初一数学上册角的练习题
【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
七年级数学角的度量自测题

DABC 3.3 角的度量一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图: (1)画∠AOB=100°;(2)在∠AOB 的内部画射线OC,使∠BOC=50°; (3)在∠AOB 的外部画射线OD,使∠DOA=40°;(4)在射线OD 上取E 点,在射线OA 上取F,使∠OEF=90°. 8.任意画一个三角形,估计其中三个角的度数, 再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。
人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
初一上册数学角试题及答案

初一上册数学角试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是角的分类?A. 锐角B. 直角C. 钝角D. 线段答案:D2. 一个角的度数是60°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个角的度数是180°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:D4. 一个角的度数是90°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B5. 一个角的度数是360°,这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:D6. 一个角的度数是120°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C7. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A8. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 90°C. 135°D. 180°答案:B9. 如果一个角的度数是75°,那么它的余角是:A. 15°B. 45°C. 75°D. 90°答案:A10. 如果一个角的度数是150°,那么它的补角是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)1. 一个角的度数是90°,它是一个________。
答案:直角2. 一个角的度数是180°,它是一个________。
答案:平角3. 一个角的度数是360°,它是一个________。
答案:周角4. 如果一个角的度数是120°,那么它的补角是________。
答案:60°5. 如果一个角的度数是45°,那么它的余角是________。
答案:45°6. 锐角是指度数小于________的角。
人教版七年级上册数学4.3.2钟面角练习题

2019年12月04日初中数学组卷参考答案与试题解析一.选择题(共25小题)1.钟表上的时间指示为两点半,这时时针和分针之间所形的成的(小于平角)角的度数是()A.120°B.105°C.100° D.90°【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹角可以看成3×30°+0.5°×30=105°.故选B.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.2.下列说法中正确的是()A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°【分析】画出图形,利用钟表表盘的特征解答.分别计算出四个选项中时针和分针的夹角,进行判断即可.【解答】解:A、8时45分时,时针与分针间有个大格,其夹角为30°×=7.5°,故8时45分时时针与分针的夹角是7.5°,错误;B、6时30分时,时针在6和7的中间,分针在6的位置,时针与分针不重合,错误;C、3时30分时,时针与分针间有2.5个大格,其夹角为30°×2.5=75°,故3时30分时时针与分针的夹角不为直角,错误;D、3时整,时针与分针的夹角正好是30°×3=90°,正确;故选D.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.3.钟表在8:25时,时针与分针的夹角是()度.A.101.5 B.102.5 C.120 D.125【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8:25时,时针与分针的夹角可以看成时针转过8时0.5°×25=12.5°,分针在数字5上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:25时分针与时针的夹角3×30°+12.5°=102.5°.故选B.【点评】本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.4.时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°【分析】由于钟面被分成12大格,每格为30°,而8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,则它们所夹的角为2×30°+×30°.【解答】解:8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+×30°=75°.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.5.当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟【分析】根据钟表上每一个大个之间的夹角是30°,当分针指向12,时针这时恰好与分针成120°的角,应该得出,时针距分针应该是4个格,应考虑两种情况.【解答】解:∵钟表上每一个大个之间的夹角是30°,∴当分针指向12,时针这时恰好与分针成120°的角时,距分针成120°的角时针应该有两种情况,即距时针4个格,∴只有8点钟或4点钟是符合要求.故选D.【点评】此题主要考查了钟面角的有关知识,得出距分针成120°的角时针应该有两种情况,是解决问题的关键.6.3点30分时,时钟的时针与分针所夹的锐角是()A.70°B.75°C.80°D.90°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:3点30分时针与分针相距2+=,3点30分时针与分针所夹的锐角是30×=75°,故选:B.【点评】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.7.12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:12点15分,时针与分针相距2+=份,12点15分,时针与分针夹角是30×=82.5°,故选:C.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.8.钟表上的时间为9时30分,则时针与分针的夹角度数为()A.90°B.105°C.120° D.150°【分析】当钟表上的时间为9时30分,则时针指向9与10的正中间,分针指向6,时针与分针的夹角为三大格半,根据钟面被分成12大格,每大格为30°即可得到时针与分针的夹角度数.