平面与平面垂直的性质和判定
直线与平面面,平面与平面垂直的性质

A.1
B.2
C.3 D.4
2、如图,已知四边形ABCD是矩形,AD=4,AB=2,F是线段BC 的中点,PA⊥平面ABCD,求证PF⊥FD.
P
提示:连接AF.
A
D
B
FC
2.3.4 平面与平面垂直的性质
回顾
1.面面垂直的定义:
两个平面相交, 如果它们所成的二面 角是直二面角,就说 这两个平面互相垂直。
垂直于同一个平面的两条直线平行
二、怎样证线线垂直:
1.利用平面几何中的定理:半圆上 的圆周角是直角、勾股定理的逆定 理……
2.利用平移:a⊥b,b∥c,则 a⊥c
3.利用线面垂直定义:a⊥α,b α,则 a⊥b
4.利用三垂线定理或其逆定理(以后学)
n
a
a n
a
同理b
bl aα
β
n γm
b // a
a b
b //
b
l
b // l b
lb
线面平行判定
线面平行性质
思考:还可以怎样作辅助线?
2、已知a、b是两条不重合的直线,
P
α、β、γ是三个两两不重合的
平面,给出下列四个命题:
若a⊥α,a⊥β,则α∥β;
A
若α⊥γ,β⊥γ,则α∥β;
O
若α∥β,aα,bβ,则a∥b; B
若α∥β,α∩γ=a,β∩γ=b,则
a∥b。其中正确命题的序号是 (D)
D C
A. B. C. D.
面 具有什么位置关系?
α
平面与平面垂直的判定定理(课件)

问题探究
问题:观察建筑工地,我们常看到建筑师傅通常用一 条系有重物的线(铅垂线)来检测所砌的墙和地面是 否垂直,如图所示,建筑师傅只用这样一条线来检测 所砌的墙面和地面垂直,可靠吗?这样砌得的墙真的 与地面垂直吗?为什么?
AB为⊙O的直径,所以,∠BCA=90°,
即BC⊥CA.
C
又因为PA与AC是△PAC所在面内的两条 A
相交直线,所以,BC⊥平面PAC,
O
B
又因为BC在平面PBC内,
所以平面PAC⊥平面PBC.
定理的应用
跟踪训练1 已知 ABCD是正方形,O是正方形的中心,PO⊥平面
ABCD , E是PC的中点,求证:平面PAC⊥平面BDE.
4.若m⊥α,m ,则α⊥β.( √ )
定理的理解
二、填空题:
1.过平面α的一条垂线可作_无__数__个平面 与平面α垂直.
2.过一点可作无__数__个平面与已知平面垂直. 3.过平面α的一条斜线,可作__一__个平
面与平面α垂直. 4.过平面α的一条平行线可作_一___个平
面与α垂直.
定理的应用
例1 如图,AB是⊙O的直径, PA垂直于 ⊙O所在的平面,C是圆周上不同于A, B 的任意一点,求证:平面PAC⊥平面PBC.
P
分析:
线线垂直→ 线面垂直 →面面垂直
C
A
O
B
定理的应用
证明:设⊙O所在平面为α,由已知条件, PA⊥α,BC在α内,所以,PA⊥BC,
因为,点C是圆周上不同于A,B的任意一点P,
A
所以AO⊥BD、CO⊥BD;
B
【数学课件】两个平面垂直的判定和性质

面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
两个平面垂直的判定与性质

• 两个平面垂直的判定定理 • 两个平面垂直的性质 • 两个平面垂直的判定与性质的关
系 • 两个平面垂直在实际生活中的应
用 • 两个平面垂直的典型例题解析
目录
01
两个平面垂直的判定定理
判定定理的内容
01
02
03
判定定理
如果一个平面内的两条相 交直线与另一个平面垂直, 则这两个平面垂直。
线来证明。
性质的应用
01
在几何学中,两个平面垂直的性 质可以用于证明空间几何中的一 些定理和性质,例如空间几何中 的勾股定理等。
02
在物理学中,两个平面垂直的性 质可以用于研究物体的运动和力 的作用,例如物体在重力作用下 的运动轨迹等。
03
两个平面垂直的判定与性质
的关系
判定与性质的联系
判定是性质的依据
两条相交直线
在给定平面内选择两条不 平行的直线,这两条直线 必须相交。
垂直关系
这两条相交直线必须与另 一个平面垂直。
判定定理的证明
证明思路
通过反证法证明,假设两个平面不垂直,则它们必然存在一个公共点,由此可以确定一条过该点的直线。由于这 条直线同时位于两个平面内,因此它必然与两个平面都垂直。这与题目中给定的条件矛盾,因此假设不成立,所 以两个平面垂直。
家装设计
在家装设计中,需要确保墙面、 地面和天花板之间的垂直度,以
提高家居的美观度和舒适度。
家具摆放
在家具摆放时,需要确保家具与 地面垂直,以提高家具的稳定性
和安全性。
悬挂物品
在悬挂物品时,需要确保物品与 墙面垂直,以提高物品的稳定性
和安全性。
05
两个平面垂直的典型例题解
析
例题一解析
两平面垂直的判定与性质

