七上数学填空题
人教版七年级上册数学期末考试复习:第1章《有理数》填空题精选(含答案)

第1章《有理数》填空题精选1.(2019秋•翠屏区期末)如图,数轴上的点A 所表示的数为a ,化简|a |﹣|1﹣a |的结果为 .2.(2019秋•顺德区期末)手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min 时,选套餐 更优惠.(填“A ”或“B ”)套餐项目 月租 通话A 12元 0.2元/minB 0元 0.25元/min3.(2019秋•龙岗区校级期末)若a +b +c =0且a >b >c ,则下列几个数中:①a +b ;①ab ;①ab 2;①b 2﹣ac ; ①﹣(b +c ),一定是正数的有 (填序号).4.(2019秋•惠来县期末)A 为数轴上表示2的点,将点A 沿数轴向左平移5个单位到点B ,则点B 所表示的数的绝对值为 .5.(2019秋•揭阳期末)2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为 .6.(2019秋•黄埔区期末)如果收入100元记作+100元,那么支出120元记作 元.7.(2019秋•斗门区期末)比较大小:﹣(﹣9) ﹣(+9)填“>”,“<”,或”=”符号)8.(2019秋•高明区期末)一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售 .9.(2019秋•白云区期末)十八大以来我国改革开放持续向纵深发展,国民经济迅猛发展,数据显示,2018年度全国城镇固定资产投资约为636000000000元,用科学记数法表示为 .10.(2019秋•海珠区期末)截止2019年10月底,广州建成5G 基站约12000座,多个项目列入广东省首批5G 融合应用项目,将数12000用科学记数法表示,可记为 .11.(2019秋•南山区期末)通常在生产图纸上,对每个产品的合格范围有明确的规定.例如,图纸上注明一个零件的直径是φ30±0.020.03,φ30±0.020.03表示这个零件直径的标准尺寸是30mm ,实际产品的直径最大可以是30.03mm ,最小可以是 .12.(2019秋•海珠区期末)计算2×(﹣5)的结果是 .13.(2019秋•顺德区期末)将520000用科学记数法表示为 .14.(2019秋•顺德区期末)如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为 .15.(2019秋•高明区期末)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额126900000000元,126900000000用科学记数法表示为 .16.(2019秋•花都区期末)如图,在数轴上A 、B 两点表示的数分别为﹣4、3,则线段AB 的长为 .17.(2019秋•花都区期末)比较大小:3 ﹣5(填“>”或“<”或“=”)18.(2019秋•荔湾区期末)亚洲陆地面积约为44000000平方千米,将44000000用科学记数法表示为 .19.(2019秋•龙华区期末)北京市某天的最高气温是10℃,最低气温是﹣5℃,则北京市这一天的温差是 ℃.20.(2019秋•南海区期末)在(−38)4中,底数是 .21.(2019秋•揭西县期末)计算:1﹣(﹣2)2×(−18)= .22.(2019秋•大埔县期末)计算:36×(12−13)2= .23.(2019秋•龙岗区期末)小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现连同他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,﹣2),B (+6,﹣5).经过A ,B 这两站点后,车上还有 人.24.(2019秋•罗湖区期末)计算:﹣8﹣(﹣1)= .25.(2019秋•宝安区期末)某地中午的气温是+5℃,晚上气温比中午下降了8℃,则该地晚上的气温是 ℃.26.(2019秋•怀集县期末)如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示﹣4,点G 表示8,点C 表示 .27.(2019秋•怀集县期末)把有一列数:0,3,﹣1,﹣2.5,用“<”连接得: .28.(2019秋•怀集县期末)计算:﹣42+(﹣4)2的值是 .29.(2019秋•中山市期末)用“>”或“<”填空:13 35;−223 ﹣3.30.(2019秋•中山市期末)若|x |=3,|y |=2,则|x +y |= .31.(2019秋•中山市期末)小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为 .32.(2019秋•盐田区期末)点A ,B ,C 在同一数轴上,其中点A ,B 分别表示﹣3,1.若BC =2,则AC = (多选).A .2B .3C .5D .633.(2019秋•盐田区期末)(多选)下列各式中,计算结果为正数的是 .A .﹣(﹣1)B .﹣|﹣1|C .(﹣1)2D .(﹣1)334.(2019秋•盐田区期末)爱德华•卡斯纳与詹姆斯•纽曼在《数学和想象》一书中,引入名为“Googol ”的大数,即在1这个数字后面跟上100个0.将“Goog 1”用科学记数法表示是1× .35.(2019秋•龙岗区期末)定义新运算:a ①b =ab +b ,例如:3①2=3×2+2=8,则(﹣3)①4= .36.(2019秋•中山区期末)银行把存入9万元记作+9万元,那么支取6万元应记作 元.37.(2019秋•东莞市期末)一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作 .38.(2019秋•东莞市期末)−112的相反数是 ,1.5的倒数是 .39.(2019秋•东莞市期末)在数轴上与表示﹣4的数相距4个单位长度的点对应的数是 .40.(2019秋•揭阳期末)如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a ,b )=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,16)= .41.(2019秋•南沙区期末)有理数a 、b 在数轴上的位置如图所示,则化简|a +b |+|a ﹣b |的结果为 .42.(2019秋•肇庆期末)按照下列程序计算输出值为2018时,输入的x 值为 .43.(2019秋•福田区校级期末)通常山的高度每升高100米,气温下降0.6℃,如地面气温是﹣4℃,那么高度是2400米高的山上的气温是 .44.(2019秋•潮州期末)在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .45.(2018秋•天河区期末)观察下列式子:1①3=1×2+3=5,3①1=3×2+1=7,5①4=5×2+4=14.请你想一想:(a ﹣b )①(a +b )= .(用含a ,b 的代数式表示)46.(2018秋•顺德区期末)如图,方格中的格子填上数,使得每一行、每一列以及两条对角线所填的数字之和均相等,则x 的值为 .第1章《有理数》填空题精选参考答案与试题解析一.填空题(共46小题)1.【解答】解:由数轴上A点位置可得:1<a<2,则1﹣a<0,故|a|﹣|1﹣a|=a﹣(a﹣1)=1.故答案为:1.2.【解答】解:选择A套餐费用为:12+0.2×200=52(元),选择B套餐的费用为:0.25×200=50(元),50<52,∴选择B套餐更优惠,故答案为B.3.