【解答】解:∵钟表上的时间为9时30分,∴时针指向9与10的正中间,分针指向6,∴时针与分针的夹角度数=90+30÷2=105°.故选B.【点评】本题考查了钟面角,利用钟面被分成12大格,每大格为30°进而求出是解题关键.9.某人下午6点到7点之间外出购物,出发和回来时发现表上的时针和分针的夹角都为110°,此人外出购物共用了()分钟.A.16 B.20 C.32 D.40【分析】这是一个追及问题,分针走一分走了6度,即分针的角速度是:6度/分,时针一分走0.5度,即角速度是:0.5度/分;由于开始时分针在时针后面110度,后来是分针在时针前面110度,依此列出方程求解即可.【解答】解:设此人外出购物共用了x分钟,则(6﹣0.5)x=110+1105.5x=220x=40.答:此人外出购物共用了40分钟.故选:D.【点评】本题考查钟表时针与分针的夹角.本题关键是根据两个时刻的夹角找到等量关系建立方程求解.10.时钟指向8点30分时,时钟指针与分针所夹的锐角是()A.70°B.75°C.60°D.80°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:8点30分时,时钟指针与分针所夹的锐角是30×(2+)=75°,故选:B.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.11.时钟显示为8:20时,时针与分针所夹的角是()A.130°B.120°C.110° D.100°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:8:20时,时针与分针相距4+=份,8:20时,时针与分针所夹的角是30×=130°,故选:A.【点评】本题考查了钟面角,确定时针与分针相距的分数是解题关键.12.十一点十分这一时刻,分针和时针的夹角是()A.70°B.75°C.80°D.85°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:十一点十分这一时刻,分针和时针的夹角是30×(+2)=85°,故选:D.【点评】本题考查了钟面角,确定时针与分针相距的分数是解题关键.13.时钟显示为9:30时,时针与分针所夹角度是()A.90°B.100°C.105° D.110°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:9:30时,时针与分针所夹角度是30×=105°,故选:C.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.14.甲、乙、丙、丁,四名学生在判断钟表的分针和时针互相垂直的时刻时,每人说了两个时刻,说法都对的是()A.甲:“3时整和3时30分”B.乙说“6时15分和6时45分”C.丙说“9时整和12时15分”D.丁说:“3时整和9时整”【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:时针与分针相距的份数是3时分针和时针互相垂直,故选:D.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.15.下列说法中正确的是()A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.9时整,时针与分针的夹角是90°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:A、8时45分,时针与分针的夹角是30×=7.5°,故本选项错误;B、6时30分,时针与分针的夹角等于15°,故本选项错误;C、时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,所以分针与时针的夹角是2.5×30=75°,故本选项错误;D、9时整,钟面上的时针与分针的夹角=3×30°=90°,故本选项正确;故选:D.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.16.钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.65°B.75°C.85°D.90°【分析】根据4点10分时时针与分针相差2格,每格度数为30°,据此可得.【解答】解:4点10分时,分针指向数字“2”、时针指向4~5间位置,∴时针和分针所形成的锐角度数为:2×30°+×30=65°,故选:A.【点评】本题考查钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.17.钟表上在2时和3时之间分针和时针有()次垂直的机会.A.1 B.2 C.3 D.无【分析】2点整时,时针与分针恰成60°,分针指着12,时针指着2,分针每分钟运动速度为6°,时针每分钟运动速度为6°×=0.5°,设分针运动x分钟,根据所行路程差为150°或330°列出方程解答即可.【解答】解:设分针运动x分钟,时针和分针的夹角为直角,由题意得6x﹣0.5x=150,或6x﹣0.5x=330°解得:x=27或x=60(舍去)答:在2时27分时,时针和分针的夹角为直角.【点评】此题考查一元一次方程的实际运用,得出时针与分针的运行速度是解决问题的关键.18.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()A.120°B.105°C.100° D.90°【分析】由于钟表上的时间为晚上8点,即时针指向8,分针指向12,这时时针和分针之间有4大格,根据钟面被分成12大格,每大格为30°即可得到它们的夹角.【解答】解:∵钟表上的时间为晚上8点,即时针指向8,分针指向12,∴这时时针和分针之间的夹角(小于平角)的度数=(12﹣8)×30°=120°.故选A.【点评】本题考查了钟面角的问题:钟面被分成12大格,每大格为30°.19.时钟9点30分时,分针和时针之间形成的角的度数等于()A.75°B.90°C.105° D.120°【分析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9,分针指向6,两者之间相隔3.5个数字.【解答】解:3×30°+15°=105°.∴钟面上9点30分时,分针与时针所成的角的度数是105度.故选:C.【点评】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.20.钟表在3点半时,它的时针与分针所成锐角是()A.70°B.85°C.75°D.90°【分析】此题是一个钟表问题,解题时经常用到每两个数字之间的度数是30°.借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵3点半时,时针指向3和4中间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,∴3点半时,分针与时针的夹角正好是30°×2+15°=75度.故选C.【点评】本题是一个钟表问题,解题时经常用到每两个数字之间的度数是30度.21.