05
两平面垂直的实例分析
实例一:简单的几何图形
总结词
通过观察几何图形,可以直观地判断两平面是否垂直。
详细描述
在平面几何中,常见的图形如矩形、正方形和正六面体等,它们的相对面都是垂直的。通过观察这些图形的角和 边,可以直观地判断两平面是否垂直。
பைடு நூலகம்
实例二:建筑模型的分析
总结词
建筑模型中的墙面和地面通常都是垂直的。
判定定理的应用
应用场景
判定两平面是否垂直,特别是在几何、工程和物理学等领域中,两平面垂直的判 定定理具有广泛的应用价值。
实际应用
在建筑学中,为了确保结构的稳定性和安全性,需要判定各个平面是否垂直;在 机械工程中,判定两平面是否垂直对于零件的设计和制造至关重要;在物理学中 ,两平面垂直的判定定理可用于研究物体的运动轨迹和力的分布。
判定定理的证明
• 证明过程:设两平面分别为α和β,且α内的两条相交直线a和b 分别与β垂直。在直线a上任取一点A,由于a与β垂直,作直线c 平行于a且在β内,使得A落在c上。同理,在直线b上任取一点B, 作直线d平行于b且在β内,使得B落在d上。由于a和b相交,所 以点A和B确定了一个平面γ。由于c和d都在β内,且c与d相交, 所以β包含在γ内。又因为α与γ内的两条相交直线a和b都垂直, 所以α与γ垂直。由此可知,α与β垂直。
详细描述
在建筑领域,墙面和地面通常都是垂直的。这是因为垂直的 平面能够提供更好的支撑和稳定性。通过观察建筑物的结构 和设计,可以分析出两平面是否垂直。
实例三:物理实验的现象分析
总结词
物理实验中经常涉及到两平面垂直的情 况,如重力的方向与地面垂直。
VS
详细描述
在物理实验中,很多现象都涉及到两平面 垂直的情况。例如,在研究重力时,重力 的方向总是垂直于地面向下。通过分析这 些实验的现象和结果,可以深入理解两平 面垂直的性质和应用。
平面与平面垂直的判定与性质

记作: l
思考1:
我们常说“把门开大些”,是指哪个
角开大一些?我们应该怎么刻画二面角的 大小? 二、二面角的平面角的定义
半平面
l
半平面
以二面角的棱上 任意一点为端点,在
两个半平面和内分别作 垂直 于棱的两
条射线OB和OA得到平面角AOB称平面角
AOB为二面角 l 的平面角.
B
l
O
A
三、二面角的平面角的作法
C D
例2.如图,已知SA 平面ABC ,平面SAB 平面SBC . 求证:AB BC.
S
D
C
A
思路导引:SA 平面ABC SA BC AB BC BC 平面SAB 平面SAB 平面SBC ? 联想到面面垂直的性质,作AD SB. 证明:作AD SB.
B
平面SAB 平面SBC
PE
AM
平面PCD I 平面ABCD CD AM 平面ABCD
AM PM AM 平面PEM AM ME
AE2 8 1 9
ME 2
21
3
AE 2
ME 2
AM 2
AM 2 4 2 6
AM ME
P
C
D
E
M
B
A
例3.如图,边长为2的等边三角形PCD所在的平面 垂直于矩形ABCD所在的平面,BC 2 2,M是BC 的中点.
PA PA
面ABC 面PAB
面PAB
面ABC
A
C
PA PA
面ABC 面PAC
面PAC
面ABC
B
PA BC
面ABC 面ABC
PA BC AB BC
AB I PA A
BC BC
平面与平面垂直的性质定理-PPT课件

