目标规划的序贯式算法
序贯二次规划-西安交通大学

(5-41a) (5-41b) (5-41c)
C=(c1 , c2 , , cn )T b=(b1 , b2 , , bm )T
q11 q12 , , q1n q q , , q 21 22 2n Q= M M M M qn1 qn2 , , qnn n a11 a12 , , a1n a a , , a 21 22 2n A= M M M M an1 an2 , , ann
5-53
5-54
Company name
jt2 j =0
i AiT bi 0 jxj 0
i 1, 2,..., m j 1, 2,..., n
2. 二次规划的求解--Lagrange乘子技术
这样函数L稳定点的必要条件可归纳为 c j j dij xi ij ai 0
(i 1, 2, L , m) ( j 1, 2, L , l )
(5-34)
约束条件是二次的
Company name
1. SQP法简介
x K 1 x K = x K 1 x K
i 1 n 2
Company name
5-43
函数L的稳定点的必要条件 : n L c j i aij j 0 x j j 1 L 2i si 0 s j L 2 j t j 0 t j L AiT x si2 bi 0 j L x j t2 j 0 j
1. 1 SQP法简介--只有等式约束
min s.t. 1 f ( x)T x+ xT Q k x 2 gi ( x K ) xT gi ( x K ) 0 hj ( x K ) xT hi ( x K ) 0
第一讲目标规划模型

第一讲 目标规划模型目标规划是由线性规划发展演变而来的。
线性规划考虑的是只有可以个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还互相矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
这里所讨论的目标规划实质上是线性目标规划。
1.1线性规划与目标规划为了进一步了解目标规划的特点和性质,下面对同一问题分别考虑线性规划建模和目标规划建模。
1.1.1线性规划建模与目标规划建模例 1.1(生产安排问题) 某企业生产甲、乙两种产品,需要用到A 、B 、C 三种设备,关于产品的盈利与使用设备的工时及限制如表1-1所示。
问:该企业应如何安排生产,使得在计划期内总利润最大?1. 线性规划建模例8.1是一个线性规划问题,直接考虑它的线性规划模型。
设甲、乙产品的产量分别为12,x x ,建立线性规划模型:12121212m ax 200300,..2212,416,515,,0.Z x x s t x x x x x x =++≤≤≤≥用LINDO 或LINGO 软件求解,得到最优解*123,3,1500x x z ===。
2. 目标规划建模企业的经营目标不仅仅是利润,还要考虑多个方面。
例如在例8.1中,增加下列因素(目标):(1) 力求使利润指标不低于1500元;(2) 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 既要求充分利用,又尽可能不加班,在重要性上,设备B 是设备C 的3倍。
从上述问题可以看出,仅用线性规划方法是不够的,需要借助于目标规划的方法进行建模求解。
1.1.2 线性规划建模的局限性例1.2(汽车广告费问题) 某汽车销售公司委托一个广告公司在电视上为其做广告。
汽车销售公司提出三个目标:第一个目标,至少有40万高收入的男性公民(记为HIM )看到这个广告; 第二个目标,至少有60万一般收入的公民(记为LIP )看到这个广告; 第三个目标,至少有35万高收入的女性公民(记为HIW )看到这个广告。
运筹学及其应用6.3 线性目标规划的序贯式算法

x2
=
15,
d
− 2
=
0,
d
+ 2
=
0,
a1*
=
d1+
+
d
+ 2
=
0
3
二级单目标:
min a2 = d3−
G1 : x1 + d1− − d1+ = 30
G2
:
x2
+
d
− 2
−
d
+ 2
= 15
G3 : 8x1 +12x2 + d3− − d3+ = 1000
G5
: d1+
+
d
+ 2
=
0
为避免劣化一级已达到的目标值
d3− = 580, d3+ = 0,
d4−
=
0,
d
+ 4
=
20,
a3*
=
d
+ 4
=
20
5
四级单目标:
min
a4
=
d1−
+
1.5d
− 2
G1 : x1 + d1− − d1+ = 30
G2
:
x2
+
d
− 2
−
d
+ 2
= 15
G3 : 8x1 +12x2 + d3− − d3+ = 1000
G4
:
x1
=
20,
a* =(0,580,20,0)
6
G2
:
x2
基于Lingo软件的目标规划序贯解法