钟表在3点时,它的时针和分针所组成的角(小于180°)是()A.30°B.60°C.75°D.90°【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出3点时时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:3点时,时针和分针中间相差3个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴3点时,分针与时针的夹角是3×30°=90°.故选D.【点评】考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.22.从8:10到8:32分,时钟的分针转过的角度为()A.122°B.132°C.135° D.150°【分析】时针和分针的运动可以看做一种匀速的旋转运动,8时10分到8时30分,分针用了22分钟时间.由此再进一步分别计算它们旋转的角度.【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,∵8:10到8:32分有22分钟时间,∴分针旋转了30°×4.4=132°,故从8点10分到8点32,时钟的分针转过的角度是132°.故选:B.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.23.钟表上三点、四点、五点整时,时针与分针所成的三个角之和等于()A.90°B.150°C.270° D.360°【分析】根据钟表上每个大格是30°,分别计算出三点、四点、五点整时,时针与分针所成的角的度数,再加起来即可得出答案.【解答】解:∵三点整时,时针与分针所成的角是3×30°=90°,四点整时,时针与分针所成的是4×30°=120°,五点整时,时针与分针所成的角是5×30=150°,∴三点、四点、五点整时,时针与分针所成的三个角之和是90°+120°+150°=360°.故选D.【点评】此题考查了钟面角,掌握钟表上的刻度是把一个圆平均分成了12等份,每一份是30°是解题的关键.24.上午9点30分,时钟的时针和分针成的锐角为()A.105°B.90°C.100° D.120°【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:上午9点30分,时针与分针相距3.5份,上午9点30分,时钟的时针和分针成的锐角为30°×3.5=105°,故选:A.【点评】本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.25.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有()A.有一种B.有二种C.有三种D.有四种【分析】根据钟面角公式套入2点,3点即可求得具体哪个时间钟面角为90°,4点整时显然钟面角为120°,查出个数即是所得.【解答】解:设n=分,m=点,当m=2时,有5.5°×n﹣30°×2=90°或5.5°×n﹣30°×2=270°,解得:n1=27,n2=60;当m=3时,有5.5°×n﹣30°×3=90°或30°×3﹣5.5°×n=90°,解得:n3=32,n4=0.当m=4,n=0时,钟面角为30°×4=120°≠90°.综上可知:钟面角为90°的情况有2:27、3:00、3:32.故选C.【点评】本题考查了钟面角的应用,解题的关键是会使用钟面角公式.二.解答题(共25小题)26.时间从8点到8点20分,钟表的时针和分针各转了多少度?在8点20分,时针和分针所成的小于平角的角是多少度?【分析】根据时钟上的时针匀速旋转一分钟的度数为0.5°,即可得出从8点到8点20分时针旋转的度数.先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求从8点到8点20分分针旋转的度数.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出8点20分时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:从8点到8点20分有20分钟,∵时钟上的时针匀速旋转一周的度数为360°,时钟上的时针匀速旋转一周需要12小时,则时钟上的时针匀速旋转一分钟的度数为:360÷12÷60=0.5°,那么从8点到8点20分,时针旋转了20×0.5°=10°;∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么从8点到8点20分,分针旋转了20×6°=120°.∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8时20分钟时,时针与分针的夹角可以看成时针转过8时0.5°×20=10°,分针在数字4上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8时20分钟时分针与时针的夹角4×30°+10°=130°.故钟表的时针转了10度,分针转了120度.在8点20分,时针和分针所成的小于平角的角是130度.【点评】本题考查了钟面上的路程问题和钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.:分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.27.钟面上从2点到4点有几次时针与分针的夹角为60°?分别是几点几分?【分析】根据时针、分针转动的速度可知分针比时针每分钟转动的快5.5°,时针与分针的夹角为60°,依此列方程求解.【解答】解:第一次正好为两点整;第二次设为两点x分时,时针与分针的夹角为60°,则5.5x=60×2,解之得x=21(分);第三次设为三点y分时,时针与分针的夹角为60°,则5.5y=90﹣60,解之得y=5(分);第四次设为3点z分,时针与分针的夹角为60°,则5.5z=90﹣60+60×2,解之得z=27(分).故钟面上从2点到4点时针与分针的夹角为60°,分别是2点整,2点21分,3点5分,3点27分.【点评】此题考查了钟面上的路程问题.时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为0.5°/分,分针为6°/分,秒针为360°/分.28.某同学早晨7:30吃饭,7:50离家去上学,在这段时间里时钟的时针和分针分别转过的角度是多少?【分析】根据钟面可知:一周是360°,共有12个大格,一个大格的度数是=30°,根据一个大格是5分钟得出时针从7:30到7:50转过的度数是×30°和分针从7:30到7:50转过的度数是×360°,求出即可.【解答】解:∵一周是360°,共有12个大格,∴一个大格的度数是=30°,∴时钟的时针从7:30到7:50转过的度数是×30°=10°,时钟的分针从7:30到7:50转过的度数是×360°=120°,答:在这段时间里时钟的时针和分针分别转过的角度是10°和120°.【点评】本题考查了角的有关计算和钟面角的应用,主要考查学生的理解能力和计算能力.29.某人晚上六点多离家外出,时针与分针的夹角是110°,回家时发现时间还未到七点,且时针与分针的夹角仍为110°,请你推算此人外出了多长时间?【分析】根据时针走一圈(360°)要12小时,即速度为360度/12小时=360度/(12×60)分钟=0.5度/分钟,分针走一圈(360°)要1小时,即速度为360度/1小时=360度/60分钟=6度/分钟,钟面(360度)被平均分成了12等份,所以每份(相邻两个数字之间)是30°,则x分钟后,时针走过的角度为0.5x度,分针走过的角度为6x度,进而得出180+0.5x﹣6x=110,以及设6点y分返回,因为返回时发现时针和分针的夹角又是110°,所以有6y﹣(180+0.5y)=110,分别求出即可.