[证明] 设 AC∩BD=O,连接 EO,则 EO∥PC. ∵PC=CD=a,PD= 2a, ∴PC2+CD2=PD2,∴PC⊥CD.
∵平面 PCD⊥平面 ABCD,CD 为交线,
∴PC⊥平面 ABCD,
∴EO⊥平面 ABCD.
又 EO 平面 EDB,
故有平面 EDB⊥平面 ABCD.
所以 AE 平面PCD 又 PD 平面PCD, PD AE;
因为 AB AE A,所以 PD 平面 ABE.
例1: 在四棱锥P ABCD中,PA 底面ABCD,AB AD, AC CD,ABC 60,PA AB BC,E是PC的中点。
证明: (1)CD AE; (2)PD 平面ABE; (3)平面PCD 平面ABE.
平面与平面垂直的性质定理
平面与平面垂直的性质定理
【教学目标】
1.探究平面与平面垂直的性质定理,进一步培养学生的空间想 象能力. 2.面面垂直的性质定理的应用,培养学生的推理能力. 3.通过平面与平面垂直的性质定理的学习,培养学生转化的思想. 【重点难点】
教学重点:平面与平面垂直的性质定理. 教学难点:平面与平面性质定理的应用. 【课时安排】1课时
(3)因为 PD 平面 PCD 所以平面 PCD 平面 ABE
变式:(课本P41)在空间四边形 SABC 中,SO 平面 ABC ,
O 为 ABC的垂心.求证:平面 SOC 平面 SAB
【证明】 延长 CO 交 AB于 D ,连接 SD
因为 O 为 ABC 的垂心,所以 CD AB
因为 SO 平面 ABC,
平面PAD 平面ABCD AD,
且AB AD, 所以 AB 平面PAD
又PD 平面PAD, 所以 PD AB;
2.3.面面垂直面垂直的判定和性质