【解答】解:∵a+b+c=0且a>b>c,∴a>0,c<0,b可以是正数,负数或0,∴①a+b=﹣c>0,①ab可以为正数,负数或0,①ab2可以是正数或0,①ac<0,∴b2﹣ac>0,①﹣(b+c)=a>0.故答案为:①①①.4.【解答】解:∵A为数轴上表示2的点,∴B点表示的数为2﹣5=﹣3,∴点B所表示的数的绝对值3,故答案为3.5.【解答】解:2684亿=268400000000=2.684×1011.故答案为:2.684×1011.6.【解答】解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出120元记作﹣120元.故答案为:﹣1207.【解答】解:∵﹣(﹣9)=9,﹣(+9)=﹣9,∴﹣(﹣9)>﹣(+9).故答案为:>8.【解答】解:由题意可知,八折后的售价为200×0.8=160元,故答案为160元.9.【解答】解:636000000000=6.36×1011.故答案为:6.36×1011.10.【解答】解:12000=1.2×104,故答案为:1.2×104.11.【解答】解:由题意可得30﹣0.02=29.98mm,则最小可以是29.98mm,故答案为29.98mm.12.【解答】解:2×(﹣5)=﹣10.故答案为:﹣10.13.【解答】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.14.【解答】解:如图所示:x的值为2或5.故答案为:2或5.15.【解答】解:126900000000=1.269×1011,故答案为:1.269×1011.16.【解答】解:∵A 、B 两点表示的数分别为﹣4、3,∴线段AB 的长=3﹣(﹣4)=7.故答案为7.17.【解答】解:3>﹣5.故答案为:>.18.【解答】解:44000000=4.4×107.故答案为:4.4×107.19.【解答】解:10﹣(﹣5)=10+5=15(℃).故答案为:1520.【解答】解:在(−38)4中,底数为−38.故答案为:−38.21.【解答】解:原式=1﹣4×(−18)=1+12=112, 故答案为:11222.【解答】解:36×(12−13)2=36×(16)2=36×136 =1.故答案为:1.23.【解答】解:13+4﹣2+6﹣5=16人,故答案为:16.24.【解答】解:﹣8﹣(﹣1)=﹣7故答案为:﹣7.25.【解答】解:+5﹣8=﹣3(℃)答:该地晚上的气温是﹣3℃.故答案为:﹣3.26.【解答】解:AG =8﹣(﹣4)=12,图中相邻的两个点之间的距离是2个单位长度,则C 表示﹣2+2=0,是原点.故答案为:原点.27.【解答】解:﹣2.5<﹣1<0<3.故答案为:﹣2.5<﹣1<0<3.28.【解答】解:﹣42+(﹣4)2=﹣16+16=0,故答案为:0.29.【解答】解:13<35;−223>−3.故答案为:<、>.30.【解答】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x +y |=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.31.【解答】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.32.【解答】解:点A ,B 在数轴上表示﹣3,1.且BC =2,当点C 在点B 的右侧时,则点C 表示的数为3,此时AC =3﹣(﹣3)=6;当点C 在点B 的左侧时,则点C 表示的数为﹣1,此时AC =﹣1﹣(﹣3)=2;因此AC 的长为2或6.故答案为:A 或D .33.【解答】解:A .﹣(﹣1)=1,故A 符合题意;B .﹣|﹣1|=﹣1,故B 不合题意;C .(﹣1)2=1,故C 符合题意;D .(﹣1)3=﹣1,故C 符合题意.故答案为:A 、C34.【解答】解:Goog 1=1×10100.故答案为:1010035.【解答】解:∵a ①b =ab +b ,∴(﹣3)①4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.36.【解答】解:由题意得,存入记为“+”,则支取记为“﹣”,则支取6万元应记作:﹣6万元.故答案为:﹣6万37.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .38.【解答】解:﹣112的相反数是112;1.5的倒数是23,故答案为:112,23.39.【解答】解:在﹣4的左边时,﹣4﹣4=﹣8,。
人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】人教版七年级数学上册精品练题(附答案)——有理数一、填空题(每空2分,共38分)1、-1的倒数是-1;1/2的相反数是-1/2.2、比-3小9的数是-12;最小的正整数是1.3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是-1或6.4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是12.5、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是10℃。
6、计算:(-1)100+(-1)101=-2.7、平方得21的数是√2;立方得-64的数是-4.8、+2与-2是一对相反数,表示两个方向的移动。
9、绝对值大于1而小于4的整数有2、3,其和为5.10、若a、b互为相反数,c、d互为倒数,则3(a+b)-3cd=0.11、若(a-1)2+|b+2|=1,则a+b=-2.12、数轴上表示数-5和表示-14的两点之间的距离是9.13、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是75,最小的积是-75.14、若m,n互为相反数,则|m-1+n|=1.二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示,则a+b<0.16、下列各式中正确的是|a2|=|-a2|。
17、如果a+b>0,且ab<0,那么a、b异号。
18、下列代数式中,值一定是正数的是(-x)+2.19、算式(-3/3)×4可以化为-3×4/3.20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分。
求小明第四次测验的成绩。
答案:C、91分。
21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再以8折(80%)的价格大拍卖。
求该商品三月份的价格比进货价高还是低?答案:低12.8%。
三、计算(每小题5分,共15分)22、(–– +)|–|(22)、4912÷36;答案:22为正数,所以(–– +)|–|(22) = (–– +)|22| = 22;4912÷36 = 136.23、9÷3–5)–3×(–4)2÷3答案:9÷3 = 3,3–5 = –2,(–2)–3×(–4)2÷3 = –2–3×16÷3 = –2–16 = –18.24、–12–1+(–12)÷6×(–)34÷7答案:(–12)÷6 = –2,(–)34÷7 = –4,–12–1+(–2)×(–4)= –12–1+8 = –5.四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b的值。
初中七上数学试题及答案