【解答】解:设6点x分外出,因为手表上的时针和分针的夹角是110°,所以有180+0.5x﹣6x=110,所以5.5x=70,所以x=,所以此人6点分外出;再设6点y分返回,因为返回时发现时针和分针的夹角又是110°,所以有6y﹣(180+0.5y)=110,所以5.5y=290,所以y=,所以此人6点分返回,﹣==40(分钟),答:即此人外出共用了40分钟.【点评】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°,得出他的出发时间以及回家时间是解题关键.30.在下列说法中,正确的个数是3个.①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差﹣刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角【分析】画出图形,利用时钟特征解答.【解答】解:①钟表上九点一刻时,时针和分针形成的角是180°﹣30°÷4,不是平角,错误;②钟表上六点整时,时针指向6,分针指向12,形成的角是平角,正确;③钟表上十二点整时,时针和分针都指向12,形成的角是周角,正确;④钟表上差﹣刻六点时,时针和分针形成的角是90+30°÷4,不是直角,错误;⑤钟表上九点整时,时针指向9,分针指向12,形成的角是直角,正确.∴正确的个数是3个.【点评】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.31.(1)1点20分时,时钟的时针与分针的夹角是几度2点15分时,时钟的时针与分针的夹角又是几度?(2)从1点15分到1点35分,时钟的分针与时针各转过了多大角度?(3)时钟的分针从4点整的位置起,按顺时针方向旋转多少度时才能与时针重合?【分析】画出草图,利用时钟表盘特征解答.【解答】解:(1)∵分针每分钟走1小格,时针每分钟走小格,∴1点20分时,时针与分针的夹角是[20﹣(5+×20)]×=80°,2点15分时,时针与分针的夹角是[15﹣(10+×15)]×=22.5°.(2)从1点15分到1点35分,时钟的分针共走了20分钟,∴分针转过的角度是(35﹣15)×=120°,时针转过的角度是0.5×20=10度.(3)设经过x分钟分针可与时针重合(即追上时针),4点时二者夹角是120度(即相距120度)则列方程得:6x﹣0.5x=120解得x=分针按顺时针转过的度数为:6x=度,才能与时针重合.【点评】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系且掌握时针与分针的速度,并且利用起点时间时针和分针的位置关系建立角的图形.32.雨后初晴,小方同几个伙伴八点多上山采蘑菇,临出门他一看钟,时针与分针正好是重合的,下午两点多他回到家里,一进门看钟的时针与分针方向相反,正好成一条直线,问小方采蘑菇是几点去,几点回到家的,共用了多少时间?【分析】在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,依据这一关系列出方程,可以求解.【解答】解:设8点x分时针与分针重合,则所以:x﹣=40,解得:x=43.即8点43分时出门.设2点y分时,时针与分针方向相反.所以:y﹣=10+30,解得:y=43.即2点43分时回家所以14点43分﹣8点43=6点.故共用了6个小时.【点评】本题考查钟表分针所转过的角度计算.解题的关键是明确时针与分针转动的度数关系.33.在汶川大地震后,许许多多志愿者到灾区投入了抗震救灾行列中.都江堰市志愿者小方八点多准备前去为灾民服务,临出门他一看钟,时针与分针正好是重合的,下午两点多他拖着疲惫的身体回到家中,一进门看见钟的时针与分针方向相反,正好成一条直线,问小方是几点钟去为灾民服务?几点钟回到家?共用了多少时间?【分析】在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°依据这一关系列出方程,可以求出.【解答】解:设8点x分时针与分针重合,则:x﹣=40,解得:x=43.即8点43分时出门.设2点y分时,时针与分针方向相反.则:y﹣=10+30,解得:y=43.即2点43分时回家所以14点43分﹣8点43分=6点.答:共用了6个小时.【点评】本题考查钟表分针所转过的角度计算.解题的关键是明确时针与分针转动的度数关系.34.时钟里,时针从5点整的位置起,顺时针方向转多少度时,分针与时针第一次重合?【分析】在开始时,从顺时针方向看,时针在分针的“前方”,它们相差5×30°=150°.由于分针转动速度远远大于时针转动速度(是它的12倍),因此,总有一刻,分针“追上”时针(即两者重合).具体追上的时刻决定于开始时,分针与时针的角度差及它们的速度比.【解答】解:在开始时,分针“落后”于时针150°.设分针与时针第一次重合时,时针转动了α角,那么,分针转动了(150°+α).因为分针转速是时针的12倍,所以150°+α=12α,a==13.即时钟里,时针从5点整的位置起,顺时针方向转13度时,分针与时针第一次重合.【点评】本题考查钟表分针所转过的角度计算.说明钟表里的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似.行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时(分)针的转动速度.35.意大利制的A厂牌时钟,每天时针只转1圈,分针转24圈;而一般的普通时钟,每天时针转两圈,分针转24圈.假设两种时钟的钟面一样大,时针、分针也分别一样长,但分针略长于时针.两种时钟『零时』的刻痕都固定位于钟面的正上方.问24小时内,有多少种情形时针、分针和『零时』的相对位置,相同地出现在两种时钟上(这时候两种时钟显示的时间可能不同)?【分析】由题意可知意大利制的A厂牌时钟,每分钟时针转0.25°,每分钟分针6°;一般的普通时钟,每分钟时针转0.5°,每分钟分针6°.故时针24小时相遇2次,分针处处在相同位置.依此可知24小时内,有2种情形时针、分针和『零时』的相对位置,相同地出现在两种时钟上.【解答】解:∵意大利制的A厂牌时钟,每分钟时针转0.25°,每分钟分针6°;一般的普通时钟,每分钟时针转0.5°,每分钟分针6°.∴意大利制的A厂牌时钟和一般的普通时钟,时针24小时在相同位置2次,分针处处在相同位置.故24小时内,有2种情形时针、分针和『零时』的相对位置,相同地出现在两种时钟上.【点评】本题考查了钟表时针与分针的位置问题.注意意大利制的A厂牌时钟,每分钟时针转0.25°,每分钟分针6°;一般的普通时钟,每分钟时针转0.5°,每分钟分针6°.36.在4点到6点之间,时针与分针何时成120°角?【分析】在4点整时,时针与分针恰成120°.由于所问的时间是介于4点到6。
七年级数学上册《角》练习题

七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。
七年级数学上册角同步练习含解析新版新人教版

