时应考虑出料方便,取L B ⁄=2,因此,可求得:L =√F 0.5⁄=√1.570.5⁄=1.772 mB =L 2⁄=1.7722⁄=0.886 m根据标准砖尺寸,为便于砌砖,取L =1.741 m ,B =0.869 m ,如总图所示。
3.炉膛高度的确定按照统计资料,炉膛高度H与宽度B之比H B⁄通常在0.5~0.9之间,根据炉子工作条件,取H B⁄=0.64Om。
因此,确定炉膛尺寸如下:长L=(230+2)×7+(230×1+2)=1741 m2宽B=(120+2)×4+(65+2)+(40+2)×2+(113+2)×2=869 mm高H=(65+2)×9+37=640 mm为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为:=1500 mmL效=700 mmB效=500 mmH效4.炉衬材料及厚度的确定由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN−0.8轻质粘土砖,+80 mm密度为250 kg m3⁄的普通硅酸铝纤维毡,+113mm B级硅藻土砖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁x x 大学热工过程与设备课程设计题目:热处理箱式电阻炉的设计(生产率150kg/h,功率39kw,工作温度≤600℃)院(系):X X专业班级:X X学号:X X学生姓名:X X指导教师:X X起止时间:X X课程设计(论文)任务及评语目录一、炉型的选择 (2)二、确定炉体结构和尺寸 (2)三、砌体平均表面积设计 (4)四、计算炉子功率 (5)五、炉子热效率计算 (7)六、炉子空载功率计算 (7)七、空炉升温时间计算 (7)八、功率分配与接线 (9)九、电热元件材料选择与计算 (9)十、电热体元件图 (11)十一、电阻炉装配图 (11)十二、炉子技术指标 (11)参考文献 (12)设计任务:为某厂设计一台热处理电阻炉,其技术条件为:(1)用途:中碳钢、低合金钢毛坯或零件的退火,处理对象为中小型零件,无定型产品,处理批量为多品种,小批量;(2)生产率:150kg/ h;(3)工作温度:最高使用温度≤600℃;(4)生产特点:周期式成批装料,长时间连续生产。
一、炉型的选择根据工件的特点与设计任务的要求及产量大小选择合适的炉型。
由于小批量生产,品种多和工艺稳定的要求拟选用箱式热处理电阻炉,不通保护气氛。
二、确定炉体结构和尺寸1.炉底面积的确定炉底面积的计算方法有两种。
一种是根据一次装料量计算,另一种是根据炉底强度指标计算[1]。
因工件的加热周期和装炉量不明确,故不能用炉子一次装料量确定炉底面积,只能用炉底强度指标法。
已知生产率为150kg/h,按表5—1[1]选择箱式炉用于正火和淬火时的单位面积生产率p0为120kg/(m2·h),故可求得炉底有效面积F=p/p0=150/120=1.25m2由于有效面积与炉底总面积存在关系式F/F1=0.75~0.85,取系数上限0.85,得到炉底实际面积:F=F/0.85= 1.25/0.85=1.47m22.炉底长度和宽度的确定对于热处理箱式电阻炉,设计时考虑装出料的方便,根据长度与宽度之比,取L/B=2:1,因此,可求得炉底宽度F=2.059mL=5.0/B=L/2=2.059/2=1.030m 为方便砌砖L=2205mm B=1048mm 3.炉膛高度的确定根据统计的资料,炉膛高度(H)对炉底宽度(B)之比H/B通常在0.52~0.9之间,大多数在0.8左右,根据炉子工作条件,取H/B=0.7左右,选定炉膛高度H=707mm。
因此,确定炉膛尺寸如下长L=(230+2)×9+(230/2+2)=2205mm宽B=(120+2)×5+(50+2)×4+(113+2)×2=1048mm高H=(65+2)×10+37=707mm为防止工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,在一般情况下,要保证炉料上部有200~300mm的空间,有利于辐射与对流传热,由此确定工作室有效尺寸为L效=2000mmB效=950mmH效=500mm砌体结构如图1所示:轻质粘土砖硅藻土砖重质粘土砖耐热钢图1砌体结构示意图4.炉衬材料及厚度的确定由于侧墙、前墙及后墙以及炉顶的工作条件相似,采用相同炉衬结构,即两层:113mmQN—1.0轻质粘土砖和180mmB级硅藻土砖。