初中七上数学试题及答案一、选择题(每题2分,共10分)1. 下列各数中,最小的数是()A. -3B. 0C. 2D. 12. 绝对值等于3的数是()A. 3B. -3C. ±3D. 以上都不对3. 计算(-2)^3的结果是()A. -8B. 8C. 6D. -64. 若a > 0,b < 0,则a+b()A. 大于0B. 小于0C. 等于0D. 无法确定5. 一个数的相反数是-5,则这个数是()A. -5B. 5C. 0D. 无法确定二、填空题(每题2分,共10分)6. 一个数的倒数是2,这个数是______。
7. 比较大小:-3与-2,______<______。
8. 计算:(-1)^2 + 2^2 - 3^2 = ______。
9. 一个数的绝对值是5,这个数是______或______。
10. 若|a|=3,a=-3,则a的相反数是______。
三、解答题(每题10分,共30分)11. 计算:(-4)×(-3)×(-2)×(-1)。
12. 已知a=-2,b=3,求a+b的值。
13. 已知|a|=5,a=-5,求-a的值。
四、应用题(每题15分,共30分)14. 某商店购进一批商品,进价为每件100元,售价为每件150元。
如果商店卖出了50件,那么商店赚了多少钱?15. 某工厂生产一种零件,每件零件的成本为20元,售价为每件30元。
如果工厂生产了100件,那么工厂赚了多少钱?答案:一、选择题1. A2. C3. A4. D5. B二、填空题6. 1/27. -3 -28. 29. 5 -5 10. 3三、解答题11. 3212. 113. 5四、应用题14. 2500元15. 1000元。
七年级数学上册填空题

七年级数学上册填空题一、有理数相关1. 填空题:如果上升3米记作 +3米,那么下降5米记作______米。
答案:-5。
解析:用正负数来表示具有相反意义的量,上升记为正,那么下降就记为负。
2. 填空题: -2的相反数是______。
答案:2。
解析:相反数是指绝对值相等,正负号相反的两个数,所以 -2的相反数是2。
3. 填空题:绝对值等于4的数是______。
答案:±4。
解析:正数的绝对值是它本身,负数的绝对值是它的相反数。
设这个数为x,则|x| = 4,当x≥0时,x = 4;当x<0时,x=-4。
二、整式相关1. 填空题:单项式 -3x²y的系数是______。
答案:-3。
解析:单项式中的数字因数叫做单项式的系数,对于单项式 -3x²y,数字因数是 -3。
2. 填空题:多项式2x² 3x+1是______次______项式。
答案:二,三。
解析:多项式的次数是指多项式中次数最高的项的次数,在多项式2x² 3x + 1中,2x²的次数最高为2次;项数是指多项式中单项式的个数,这里有2x²、-3x、1共三个单项式,所以是三项式。
三、一元一次方程相关1. 填空题:方程3x+5 = 14的解是______。
答案:x = 3。
解析:首先对原方程进行求解,3x+5 = 14,移项可得3x=14 5,即3x = 9,两边同时除以3,解得x = 3。
2. 填空题:若2x+3与x 1互为相反数,则x的值为______。
答案:-2/3。
解析:因为互为相反数的两个数和为0,所以(2x + 3)+(x 1)=0,去括号得2x+3+x 1 = 0,合并同类项得3x+2 = 0,移项得3x=-2,解得x=-2/3。
七年级数学上册第一单元《有理数》-填空题专项复习题(含答案解析)(1)

一、填空题1.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.2.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.3.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.4.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.5.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.6.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.7.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.8.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.10.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比约为______.肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 11.把点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P 所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P 从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P 所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度, 所以点P 所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.12.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.13.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.14.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.15.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.16.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.18.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键 解析:162 1(3)3- 【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-]. 故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.19.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.20.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0, 故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.21.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.22.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).∴5=12x 或5=12(x+1). ∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.23.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 24.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 25.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.26.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而 解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.27.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.28.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.-、9,现以点C为29.一条数轴上有点A、B、C,其中点A、B表示的数分别是16A B'=,则C点表示的折点,将放轴向右对折,若点A对应的点A'落在点B的右边,若3数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.30.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.。