序贯算法是求解目标规划的一种早期算法[2],其优点是可以得到解的很多细节。序贯 解法的核心是根据优先级的先后次序, 将目标规划问题分解成一系列的单目标规划问题, 然 后再依次求解。 下面介绍求解目标规划的序贯算法。对于 k 1,2, , q ,求解单目标规划
min
n
z ( wki di wki di ) , i 1
x1 d 2 d2 50,
x2 d3 d3 50,
x3 d 4 d4 80,
x1 d5 d5 100, x2 d 6 d 6 120, x3 d 7 d 7 100,
5x1 8x2 12 x3 d8 d8 1900, x1, x2 , di , di 0, i 1,2,,8.
3
应用实例
3.1 目标规划模型 为了具体介绍目标规划序贯解法的 Lingo 模型,下面先给出一个目标规划的例子。 某家设备公司生产三种型号的设备 A, B, C 。这三种设备需要在复杂的装配线上生产, 生产1台 A, B, C 型号的设备分别需要5, 8, 12 (h) 。 公司装配线正常的生产时间是每月1700h。 公司营业部门估计 A, B, C 三种设备的利润分别是每台1000,2400,3000(元) ,而公司预 测这个月生产的设备能够全部售出。公司经理考虑以下目标 第一目标:充分利用正常的生产能力,避免开工不足; 第二目标:优先满足老客户的需求, A, B, C 三种型号的设备分别为50,50,80(台) , 同时根据三种设备的纯利润分配不同的权因子; 第三目标:限制装配线加班时间,最好不要超过200h; 第四目标:满足各种型号设备的销售目标, A, B, C 型号分别为100,120,100(台) , 再根据三种设备的纯利润分配不同的权因子; 第五目标:装配线的加班时间尽可能少。 为了建立目标规划模型,首先建立目标约束。 (1)装配线正常生产 设生产 A, B, C 型号的设备为 x1 , x2 , x3(台) ,d1 为装配线正常生产时间未利用数,d1 为装配线加班时间,希望装配线正常生产,避免开工不足,因此装配线目标约束为
求解目标规划的序贯式算法

求解目标规划的序贯式算法
序贯式算法是一种古老而又非常安全和有效的博弈策略,用于解决某种目标规
划问题,其实质是为了解决一项任务,推进其实现的程序子任务的标准约束最优解。
序贯式算法的最基本思想是:每一次迭代的结果都为下一次迭代做好准备,也就是说,每一次迭代都必须遵循上一次迭代所产生的约束,否则产生的结果就不会有效。
序贯式算法主要应用在建模大型现实生活中的综合性决策问题上。
例如,某公
司想要确定其发展计划,首先,它需要确定特定领域的目标,例如提高成本效率、满足客户需求或改善公司品牌形象等;然后,需要确定各个具体任务,并确定其拥有的有效实现的策略;最后,根据该公司的现有资源和可控变量,利用序贯式算法,迭代优化目标规划问题,从而实现公司的发展指标。
序贯式算法的另一个重要应用,是确定财务管理决策。
例如,当股票投资者对
未来股票行情毫无头绪时,他可以利用序贯式算法,结合各种会计价值、法律法规、投资收益比测试等综合考虑,建立合适的投资组合,从而优化投资组合的风险收益比,有效降低风险,达到投资目标。
从理论上讲,序贯式算法是一种“经验选择”策略,由于其科学的序贯迭代过程,当前迭代的结果会影响下一次迭代的结果,从而有效控制问题的复杂性和外部环境的变化,确保生成基于已知信息和约束条件的有效解决方案,并朡能快速找到最优解。
只不过,序贯式算法并不适合用于未知因素较多的场景,例如决策环境内存在明显的不确定性,因此应当慎重考量使用该算法的可行性和最终的结果可靠性。
总之,序贯式算法作为一种安全高效的解决策略,具有良好的实际应用价值,
特别是用于解决目标规划问题时,可以考虑使用序贯式算法,以充分利用其科学的迭代方式,有效控制问题复杂性,快速搜索最佳策略,从而得到最优解。
数学建模最佳旅游路线的选择模型

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 12 所属学校(请填写完整的全名):鲁东大学参赛队员 (打印并签名) :1. 张亭2. 任雪雪3. 卜范花指导教师或指导教师组负责人 (打印并签名):日期: 2010 年 8 月 2 日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):最佳旅游路线的选择模型摘要:本文研究的是最佳旅游路线的选择问题,此问题属于旅行商问题,我们建立了路径最短,花费最少,省钱、省时、方便三个模型。
根据周先生的不同需求,我们用改良圈算法和多目标规划解决了该问题,之后我们结合实际情况对三个模型进行科学地误差分析,并分析了该算法的复杂性。
针对问题一,题目中给出了100个城市的经纬度,要求我们为周先生设计一条最短的旅行路线,即从驻地出发,经过每个城市恰好一次,再回到驻点。
由此可知,此问题属于旅行商问题。
首先,我们按附件所给各城市的顺序编号1,2,,100,以两城市间的直线距离代替实际距离。
然后,我们运用改良圈算法求解旅行商问题,以任意两点之间的最短距离矩阵为权重,利用1100100(,)w i j ⨯邻接矩阵构造无向图1UG ,据题意不知周先生的起始地点,因此利用Matlab 软件重复进行100次改良圈算法即以每一个城市为出发点,从100个Hamilton 圈得到了最优圈1circle ,即最短的旅行路线。
目标规划权系数确定的几种方法