炉底采用耐火层314mm,材料为113mmQN—1.0轻质粘土砖,绝热层硅藻土砖和蛭石粉厚180mm。
炉门用65mmQN—1.0轻质粘土砖+65mmA级硅藻土砖。
炉底板材料选用Cr-Mn-Ni耐热钢,根据炉底实际尺寸给出,分三块或四块,厚20mm。
炉底隔砖采用重质粘土砖[2]。
三、砌体平均表面积计算砌体外廓尺寸如图1所示。
L外=L+2×(113+180)=2791mmB外=B+2×(113+180)=1634mmH外=H+f+(115+180)+(65+2)×3+180=1523mm式中:f—拱顶高度,此炉子采用60°标准拱顶,取拱弧半径尺R=B,则f可由f=R(1-cos30°)=140mm求得。
1.炉顶平均面积F顶内=(2πR/6)×L=2.42m2F顶外=B外×L 外=4.56m2F顶均= =3.320m22.炉墙平均面积炉墙面积包括侧墙及前后墙,为简化计算将炉门包括在前墙内。
F墙内=2LH+2BH=5.109m2F墙外=2H外(L外+B外)=13.479m2F墙均= =8.298m23.炉底平均面积F底内=B×L=2.311m2F底外=B外×L外=4.560m2F底均= 2四、计算炉子功率1据热平衡计算炉子功率 (1) 加热工件所需的热量Q 件由附表6[1]得,工件在600℃及20℃时比热容分别为C 件2=0.741KJ/(kg ·℃), C 件1=0.486KJ /(kg ·℃),根据Q 件=p(C 件2t 1-C 件l t 0)=150×(0.574×600-0.486×20)=50202.0KJ/h (2) 通过炉衬的散热损失Q 散由于炉子侧壁和前后墙炉衬结构相似,故作统一数据处理,为简化计算,将炉门包括在前墙内[3]。
根据式(1—15)[2]111n ni i ii t t s F λ+=-∑ 对于炉墙散热,如图5—9[4]所示,首先假定界面上的温度及炉壳温度,炉内温度t 1=600℃ 界面温度为t 2=500℃ 炉壳温度t 3=60℃耐火层S 1的平均温度t 1均=(600+500)/2=550℃ 保温层S 2的平均温度t 2均=(500+60)/2=280℃ 炉衬的热导率由附表3[1]得λ1=0.29+0.000256×t 1均=0.29+0.000256×550=3.113W/(m ·℃) λ2=0.13+0.00023×t s3均=0.13+0.00023×280=0.1644W/(m ·℃)。
当炉壳温度为60℃,室温为20℃时,由附表2[1]经近似计算可得αΣ=12.17W/(m 2·℃) a)求热流q 墙 =(600-20)/(S 1/λ1+ S 2/λ2 +1/αΣ)=(600-20)/(0.115/3.113+0.12/0.1644+1/12.17) =682.4w/m 2 b)计算交界面上的温度t 2墙、t 2墙=11s t q λ1-墙=600-682.4×(0.115/3.113)=574.8℃验算界面温度(t 2墙—t 2)/t 2墙=4.5%<5%该假设结果满足设计要求,不需要重算.c)验算炉壳温度t 3墙t 3墙=222s t q λ-墙=574.8-682.4(S 2/λ2)=58℃该结果满足一般热处理电阻炉表面温度<60℃的要求。
d).计算炉墙散热损失Q 墙散= q 墙·F 墙均=682.4×8.298=5662.6W 同理可以求得Q 顶散= q 墙·F 顶均=682.4×3.32=2265.6W Q 底散= q 墙·F 底均=682.4×3.246=2215.1W 整个炉体散热损失Q 散= Q 墙散+Q 顶散+ Q 底散=10143.3W=2819.8kj/h(3) 开启炉门的辐射热损失设装出料所需时间为每小时6分钟,根据式(5—6)[2]Q 辐=3.6×5.675F Φδt[4100Tg ⎛⎫⎪⎝⎭-4100Ta ⎛⎫ ⎪⎝⎭] 因为T g =600+273=873K ,T a =20+273=293K , 由于正常工作时,炉门开启高度的一半,故炉门开启面积F=B ×2H=1.048×0.6402=0.370 m 2炉门开启率δt=0.1由于炉门开启后,辐射口为矩形,且2H与B 