思考6:二面角的大小可以用它的平 思考6:二面角的大小可以用它的平 6: 面角来度量, 面角来度量,二面角的平面角是多 少度,就说二面角是多少度. 少度,就说二面角是多少度.平面角 是直角的二面角叫做直二面角 直二面角. 是直角的二面角叫做直二面角. 当 二面角的两个面重合时, 二面角的两个面重合时,二面角的 大小为多少度? 大小为多少度?当二面角的两个面 合成一个平面时, 合成一个平面时,二面角的大小为 多少度?一般地, 多少度?一般地,二面角的平面角 的取值范围如何? 的取值范围如何? o o
∪ ∪ ∪ ∪
两个平面垂直的判定定理: 两个平面垂直的判定定理:
如果一个平面经过了另一个平面的一 如果一个平面经过了另一个平面的一 经过了另一个平面的 条垂线,那么这两个平面互相垂直 互相垂直. 条垂线,那么这两个平面互相垂直.
α C β A B D
AB ⊥ β ⇒α ⊥ β AB ⊂ α
已知: ⊥ , 已知:AB⊥β,AB∩β=B,AB , α
∪ ∪ ∪ ∪
α C β E
求证: ⊥ 求证:α⊥β. 证明: 证明: α∩β=CD,则B∈CD. 设 则 ∈ A ∵AB⊥β,CD β,∴AB⊥CD. ⊥ , , ⊥
∪ ∪ ∪ ∪
B
D
在平面β内过 点作直线 在平面 内过B点作直线 ⊥CD,则 内过 点作直线BE⊥ , 就是二面角α--CD--β的平面角, 的平面角, ∠ABE就是二面角 就是二面角 的平面角 ∵AB⊥β,BE β, ⊥ , , 二面角α--CD--β是 ∴AB⊥BE. ∴二面角 ⊥ 是 直二面角, 直二面角,∴α⊥β. ⊥
β l α α l β
思考5:一个二面角是由一条直线和 思考5:一个二面角是由一条直线和 5: 两个半平面组成,其中直线l叫做 叫做二 两个半平面组成,其中直线 叫做二 面角的棱,两个半平面α 面角的棱,两个半平面α、β都叫 二面角的面, 做二面角的面,二面角通常记作 二面角α -β”.那么两个相交平 “二面角α-l-β”.那么两个相交平 面共组成几个二面角? 面共组成几个二面角?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判定定理:如果一个平面经过另一个平面的 ,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
面面垂直的判定方法
① 面面垂直的定义:两个平面相交所成的二面角是
②面面平行的性质结论:γαβα⊥,//⇒βγ⊥
平面与平面垂直的性质
一、 选择题:
1、下列命题中,不正确的是( )
A. 一条直线垂直于平面内无数条直线,则这条直线垂直于这个平面
B. 平面的垂线一定与平面相交
C. 过一点有且只有一条直线与已知平面垂直
D. 过一点有且只有一个平面与已知直线垂直
2、已知平面a ⊥平面β,l =βα ,点P ∈l ,则给出下面四个结论:
①过P 和l 垂直的直线在平面α内; ②过P 和平面β垂直的直线在平面α内;
③过P 和l 垂直的直线必与β垂直; ④过P 和平面β垂直的平面必与l 垂直。
其中真命题是:( )
A. ②
B. ③
C. ①、④
D. ②、③
3、夹在直二面角两个半平面间的一条线段与两个平面所成的角分别是30°和45°,如果这条线段的长是5,则它在二面角棱上的射影长为( )
A. 2.5
B. 5
C. 10
D. 8
4、关于直线m 、n 与平面α、β,有下列四个命题:
①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥;
③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是( )
A. ①、②
B. ③、④
C. ①、④
D. ②、③
5、设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )
A .βαβα⊥⇒⊥⊂⊥n m n m ,,
B .n m n m ⊥⇒⊥βαβα//,,//
C .n m n m ⊥⇒⊥⊥βαβα//,,
D .ββαβα⊥⇒⊥=⊥n m n m ,,
6、若m n ,是两条不同的直线,α、β、γ三个不同的平面,则下列命题中的真命题是( )
A .若m βαβ⊂⊥,,则m α⊥
B .若m αγ=,n βγ=,m n ∥,则αβ∥
C .若m β⊥,m α∥,则αβ⊥
D .若αγ⊥,αβ⊥,则βγ⊥
二、填空题
7、两个平面互相垂直,一条直线与其中一个平面平行,则这条直线与另一个平面的位置关系是
8、设直线l 和平面βα、,且βα⊄⊄l l ,,给出如下三个论证:①α⊥l ;②βα⊥;③l ∥β
从中任取两个作条件,余下一个作为结论,在构成的诸命题中,写出你认为正确的一个命题是
9、下面四个命题: ①三个平面两两互相垂直,则它们的交线也两两互相垂直;
②三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;
③分别与两条互相垂直的直线垂直的平面互相垂直;④分别经过两条互相垂直的直线的两个平面互相垂直。
其中正确命题的序号是
三、解答题:
10、已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90
底面ABCD ,且PA=AD=DC=2
1AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ;(Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小。
③面面垂直的判定定理:a
a
α
β
⊂
⊥
⇒αβ
⊥
平面与平面垂直的判定
一、选择题:
1、若三条直线OA、OB、OC两两垂直,则直OA垂直于()
A 平面OA
B B 平面OA
C C 平面OBC
D 平面ABC
2、设α、γ
β、为不同的平面,l、m为两条不同的直线,则下列条件中不能推出α⊥β的是()
A l⊥m,l⊥α,m⊥β
B l⊥m,l⊆α,m⊆β
C α⊥γ,β∥γ
D l∥m,l⊥α,m⊆β
在四棱锥P-ABCD中,底面ABCD是矩形,若PA⊥平面ABCD,则在此四棱锥的五个面中互相垂直的平面共有()
A 3对
B 4对
C 5对
D 6对
4、已知直线m、n与平面α、β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命
题的个数是()
A 0
B 1
C 2
D 3
5、设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则
l∥m;②若l⊥m,则α⊥β.那么( )
A ①是真命题,②是假命题
B ①是假命题,②是真命题
C ①②都是真命题
D ①②都是假命题
6、在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立
...的是()
A BC//平面PDF
B DF⊥平面P AE
C 平面PDF⊥平面ABC
D 平面P AE⊥平面ABC
二、填空题
7、已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.
(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m .(填所选条件的序号)
8、已知直线AO ⊥平面α于O ,直线OB ⊥AO ,则OB 与平面α的关系是 。
9、直角三角形ABC 的斜边在平面内,两条直角边分别与平面α成30°和45°,则这个直角三角形所在的平面与平面α所成二面角为 。
三、解答题:
10、在矩形ABCD 中,已知AB=2,BC=2,E 为BC 中点,把⊿ABE 和⊿CDE 分别沿AE 、DE 折起,使点B 与点C 重合于点P 。
(1)求证:平面PDE ⊥平面APD ;(2)求二面角P-AD-E 的大小。