七年级上册数学重点知识填空题(含答案)

有理数1. 大于0的数叫做。
2.在正数前面加上负号“-”的数叫做。
3.整数和分数统称为。
4.人们通常用一条直线上的点表示数,这条直线叫做。
5.直线任取一个点表示数0,这个点叫做。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的。
7. 由绝对值的定义可知:一个正数的绝对值是它;一个负数的绝对值是它的;0的绝对值是。
8.正数大于0,0大于,正数大于。
9.两个负数,绝对值大的反而。
10. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得。
(3)一个数同0相加,仍得。
11.有理数的加法中,两个数相加,交换交换加数的位置,不变。
12.有理数的加法中,三个数相加,先把前两个数相,或者先把后两个数相,不变。
13.有理数减法法则:减去一个数,等于加上这个数的。
24.把一个大于10的数表示成a×10的n次方的形式(其中a是整数数位只有一位的数,n是正整数),使用的是。
25.接近实际数字,但是与实际数字还是有差别,这个数是一个。
26.从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的。
整式的加减1.都是数或字母的积的式子叫做,单独的一个或一个也是单项式。
2.单项式中的数字因数叫做这个单项式的。
3. 一个单项式中,所有字母的指数的和叫做这个单项式的。
4.几个单项的和叫做,其中,每个单项式叫做多项式的项,不含字母的项叫做。
5.多项式里次数最高项的次数,叫做这个多项式的。
6.把多项式中的同类项合并成一项,叫做。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且部分不变。
7.如果括号外的因数是,去括号后原括号内各项的符号与原来的。
8.如果括号外的因数是,去括号后原括号内各项的符号与原来的符号相反。
9.一般地,几个整式相加减,如果有就先去,然后再。
一元一次方程1. 列方程时,要先设字母表示,然后根据问题中的相等关系,写出还有未知数的等式——。
七年级数学上册第一单元《有理数》-填空题专项经典习题(含答案)

一、填空题1.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.2.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.3.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.5.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.6.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.7.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.8.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 9.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题.【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n =m n a a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36.【点睛】 本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.10.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 11.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.12.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.13.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】⨯-=,离胜利还差根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.30246(cm)【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.⨯-=.当喊到第6次时,一共拉过了6(73)24(cm)-=,离胜利还差30246(cm)所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.14.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.15.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.16.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积abcde=,则它们的和a b c d e2000++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.18.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.20.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m .故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.21.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 22.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n ,其中1≤a <10,n 为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n ,其中1≤a <10,n 为正整数.23.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.24.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值大于10时n 是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.16000000 =71.610⨯.25.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.26.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.27.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.28.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.29.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.30.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.。