之比为0.35/1.048=0.34,炉门高度与炉墙厚度之比为0.35/0.29=1.21,由图1-14[4]第一条线图1-14[4]查得Φ=0.7故Q 辐=3.6×5.675F Φδt[4100Tg ⎛⎫⎪⎝⎭-4100Ta ⎛⎫ ⎪⎝⎭]=3034.0kJ/h (4)开启炉门溢气热损失溢气热损失 Q 溢=q va ρa C a (t g ’-t a )δt 其中q va =1997·B ·2H 3/h 空气密度ρa =1.29 kg/m 3由附表10[3]得C a =1.358KJ/(m 3·℃) t a =20℃ ,t g ’为溢气温度, t g ’=20+23(600-20)=406.7℃ Q 溢=q va ρa C a (t g ’-t a )δt=29800.1 KJ/h(5)其它热量损失其他热量损失越为上述热损失之和的10%~20%故Q 它=0.12(Q 件+Q 散+Q 辐+Q 溢)=10302.7KJ/h(6)热量总输出其中Q 辅=0,Q 控=0,Q 总=Q 件+Q 辅+Q 控+Q 散+Q 损+Q 溢+Q 它=96158.6KJ/h(7)炉子的安装功率P 安=3600KQ 总其中K 为功率储备系数,本炉设计中K 取1.4,则P 安=(1.4×112656)/3600=37.4kw为减少加热时间,与标准炉子相比较,取炉子功率为39kW 。
五、炉子热效率计算1.正常工作时的效率[4] 由式(5—12)[1]η=Q Q 件总=50202.0/96158.6=52.2% 2.在保温阶段,关闭炉门时的效率η=Q 件/[Q 总-(Q 辐+Q 溢)]=79.3%六、炉子空载功率计算P 空=3600Q Q 散它+=3.65kW 七、空炉升温时间计算由于所设计的箱式电阻炉的耐火层结构相似,而保温层蓄热较少,为简化计算,将炉子侧墙、前后墙及炉顶按相同数据计算,炉底由于砌砖方法不同,进行单独计算[5],因升温时炉底板也随炉升温,也要计算在内。
1.炉墙及炉顶蓄热V侧粘=2×(2.205+2×0.115)×0.115×(0.707+0.115)=0.451m3V前·后粘=2×1.048×0.115×(0.707+0.115)=0.198m3V顶粘=2.205×1.048×0.115=0.266m3V侧硅=2×[2.205+2×(0.115+0.232)]×0.232×(0.707+0.115+0.232)=1.444m3V前·后硅=2×(1.048+0.115×2)×0.232×(0.707+0.115+0.232)=0.625m3V顶硅=(2.205+2×0.115)×0.232×(1.048+2×0.115)=0.722m3由式(5—9)因为t粘=(t1+t2墙)/2=(600+574.8)/2=587.4℃Q蓄=V粘ρ粘C粘(t粘-t o)+V硅ρ硅C硅(t硅-t0)查附表3[3]得C粘=0.84+0.26×10-3t粘=0.990kJ/(kg·℃)t硅=(t2墙+t3墙)/2=(574.8+58)/2=316.4℃查附表3[3]得C硅=0.84十0.25×10-3t硅=0.919kJ/(kg·℃)所以得Q蓄1=(V侧粘+ V前·后粘+ V顶粘)ρ粘C粘(t粘-t0)+(V侧硅+ V前·后硅+ V顶硅)ρ硅C硅(t硅-t0)=(0.451+0.198+0.266)×1000×0.990×(587.4-20)+(1.144+0.625+0.722)×500×0.919×(316.4-20)=853243.0kJ2.炉底蓄热计算V底硅=0.018×[2.205+2×(0.113+0.232)]×[1.048+2×(0.113+0.232)]=0.09m3V底粘=0.067×2[2.205+2×(0.113+0.232)]×[1.048+2×(0.232+0.113)]=0.67m3查附表3[3]得C底粘=0.84+0.25×10-3t底粘=0.990kJ/(kg·℃)t底硅=397℃查附表3[3]得C底硅=0.84+0.25×10-3 t底=0.919kJ/(kg·℃)所以得Q底蓄=0.67×0.990×1000×567.4+0.09×0.919×500×296.4=388614.0kJ3. 炉底板蓄热根据附表6[1]查得600℃和20℃时高合金钢的比热容分别为:C板2=0.779kJ/(kg·℃)和C板1=0.473kJ/(kg·℃)。