角一. 选择题.1.钟表在1点30分时,它的时针和分针所成的角度是().A.135° B.125° C.145° D.115°【答案】A【分析】根据钟表上的指针确定出所求角度数即可,时针每分钟走0.5°,钟面每小格的角度为6°.【详解】根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.2. 12点15分,钟表上时针与分针所成的夹角的度数为.A.B.C.D.【答案】C【分析】:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12小时15分,求出时针与分针的夹角即可.【详解】12点15分时,时钟的时针与分针的夹角是6°×15−0.25×30°=82.5度.故选:C.【名师点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.3.已知,,则与的大小关系是A.B.C.D.无法确定【答案】A【解析】:分析:一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.详解:∵∠α=21′,∠β=0.35°=21′,∴∠α=∠β.故选:A.4.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【答案】B【分析】:根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.5.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )A.4个B.8个C.9个D.10个【答案】D【分析】:先以OA为角的一边,最大角为∠AOB,依次得到以OD、OC、OE、OB为另一边的五个角;然后利用同样的方法得到其他角,最后计算所有角的和即可求解.【详解】点O出发的五条射线,可以组成的小于平角的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故答案选D.6.钟表4点30分时,时针与分针所成的角的度数为( )A.45°B.30°C.60°D.75°【答案】A【分析】钟表上按小时算分12个格,每个格对应的是30度,分针走一圈时针走一格,30分钟走半格,4点30分时针和分针的夹角是45度。
七年级上册+专题练习+数学角度问题(基础难度)

七年级上册数学角度问题(基础难度)一.选择题(共18小题)1.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB度数为()A.70°B.80°C.100°D.110°2.如图,下列说法中错误的是()A.OA方向是北偏东20°B.OB方向是北偏西15°C.OC方向是南偏西30°D.OD方向是东南方向3.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°5.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()6.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°7.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30°B.40°C.50°D.60°8.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°10.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°11.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°12.下列图形中表示北偏东60°的射线是()A.B.C.D.13.如图,下列说法正确的是()A.∠1与∠BOC表示同一个角B.∠β表示的是∠AOCC.∠1+∠β=∠AOC D.∠β>∠114.如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°15.如图,点O在直线AB上,若∠AOD=159.5°,∠BOC=51°30′,则∠COD的度数为()A.30°B.31°C.30°30′D.31°30′16.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20°B.30°C.50°D.40°17.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°18.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个二.填空题(共5小题)19.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.20.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.21.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=度.22.如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=度.23.如图,A,O,B是同一直线上的三点,OC,OD,OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=度.三.解答题(共17小题)24.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.25.如图,已知∠AOB=120°,OE平分∠AOB,射线OC在∠AOE内部,∠BOC=90°,(1)求∠EOC的度数.(2)作射线OF,使射线OC是∠EOF三等分线,则∠AOF的度数为.26.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.27.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.28.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.29.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.30.如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.31.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.32.如图,已知∠1=65°15′,∠2=78°30′,求∠1+∠2和∠3.33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.34.(1)平面内将一副三角板按如图1所示摆放,∠EBC=°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=°;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.35.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.36.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).37.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.38.(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?39.如图,已知OA⊥OD,∠FOD=2∠COD,OB平分∠AOC,OE平分∠COF.(1)若∠COD=30°,求∠BOE的度数;(2)若∠BOE=85°,求∠COD的度数.(提示:设∠COD=x°)40.