成都七中英才学校2024-2025学年七年级上学期入学考试数学试题(解析版)

小升初招生入学数学考试卷(时间:100分钟 分值:100分)A 组题一、填空题.(每题2分,共18分)1. 经过不在同一直线上的四个点中的任意两点画直线,一共可以画____条.【答案】6【解析】【分析】本题考查求直线的条数,根据任意两点确定一条直线,进行求解即可.【详解】解:过任意一个点与剩下的3个点可以画出3条直线,4个点共可以画出3412×=条,每个点重复一次,故一共可以画1226÷=(条)直线;故答案为:6.2. a 、b 是自然数,规定33b a b a =×−▽则25▽的值是____. 【答案】133【解析】【分析】本题考查了有理数的混合运算,解题的关键是理解题目所给的运算法则.按照题目所给运算法则进行计算即可. 【详解】解:513253233=×−=▽, 故答案为:133. 3. 用1、5、7三个数字和小数点组成两位小数,其中最大的数比最小的数大____.【答案】5.94【解析】【分析】本题考查了小数的减法,根据题意得出最大的数为7.51,最小的数为1.57,相减即可.【详解】解:用1、5、7三个数字和小数点组成两位小数中,最大的数为7.51,最小的数为1.57,7.51 1.57 5.94−=,故答案为:5.94.4. 某工厂有一批煤,原计划每天烧0.25吨,可以烧100天,实际每天烧煤比原计划节约20%.实际可以烧____天.【答案】125【解析】【分析】本题考查了百分数的应用,用总的煤数除以实际每天烧煤数,即可解答.【详解】解:()0.251000.25120%125×÷×−=(天), 故答案为:125.5. 找规律,填一填:1,8,27,____,125,216,…【答案】64【解析】【分析】本题考查的是数字类的规律探究,根据311=,382=,3273=,31255=,32166=,从而可得答案.【详解】解:∵311=,382=,3273=,31255=,32166=,∴括号内为3464=,故答案为:646. 26比一个数的37少4,这个数是____. 【答案】70【解析】【分析】本题考查了分数的混合运算.根据题意列出算式3(264)7+÷,然后根据分数的混合运算计算即可. 【详解】解:根据题意得37(264)307073+÷=×=, 即这个数是70,故答案为:70. 7. 一个圆柱和一个圆锥,底面周长的比是2:3,体积比是5:6,它们高的最简整数比是____.【答案】5:8##58【解析】 【分析】本题考查了圆锥的体积:一个圆锥的体积等于与它等底等高的圆柱的体积的三分之一,1(3V Sh S =圆锥为圆锥的底面积,h 为圆锥的高),圆锥底面积2(S R R π=为圆锥底面圆的半径.也考查了圆柱的体积和最简整数比.先利用圆的周长公式得到圆柱和圆锥的底面半径的比是2:3,设圆柱和圆锥的高分别为1h 、2h ,圆柱和圆锥的底面圆的半径分别为2r ,3r ,根据圆锥的体积公式和圆柱的体积公式得到22121(2):(3)5:63r h r h ππ⋅⋅⋅⋅=,然后1h 与2h 的最简整数比. 【详解】解: 一个圆柱和一个圆锥,底面周长的比是2:3, ∴圆柱和圆锥的底面半径的比是2:3,设圆柱和圆锥的高分别为1h 、2h ,圆柱和圆锥的底面圆的半径分别为2r ,3r ,圆柱和圆锥的体积比是5:6,22121(2):(3)5:63r h r h ππ∴⋅⋅⋅⋅=, 124:35:6h h ∴=,122415h h ∴=,12:15:245:8h h ∴==.故答案为:5:8.8. 父亲对儿子说:“我像你这么大时,你才4岁.当你像我这么大时,我就79岁了.”现在父亲____岁.【答案】54【解析】【分析】本题考查了一元一次方程的实际应用,设出年龄差,分别得出儿子和父亲现在的年龄是解决本题的关键.设父亲与儿子的年龄差为x 岁,则根据“我像你这么大时,你才4岁”得出儿子现在的年龄为:()4x +岁;根据“当你像我这么大时,我就79岁”得出父亲现在的年龄为:()79x −岁;根据儿子的年龄+年龄差=父亲的年龄,列出方程即可解决问题.【详解】解:设父亲与儿子的年龄差为x 岁,则儿子现在的年龄为()4x +岁,父亲现在的年龄为()79x −岁,根据题意可得方程:479x x x ++−,解得:25x =,则父亲现在的年龄为:792554−=(岁), 答:父亲现在的年龄是54岁.故答案为:54.9. 把一根60米长的钢筋锯成每段一样长的小段,共锯 11次,每段长____米.【答案】5 【解析】【分析】本题考查了有分数的乘法,解题的关键是掌握锯11次将钢筋锯为了12段,每段长是原来的1 12,即可解答.【详解】解:1605111×=+(米),故答案为:5.二、解答题.10. 计算.(1)111 63010.9 12154−+×÷×(2)352.253 1.8 1.2140%511+÷−×÷(3)721210 1637113511 1233414×+×−÷(4)11991 52204 3.20.24221005−×−÷×+÷(5)113135132013 244666201420142014 ++++++++++【答案】(1)4 3(2)37 4(3)15 11(4)8066 55(5)253764【解析】【分析】本题考查了有理数的混合运算.(1)按照有理数混合运算顺序进行计算即可;(2)按照有理数混合运算顺序进行计算即可;(3)按照有理数混合运算顺序进行计算即可;(4)按照有理数混合运算顺序进行计算即可;(5)先计算括号内的,再用首位相加法进行计算即可.【小问1详解】 解:11163010.912154−+×÷×59630032041=−×÷×96892 =−÷3829=×43=;【小问2详解】 解:352.253 1.8 1.2140%511+÷−×÷ 991215245510011518+÷−×÷911524202 =+−×92954202 =+×745202=×374=;【小问3详解】 解:72121016371135111233414×+×−÷28377111637115153414×+×−×71217113637212+×− 15564211121=×× 1511=; 【小问4详解】 解:1199152204 3.20.24221005−×−÷×+÷ 5591009520 3.20.24229 =−×−××+× 5591009916620225 ×−××+ 150******** −×+6500111655=×+ 58000556+ 806655=; 【小问5详解】 解:113135132013244666201420142014 ++++++++++ 12310072222=++++ ()112310072=×++++ ()110071100722=×+× 11007100822=×× 253764=.11. 解方程.(1)2152136x x x −++=−(2)()7.635% 6.50.76:1:2x ×+×=【答案】(1)97x =(2)15.2x =【解析】【分析】本题考查了解一元一次方程,解比例.(1)按照去分母,去括号,移项,合并同类项,化系数为1步骤进行解答即可;(2)先将括号内化简,再根据比例的性质进行解答即可.