目标规划权系数确定的几种方法(2011-12-09 11:30:03)转载▼标签:分类:管理运筹学目标规划权系数专家意见法特征向量法杂谈目标规划权系数确定的几种方法重庆三峡学院关文忠目标规划与线性规划,在形式上基本一致,所不同的是:线性规划目标函数系数为常数,而目标规划目标函数系数包含有定性因子——优先因子,并且权系数也是由各个目标的重要程度而人为确定的。
若权系数已经确定,则可用WinQSB求解;若用Lingo或Excel求解,需要用“序贯法”求解,即把目标约束按重要程度依次添加,依次确定偏差变量,并将其固定,这显然是比较繁琐的;若能将优先因子用数值表示,则可像线性规划那样直接求解。
在实际计算中,优先因子,只要用不同的数量级表示,其计算结果是正确的。
如有3个优先级:P1、P2、P3,可将P3用1表示,P2用100表示,P1用10000表示,以确保P1>>P2>>P3。
但权系数的确定就不那么简单,可以采取以下几种方法:1.专家意见法请该领域的专家对各目标根据重要程度确定权系数值。
这种方法简便易行,但难免带有个人的偏见。
适用于不太重要的一般性问题的决策。
2.Delphi法即请若干专家,针对某问题的各目标根据重要程度匿名打分,然后根据打分结果,进行统计,得到平均分,再找出与平均分差距最大的专家,进一步征求意见,之后以平均分确定权系数。
这种方法适用于重大问题的决策。
如请5位专家,对同一层次的4个目标依其重要程度打分如(图1)B4:E8单元格区域。
图1 对专家意见统计确定权系数各专家意见中,由于对各目标分值不同,其分数合计也不同,因此应通过归一化,使得对各专家平等对待。
在B11单元格输入如图所示公式,并复制到B11:E15单元格区域。
在B16单元格输入如图所示公式,求每个目标评分值的平均值,并复制到C16:E16单元格区域。
在B19单元格输入如图所示公式,求得每位专家评分值的归一化结果与平均值差的绝对值,并复制到B19:E23单元格区域。
优化方法

优化方法概述:在一系列的条件下,寻求最优方案使得目标达到最优的问题统称为优化问题。
解决这类问题的方法,自然就称之为优化方法。
又称为数学规划。
是运筹学的一个重要分支。
分类:优化问题可以归结为优化模型,按照优化模型的求解方法不同,可以分为以下类型:(1)按照有无约束条件,无约束和约束优化问题(2)按照决策变量是否连续分为:A.数学规划或连续规划LP、NLP、QPB.离散规划或组合优化IP(3)单目标规划和组合规划(4)确定性规划和不确定性规划(5)目标规划、动态规划、非线性规划、多目标规划注:1、约束优化问题可以转化为无约束优化问题来解决2、多目标规划可以通过适当的方法转化为单目标规划来解决3、非线性规划在一定条件下,可以近似为线性规划4、不确定规划可以通过适当的技巧转化为确定性方法来解决优化方法:在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd)线性规划(用lingo实现)、非线性规划(用fmincon实现)、多目标规划(效用函数)、动态规划(倒向、正向)整数规划。
目录:动态规划 (2)目标规划 (4)动态规划动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题, 但是一些与时间无关的静态规划(如线性规划、非线性规划) ,只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法) 。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标规划的序贯式算法
序贯式算法的目标规划(SequentialDecisionMaking)是一种智能选择方法,其基本思想是:根据一系列未完成的目标,通过规定的算法,结合当前的信息和状态,来改变未来的局势,从而实现目标的较好达成。
这种方法在自然语言处理、机器学习、社会机器人等领域中被广泛应用。
在目标规划的序贯式算法中,首先求解未完成的目标,然后对这些目标进行序贯决策,以便于在每一步骤中采取最佳的行动,从而最优的实现所需的目标。
它的最大优点是可以适应各种复杂的环境,可以跟踪系统变化,从而提高目标的实现效果。
序贯式算法的目标规划一般分为三步:(1)情况分析;(2)行动规划;和(3)行动执行。
首先,必须进行情况分析,即捕获当前状态,以便于根据当前状态分析与未完成目标相关的未解决问题,以及可能出现的挑战。
其次,必须进行行动规划,即制定一系列有效的行动方案,以最终达到目标。
最后,必须进行行动执行,即根据行动规划,对行动执行进行监督,以及对状态变化和行动进行修正。
序贯式算法的目标规划虽然具有广泛的应用,但也存在一些困难,例如环境的复杂性、目标的不确定性以及行动的决策等等。
因此,在目标规划中需要考虑这些因素,以提高序贯式算法的有效性和准确性。
首先,要针对不确定性环境进行客观评估,即采取有效的预
测、解析和预防技术,以减少不确定性带来的影响。
其次,应综合考虑目标和约束,采取全面考虑、量化分析和系统控制分析等方式,以确定最佳的决策,并采取行动。
最后,应综合考虑行动的各个方面,进行全面的总结分析,采取行动原则,从而更好的实现我们的目标。
总之,序贯式算法的目标规划是一种有效的智能选择方法,它可以有效的结合当前的信息和状态,根据未完成的目标和行动原则来进行分析预测,并最终实现目标的达成,从而为其他领域的研究提供有力的支持。