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?七年级上册数学角度问题(基础难度)参考答案与试题解析一.选择题(共18小题)1.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB度数为()A.70°B.80°C.100°D.110°【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故选:B.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.2.如图,下列说法中错误的是()A.OA方向是北偏东20°B.OB方向是北偏西15°C.OC方向是南偏西30°D.OD方向是东南方向【分析】直接利用方向角的确定方法分别分析得出答案.【解答】解:A、OA方向是北偏东70°,符合题意;B、OB方向是北偏西15°,不符合题意;C、OC方向是南偏西30°,不符合题意;D、OD方向是东南方向,不合题意.故选:A.【点评】此题主要考查了方向角,正确把握方向角的概念是解题关键.3.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠O、∠α及∠AOB表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为∠O与∠α表示的不是同一个角,故本选项错误.故选:B.【点评】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.4.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.5.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【分析】由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.【点评】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.6.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.7.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30°B.40°C.50°D.60°【分析】根据图象∠AOB等于两个直角的和减去∠COD计算.【解答】解:∠DOC=90°+90°﹣∠AOB=180°﹣150°=30°.故选A.【点评】本题注意,∠COD是两个直角重叠的部分.8.如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A.45°B.45°+∠AOC C.60°﹣∠AOC D.不能计算【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠BOC,ON平分∠AOC,∴∠MOC=∠BOC,∠NOC=∠AOC,∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC),=(∠BOA+∠AOC﹣∠AOC),=∠BOA,=45°.故选:A.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.【解答】解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=40°;同理可得,∠COD=40°.∴∠AOD=∠AOB+∠BOC+∠COD=40°+30°+40°=110°,故选:B.【点评】本题考查角的计算,解答本题的关键是明确角之间的关系,利用数形结合的思想解答.10.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°【分析】由∠AOB是一直角,∠AOC=40°,可知∠COB=50°,又知OD平分∠BOC,故可知∠AOD的度数.【解答】解:∵∠AOB是一直角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选:A.【点评】本题考查角与角之间的运算,注意结合图形,发现角与角之间的关系,进而求解.11.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°【分析】由∠AOC=∠BOD=90°,∠AOD=150°,可求出∠BOC的度数,再根据角与角之间的关系求解.【解答】解:∵∠AOC=∠BOD=90°,∠AOD=150°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣150°=30°,故选:A.【点评】此题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC一次.12.下列图形中表示北偏东60°的射线是()A.B.C.D.【分析】根据方向角的定义解答即可.【解答】解:北偏东60°就是从北向东偏60°,即从上往右偏60°,故选:A.【点评】本题考查了方向角的定义,解答时注意方向和角度.13.如图,下列说法正确的是()A.∠1与∠BOC表示同一个角B.∠β表示的是∠AOCC.∠1+∠β=∠AOC D.∠β>∠1【分析】根据角的概念和表示方法可知,当角的顶点处只有一个角时这个角可以用顶点来表示,由此可得结论.【解答】解:A、∠1与∠AOB表示的是同一个角,故A说法错误;B、∠β表示的是∠BOC,故B说法错误;C、∠1+∠β=∠AOC,故C说法正确;D、∠AOC>∠1,故D说法错误.故选:C.【点评】此题考查了角的表示方法,根据图形特点将每个角用合适的方法表示出来是解题的关键.14.如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°【分析】根据角的和差,可得∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB=∠AOB+∠COD,再代入计算即可求解.【解答】解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.【点评】本题考查了角的计算.解题的关键是利用了角的和差关系求解.15.如图,点O在直线AB上,若∠AOD=159.5°,∠BOC=51°30′,则∠COD的度数为()A.30°B.31°C.30°30′D.31°30′【分析】将∠AOD转化成159°30′,将其代入∠COD=∠AOD+∠BOC﹣∠AOB中,即可求出结论.【解答】解:∵∠AOD=159.5°=159°30′,∴∠COD=∠AOD+∠BOC﹣∠AOB=159°30′+51°30′﹣180°=31°.故选:B.【点评】本题考查了角的计算以及度分秒的换算,牢记“将高级单位化为低级单位时乘以60,将低级单位转化为高级单位时除以60”是解题的关键.16.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20°B.30°C.50°D.40°【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=80°,∠AOD=140°,∴∠COD=∠AOD﹣∠AOC=60°,∵∠BOD=80°,∴∠BOC=∠BOD﹣∠COD=80°﹣60°=20°.故选:A.【点评】本题主要考查了角的计算能力,熟练掌握角相互间的和差关系是基础.17.