【小问1详解】 解:2152136x x x −++=−, ()()()2215621x x x −++=−,425126x x x −++=−,412625x x x +−=−+−,79−=−x ,97x =. 【小问2详解】解:()7.635% 6.50.76:1:2x ×+×=, ()7.60.350.657.6:1:2x ×+×=, 7.6:1:2x =,7.62x =×,15.2x =.12. 一辆快车和一辆慢车,同时分别从甲、乙两地出发,相向而行,经过6小时相遇,相遇后快车继续按相同的速度行驶3小时到达乙地.已知慢车每小时行驶45千米,甲、乙两地相距多少千米?【答案】甲、乙两地相距810千米【解析】【分析】本题考查了有理数混合运算的实际应用,根据题意找出数量关系列出算式进行计算是解题的关键. 快车继续行驶3小时后到达乙站,那么这3小时的路程就是慢车6小时行驶的路程,先求出这段路程再除以3就是快车的速度,用快车的速度乘快车行驶的时间就是甲、乙两站的距离.【详解】解:快车速度:456390×÷=(千米), 的甲、乙两地距离:()9063810×+=(千米),答:甲、乙两地相距810千米.B 组题一、填空题.(每题3分,共24分)13. 某环保队有甲、乙、丙三支队伍,现计划在A 地植树1000棵,在B 地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵.甲在A 地,乙在B 地,丙在A 与B 两地之间来回帮忙,同时开始,同时结束,丙在A 地植树____棵.【答案】300【解析】【分析】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程. 先设丙在A 地植树x 棵,则甲在A 地植树()1000x −棵,然后根据甲在A 地,乙在B 地,丙在A 与B 两地之间来回帮忙,同时开始,同时结束,可以列出方程,然后求解即可.【详解】解:设丙在A 地植树x 棵, 由题意可得:100010003230()1250282830x x x −−×+−=, 解得300x =,答:丙在A 地植树300棵,故答案为:300.14. 将87化成小数,小数部分第100位上的数字是____. 【答案】8【解析】 【分析】本题考查了分数小数互化,将87化为小数,得出87的小数部分每6个数字一循环,即可解答. 【详解】解:将87化成小数为1.142857 , 即87的小数部分每6个数字一循环, 1006164÷=……,∴小数部分第100位上的数字是第17组的第4个,即为8,故答案为:8.15. 王叔叔只记得李叔叔的电话号码是76045□□,还记得最大数字是7,各个数字又不重复.王叔叔要拨通李叔叔的电话,最多要试打______次.【答案】6【解析】【分析】本题考查了整数的认识,解题的关键是根据题意得出□的数字只能是1、2、3.【详解】解:∵最大数字是7,各个数字又不重复,∴□的数字只能是1、2、3,∴剩下两个数字可能是12、13、21、23、31、32,共6种情况,∴最多要试打6次,故答案为:6.16. 两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是____.【答案】324【解析】【分析】本题考查的是整数的除法、有理数的加法,掌握被除数、除数、商、余数之间的关系是解题的关键.根据被除数÷除数=商……余数,解答即可.−−=,【详解】解:被除数与除数的和为41548403商4余8,被除数比除数的4倍多8,−÷+=,则除数:(4038)(41)79×+=.被除数:7948324故答案为:324.17. 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的.那么,这样的四位数最多能有____个.【答案】168【解析】【分析】本题考查的是整数的运算,根据题意得到四位数首位必须为1,又和的后三位为9,所以相加时+=,又四位数的首位是没有出现进位现象,找出合适的组合,0和9,2和7,3和6,4和5(因为1891,不能重复,则数字8不能用在这),根据乘法原理求解即可.【详解】解:由于其和为1999,则这四位数的首位一定是1,和的后三位是9,∴相加时没有出现进位现象,和为9的组合有:0和9,2和7,3和6,4和5(1和8在本题中不符题意),∵两个数的和一定,∴三位数一定下来,四位数只有唯一的可能.∵0不能为首位,∴这个三位数首位有817−=种选法,∴十位数有826−=种选法,个位数有844−=种选法,根据乘法原理可知,这样的四位数最多能有764168××=个.故答案为:168.18. 小明把6个数分别写在3张卡片的正面和反面,每个面上写1个数,每张卡片正、反面上的2个数的和相等,然后他将卡片放在桌子上,发现正面写着28,40,49,反面上的数都只能被1和它自己整除,那么反面上的3个数的平均数是____.【答案】12【解析】【分析】本题考查整数的运算,质数,根据三张卡片正反两面的和相同,且28,40为偶数,49为奇数,结合反面上的数都是质数,得到49的反面只能是2,进而得到和为51,求出两外两个数,再求出3个数的平均数即可.【详解】解:因为反面上的数都只能被1和它自己整除,所以反面上的数都是质数,因为三张卡片正反两面的和相同,且28,40为偶数,49为奇数,所以49的反面只能是2,所以正反两面的和为51,所以另外两个数分别为:512823,504011−=−=, 所以反面上的3个数的平均数是:()23112312++÷=; 故答案为:12.19. 某产品的成本包括两部分,一部分是直接生产成本,每个需8元;另一部分是管理、宣传、营销等与产品间接有关的费用,共10000元.如果此产品定价12元,要使利润达到营业额的20%以上,至少要生产____个产品.【答案】6250【解析】【分析】本题主要考查百分数的应用,正确分析题意是解题的关键.根据题意列式求解即可得出答案.【详解】解:()12120%×−1280%=×9.6=(元), ()100009.68÷−10000 1.6÷6250=(个). 故答案为:6250.20. 蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时.要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有16池水,如果按甲、乙、丙、丁的顺序,轮流打开,每次开1 小时,则____小时后水开始溢出水池.【答案】20.75【解析】【分析】本题考查一元一次方程的应用、有理数的混合运算,熟练掌握运算法则是解答本题的关键. 先计算出第一次甲、乙、丙、丁的顺序,轮流打开,每次开1小时后池内的水,然后再计算后面的几次,直到发现这一次结束后再加下一次中先开甲多长时间后水池内水的体积超过1即可.【详解】解:由题意可得,打开甲水管1小时后池内的水为:111632+=, 打开乙水管11144=, 打开丙水管1小时后池内的水为:1194520+=, 打开丁水管1小时后池内的水为:911720660−=, 则第二次按甲、乙、丙、丁的顺序,轮流打开,每次开1小时后池内的水为:1711112460345660+−+−=, 第三次按甲、乙、丙、丁的顺序,轮流打开,每次开1小时后池内的水为:2411113160345660+−+−=, 第四次按甲、乙、丙、丁的顺序,轮流打开,每次开1小时后池内的水为:3111113860345660+−+−=, 第五次按甲、乙、丙、丁的顺序,轮流打开,每次开1小时后池内的水为:3811114560345660+−+−=, 故第6次先打开甲水管1小时后池内的水为:45165160360+>, 设第6次,甲打开x 小时,水池内水正好满了, 4511603x +=, 解得0.75x =,的每次需要4小时,∴水开始溢出水池的时间为:450.75200.7520.75×+=+=(小时), 故答案为:20.75.