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°【分析】先求∠AOC与∠BOC的度数差即可得出∠AOB的度数,再求∠AOB与∠DOB的和即可.【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.【点评】本题考查了角的运算,较为简单,解题关键是不要忘了减去两个角的重合部分.18.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个【分析】根据射线的定义和射线、直线没有长度极快判断①;根据两点间的距离的定义即可判断②,根据角的特点即可判断③,举出反例即可判断④.【解答】解:∵射线是指直线上的一点和它一旁的部分所组成的图形,没有长度,直线也没有长度,∴①的说法错误;∵点A与点B的距离是指线段AB的长度,是一个数,而线段是一个图形,∴②错误;∵角的大小与这个角的两边的长短无关,∴③错误;∵当这两个锐角的度数是10°和20°时,10°+20°=30°,30°的角是锐角,不是钝角,∴④错误;∴正确的个数是0个,故选:A.【点评】本题考查了学生对角的定义,直线、射线的定义,两点间的距离的定义的理解和运用,主要考查学生的理解能力和辨析能力,题目比较好,但是一道比较容易出错的题目.二.填空题(共5小题)19.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF =∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.20.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180 度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.【点评】本题考查了角的计算、三角板的度数,注意分清角之间的关系.21.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=70 度.【分析】∠COB是两个直角的公共部分,同时两个直角的和是180°,所以∠AOB+∠COD=∠AOD+∠COB.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.【点评】求解时正确地识图是求解的关键.22.如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=155 度.【分析】根据点A、O、B在一条直线上,∠AOB为平角,求出∠COB,再利用OD平分∠AOC,求出∠COD,然后用∠COB+∠COD即可求解.【解答】解:∵点A、O、B在一条直线上,∴∠COB=180°﹣∠AOC=180°﹣50°=130°,∵OD平分∠AOC,∴∠COD=×50°=25°,∴∠BOD=∠COB+∠COD=130°+25°=155°.故答案为:155.【点评】此题主要考查学生对角的计算的理解和掌握,此题的关键是点A、O、B在一条直线上,∠AOB为平角,此题难度不大,属于基础题.23.如图,A,O,B是同一直线上的三点,OC,OD,OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=60 度.【分析】利用平角和角的比例关系即可求出.【解答】解:A,O,B是同一直线上的三点,即∠AOB=180°∠1:∠2:∠3=1:2:3,可知∠1=30°∠2=60°∠3=90°;∠1:∠2:∠3:∠4=1:2:3:4,∠4=120°,∠5=180°﹣120°=60°.故填60.【点评】此题是对角进行度的比例计算,相对比较简单,但要准确求出各角大小是本题的难点.另外此题答案不能带单位.三.解答题(共17小题)24.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.【分析】设∠AOB=x,根据角平分线的定义、补角的概念,结合题意列出方程,解方程即可.【解答】解:设∠AOB=x,则∠BOC=180°﹣x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠BOE=∠EOC,∴∠BOE=∠BOC=60°﹣x,由题意得,x+60°﹣x=70°,解得,x=60°,∠EOC=(180°﹣x)=80°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.25.如图,已知∠AOB=120°,OE平分∠AOB,射线OC在∠AOE内部,∠BOC=90°,(1)求∠EOC的度数.(2)作射线OF,使射线OC是∠EOF三等分线,则∠AOF的度数为30°或15°.【分析】(1)由角平分线知,结合∠BOC=90°可得答案;(2)由射线OC是∠EOF三等分线可分∠EOC=∠EOF和∠EOC=∠EOF两种情况求解可得.【解答】解:(1)∵OE平分∠AOB,∠AOB=120°,∴,∵∠BOC=90°,∴∠EOC=∠BOC﹣∠EOB=30°;(2)若∠EOC=∠EOF,则∠EOF=3∠EOC=90°,∵∠AOE=∠AOB=60°,∴∠AOF=∠EOF﹣∠EOA=30°;若∠EOC=∠EOF,则∠EOF=∠EOC=45°,∴∠AOF=∠AOE﹣∠EOF=15°;综上,∠AOF的度数为30°或15°,故答案为:30°或15°.【点评】本题主要考查角的计算,学会计算角的和、差、倍、分.也考查了角平分线的定义.26.(1)在∠AOB内部画1条射线OC,则图1中有 3 个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有 6 个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10 个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66 个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【分析】(1)根据图形数出即可;(2)根据图形数出即可;(3)根据图形数出即可;(4)有1+2+3+…+9+10+11=66个角;(5)求出1+2+3+…+n+(n+1)的值即可.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.【点评】本题考查了角的有关概念的应用,关键是能根据题意得出规律.27.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【分析】(1)根据角平分线定义得到∠AOC=∠EOC=×70°=35°,然后根据对顶角相等得到∠BOD=∠AOC =35°;(2)先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.【点评】考查了角的计算:1直角=90°;1平角=180°.也考查了角平分线的定义和对顶角的性质.28.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.【分析】求出∠BOF,根据角平分线求出∠GOF,求出∠EOD,代入∠DOG=180°﹣∠GOF﹣∠EOD求出即可.【解答】解:∵∠AOE=70°,∴∠BOF=∠AOE=70°,又∵OG平分∠BOF,∴∠GOF=∠BOF=35°,又∵CD⊥EF,∴∠EOD=90°,∴∠DOG=180°﹣∠GOF﹣∠EOD=180°﹣35°﹣90°=55°.