二、解答题.21. 如图,A 、B 是圆直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点100米,在D 点第二次相遇,D 点离A 点有60米,求这个圆的周长.【答案】这个圆的周长为360米或240米【解析】【分析】本题主要考查了圆的周长,解题时要能读懂题意,列出式子计算是关键.依据题意,第一次相遇于C 点,两人合走了半个周长.从C 点开始到第二次相遇于D 点,两人合起来走了一个周长.因为两速度和一定,所以第一段所需时间是第二段的一半.对于小王而言,他第一段所走的行程是第二段的一半.从而可得C ,D 的关系有两种情况,进而画出图形分析判断可以得解.【详解】解:由题可知,C ,D 的关系有如下两种情况:对于第一种情况,2CD BC =,所以160CD AC AD =+=米,则160280BC =÷=米,所以半圆周长是10080180+=(米),圆的周长是1802360×=(米).对于第二种情况,2CD BC =,40CD AC CD =−=米,则40220BC ÷米,则半圆周长10020120+=(米),圆的周长是1202240×=(米).即这个圆的周长为360米或240米.是22. 某次考试共有100道题,每题1分,做错不扣分,甲、乙、丙3位同学分别得90分、70分、50分,其中3个人都做出来的题叫作“容易题”,只有1个人做出来的题叫作“较难题”,没人做出来的题叫作“特难题”,且“较难题”的个数是“特难题”的3倍,又已知丙同学做出的题中超过80%的是“容易题”,但又不全是“容易题”.“特难题”共有多少道?【答案】特难题有7道【解析】【分析】本题考查了一元一次不等式组的应用,二元一次方程的应用.设特难题有x 道,容易题有y 道,则较难题有3x 道,则有两个人做出来的题有()1003x x y −−−道,根据题意推出105y x =+,再根据“丙同学做出的题中超过80%的是容易题”以及特难题的定义,列出不等式组,即可解答.【详解】解:设特难题有x 道,容易题有y 道,则较难题有3x 道,∴有两个人做出来的题有()1003x x y −−−道,()3210033907050x x x y y +−−−+++,整理得:105y x =+, ∵丙同学做出的题中超过80%的是“容易题”,但又不全是“容易题”,∴5080%10090y x >× <−, 即1054010x x +> < , 解得:610x <<,∴x 7,8,9当7x =时,10545y x =+=,符合题意;当8x =时,10550y x =+=,不符合题意;当9x =时,10555y x =+=,不符合题意;综上:特难题有7道.23. (组合图形求面积)在矩形ABCD 中,8AB =,15BC =,点E 是BC 的中点,点F 是CD 的中点,连接BD 、AF 、AE ,把图形分成六块,求阴影部分的面积.为【答案】40【解析】【分析】本题主要考查了长方形的性质,解答此题的关键是利用中线求三角形的面积.设BD 交AE 交于G 点,AF 交DB 与H 点,根据111332ABD ABCD AGH BGC DHC S S S S S ===×=△△△矩形 ,1134BGE DHF ABCD S S S =×=△矩形求解即可. 【详解】解:AE 与BD 的交点记为点G ,AF 与BD 的交点记为点H ,∵矩形ABCD ,∴BE AD ∥,∵点E 是BC 中点, ∴1212BE BC AD ==, ∴12BG GD =,12GE AG = 同理12DH GD =,12HF AH = ∵BG GH DH BD ++=,∴BG GH DH ==, ∴011111332328152AG ABD AB H BG DHC CD CS S S S S ==××=×===×矩△△△形 , ∴12BGE ABG S S =△ ∴1111111111158103323223434BGE ABE ABCD S S BE AB BC AB S ==×⋅=××⋅=×=×××=△矩形 同理:111111111033232234DHF ADF ABCD S S DF AD CD AD S =×⋅=××⋅=×==矩形 , 2010240S +×==阴,的答:阴影部分的面积为40.24. 一条河的岸边有A、B两个码头,A在上游,B在下游.甲、乙两人分别从A、B同时划船出发,相向而行,4小时后相遇.如果甲、乙两人分别从A、B同时划船出发,同向而行,乙16小时后追上甲.已知甲在静水中的划船速度为每小时6千米,则乙在静水中的划船速度为每小时多少千米?【答案】乙在静水中的划船速度为每小时10千米【解析】【分析】本题考查了一元一次方程的实际应用,解题的关键是掌握两船无论是同向而行还是相向而行,两船的速度和与速度差都与水流速度无关.设乙在静水中的划船速度为每小时x千米,根据相向时,两船路程和等于A、B两地距离,同向时,两船路程差等于A、B两地距离,列出方程即可解答.【详解】解:设乙在静水中的划船速度为每小时x千米,()()−×=+×,x x61664x=,解得:10答:乙在静水中的划船速度为每小时10千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、若(a -6)2 +| a -b+3|=0则a+2b=_________.
2、已知|a-b|+|b+5|=0,则a b +=
3、当n=______时,4325223--n y x y x 与是同类项.
4、一个角的补角比它的余角的3倍大10°,则这个角等于________
5、观察下列各式:31
=3,32
=9,33
=27,34
=81,35
=243,36
=729,……你能从中发现底数为3 的幂的个位数有什么规律吗?根据你发现的规律回答:20123 的个位数字是_________;
6、设一列数a 1、a 2、a 3、……a 100中任意三个相邻数之和都是37,已知252=a ,x a 29=,x a -=399,,那么_______100=a
7、如果01)1(2
=-++b a ,那么__________
20122011=⋅b a
8、如图,已知∠AOC=∠BOD=90º,∠AOD=140º,则∠BOC 的度数为 .
9、如图,已知16515'= ∠,27830'= ∠,则3∠= 。
. 10、如右图,OC ⊥OD ,∠1=35°,则∠2=
11、假设有足够多的黑白围棋子,按照一定的规律排成一行:
请问第2005个棋子是黑的还是白的?__________ 。
12、如果02
1329=+
-n y
n
是关于y 的一元一次方程,则n = 13、若3a n
b
3n-3
和-3
1a 2 b m
是同类项,则m= ,n=
14、下图是某年3月份的日历,在日历上任意圈出一个竖列上 相邻的3个数(如图所示)。
如果被圈出的三个数的和为54, 则这三个数中最后一个数为3月 号。
15、小红和小花在玩一种计算的游戏,计算的规则是 d c b
a
=ad -bc.现在轮到小红计算 43
21
的值,请你帮忙算一算结果是__________
16、关于数0有下面的说法:①是整数,也是有理数;②不是正数,也不是负数;
③不是整数,是有理数;④是整数,不是正数.其中正确的是 (只需填序号)
17、下列说法:①有理数包括整数和分数;②正有理数和负有理数组成有理数集合;③正分数和负分数组成分数集合;④正整数和负整数组成整数集合.其中正确的是 (只需填序号). 18、下列关于0的叙述:0是正数,0是负数,0是自然数,0是非负数,0是非正数,0是整数,0是偶数,0是有理数. 其中正确的个数是 个.
19、在数轴上点M 表示2,点N 表示-3.5,点A 表示-1,在点M 和点N 中,距离点A 较远的点
是 .
20、化简下列各数:(1)1
()2--
= . (2) 1
(3)5
+-= . (3)[](2)--- = . (4)[]{}(1)-+-+=
21、m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 . 22、如果x 的相反数的绝对值是
53
,则x 的值是
23、若11a a -=-,则a 的取值范围是 .
24、用科学记数法表示31.4×4
10 是 它是 位整数. 25. 9.8×n
10(n 为正整数)是 位整数.
26.在式子xy 、-3、
31
14x -+、x y -、2m n -、1x 、4x 、24x -、2
ab 、23
x +中,单项式有 个,多项式有 个. 27.3
xy -的系数是 ,次数是 ;22
2ab c -的系数是 ,次数是 . 28.
22
x +是 次 项式,最高次项是 ,常数项是 .
29.多项式2
2
3
3
4
5
4
357x y x y x y y y -+-+ 次 项式,把它按字母y 的降幂排列是 .
30.多项式3
3
628
10
2322
x y x y x --+
+是 次 项式,最高次项系数是 .
31.若3
3
(1)(1)2n m x m x x ---+-是关于x 的二次多项式,则m = ,n = . 32.两个单项式
5
234m
a b
与6
23
n a b -
的和是一个单项式,则m = ,n = .
33.单项式4ab -、3a b 、2
b -的和是 ;单项式5ab 减3ab -的差是 .
C
D
B
A 1 2
3
c
a 34.用式子表示“a 的2倍与
b 的和”是 .
35. 用式子表示“百位上的数是a 、十位上的数是b ,个位上的数是c ”的三位数为 . 36.三个连续偶数,中间的一个是2a ,则它们的和是 .
37.小明的存钱盒里有一些硬币,一角钱m 个,五角钱比一角钱的2倍少3个,一元钱n 个,则这些硬币共值 元.
38.某商店贴出促销广告:“购买电脑单片软件,每片a 元;若超过10片,则10片以上的部分,可按八折优惠”.某用户买18片单片软件,应付款 元. 39.若a b m -=,则22b a -= .
40.已知方程51m x -=与方程832x -=的解相同,则m = . 41.关于x 的方程32320m x m -+=是一元一次方程,则m = . 42.已知代数式
2
1-m 与
3
1的值互为倒数,则m = .
43.当x = 时,代数式48x +与37x -的值互为相互数. 44.当a <0时,方程
22
a =就是一元一次方程 = 2 ,它的解为a = .
45.已知关于x 的一元一次方程4kx x -=的解是正整数,那么整数k = .
46.一个一元一次方程的解是x =2,请你写出这个方程: (写出一个即可). 47、已知m
)2(-<0,n
)3(- >0则m
)1(-+n
)1(-= 48、已知两数55
6
和28
3
-,这两个数的相反数的和是 ,两数和的相反数是 ,
两数和的绝对值是 ,两数绝对值的和是 .
49、如果20x y +-=,那么43x y -= . 50、-20与-4的和是 ,差是 . 51、12
-
的绝对值的相反数与13
2
-的相反数的倒数之差是 .
52、K 为正整数,则-23+(-3)2+(-1)k 2+(-1)12+k = . 53、如果在数轴上的点A 所对应的数是3
23-,那么与A 点相距2个单位长度的点所表示的数
是 .
54、
12
的倒数的绝对值是
55、下列各数:2,-5,13
2
,0,-0.04, 1.23+
.其中是分数的是 .
56、9.8×n
10(n 为正整数)是 位整数. 57、关于x 、y 的多项式
1
4(2)35m xy
m y ----为二次三项式的条件是_________________
58、一道题的空白处被墨水污染了:
2
2
2
11(3)(42
2
x xy y x xy -+-
--
+ 22
1)2
x xy y =-
-+,则空白处应为_______________
59、有理数a 、b 、c 在数轴上的位置如图:
化简326a a b c a b c -+--+-的结果为_________________________ 60、若2x =是方程6a x =的解,则代数式223a a --的值是____________
61、观察下列各式:13121a =⨯-=;23224a =⨯-=;33327a =⨯-=;434210a =⨯-=. 那么当100n =时,100a = .,n a = ;
62、若代数式
3
2a 与
2
315a
-的和的值是 6
5-
,则a 等于______________
63、已知一个三角形的第一条边长是2a +,第二条边比第一条边长3a -,第三条边是第二条边与第一条边的差的2倍,那么这个三角形的周长是________________________ 64、已知a 、b 是不相等的正整数,则多项式2
a
b
a b
x y +-+的次数是_________
65、如果0x y z ++=,且y <z <0 ,那么下列结论中正确的有___________
①x y +>0;②y z +<0;③z x +>0;④x z -<0. 66、两数相减后的差比被减数还大,那么减数应该是_____________
67、下列结论中正确的是________________ ①若m n =,则m n =; ②若m n =-,则m n =;③若m n =,则m n =-;④若m n =,则m n =. 68、如果23
-
的相反数恰好是有理数a 的绝对值,那么a 的值是_________________
69、甲、乙两数的和是-23.4,乙数是-8.1,则甲比乙大。