【点评】本题考查了角平分线定义,垂直,邻补角的应用,主要考查学生的计算能力.29.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB是∠DOC 的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.30.如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.【分析】(1)根据∠AOC:∠AOD=3:7,可求出∠AOC的度数,再根据对顶角的性质可求出∠DOB的度数,根据角平分线的性质即可解答.(2)根据垂直的定义可求出∠DOF的度数,再根据平角的定义解答即可.【解答】解:(1)∵两直线AB,CD相交于点O,∠AOC:∠AOD=3:7,∴∠AOC=180°×=54°,∴∠BOD=54°,又∵OE平分∠BOD,∴∠DOE=54°÷2=27°.(2)∵OF⊥OE,∠DOE=27°,∴∠DOF=63°,∠COF=180°﹣63°=117°.【点评】本题主要考查了角的计算,熟练掌握对顶角的性质,余角补角的定义,角平分线的性质并进行计算是解答本题的关键.31.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.【分析】(1)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE﹣∠BOD求出即可.(2)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE﹣∠BOD求出即可.(3)把∠AOC当作已知数求出∠BOC,求出∠BOD,根据角平分线求出∠BOE,代入∠DOE=∠BO+∠BOD求出即可.【解答】解:(1)∵∠COD是直角,∠AOC=30°,∴∠BOD=180°﹣90°﹣30°=60°,∴∠COB=90°+60°=150°,∵OE平分∠BOC,∴∠BOE=∠BOC=75°,∴∠DOE=∠BOE﹣∠BOD=75°﹣60°=15°.(2)∵∠COD是直角,∠AOC=α,∴∠BOD=180°﹣90°﹣α=90°﹣α,∴∠COB=90°+90°﹣α=180°﹣α,∵OE平分∠BOC,∴∠BOE=∠BOC=90°﹣α,∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α.(3)∠AOC=2∠DOE,理由是:∵∠BOC=180°﹣∠AOC,OE平分∠BOC,∴∠BOE=∠BOC=90°﹣∠AOC,∵∠COD=90°,∴∠BOD=90°﹣∠BOC=90°﹣(180°﹣∠AOC)=∠AOC﹣90°,∴∠DOE=∠BOD+∠BOE=(∠AOC﹣90°)+(90°﹣∠AOC)=∠AOC,即∠AOC=2∠DOE.【点评】本题考查了角的有关计算和角平分线定义的应用,主要考查学生的计算能力,求解过程类似.32.附加题:如图,已知∠1=65°15′,∠2=78°30′,求∠1+∠2和∠3.【分析】根据∠+∠2+∠3=180°求解.【解答】解:∵∠1=65°15′,∠2=78°30′,∴∠1+∠2=65°15′+78°30′=143°45′.∴∠3=180°﹣(∠1+∠2)=180°﹣143°45′=36°15′.故答案为143°45′、36°15′.【点评】本题主要考查角的比较与运算,利用了平角的概念求解.33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE =∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【解答】解:(1)如图①中,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)如图②中,∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.34.(1)平面内将一副三角板按如图1所示摆放,∠EBC=150 °;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=15 °;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.【分析】(1)(2)根据角的和差关系可直接算出答案;(3)首先计算出∠DBC的度数,再用∠ABC的度数减去∠DBC的度数即可.【解答】解:(1)∠EBC=90°+60°=150°;(2)∠α=∠EBC﹣∠DBE﹣∠ABC=165°﹣90°﹣60°=15°;(3)因为∠EBC=115°,∠EBD=90°,所以∠DBC=∠EBC﹣∠EBD=25°.因为∠ABC=60°,所以∠α=∠ABC﹣∠DBC=35°.【点评】此题主要考查了角的计算以及一副三角板各角之间的关系,根据图象得出是解题关键.35.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.【分析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.【解答】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC﹣∠BOC=75°﹣30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.【点评】此题主要考查了角相互间的和差关系,比较简单.36.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵α=120°,∠AOC=40°,∴∠BOC=80°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=40°,∠COD=∠AOC=20°,∴∠DOE=60°;(2)∵∠BOC=α﹣∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=α﹣∠AOC,∠COD=∠AOC,∴∠DOE=∠COE+∠COD=α;(3)∠DOE=(360°﹣α)=180°﹣α.【点评】考查了角的计算,熟记角的特点与角平分线的定义是解决此题的关键.37.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.【分析】本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE 的度数;根据前两个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前两问的解决思路得出证明.【解答】解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.【点评】记忆三角板各角的度数,把所求的角转化为已知角的和与差.38.(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?【分析】(1)首先根据题中已知的两个角度数,求出角AOC的度数,然后根据角平分线的定义可知角平分线分成的两个角都等于其大角的一半,分别求出角MOC和角NOC,两者之差即为角MON的度数;(2)(3)的计算方法与(1)一样.(4)通过前三问求出的角MON的度数可发现其都等于角AOB度数的一半.(5)模仿线段的计算与角的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30°=120°,又OM平分∠AOC,∴∠MOC=∠AOC=60°,又∵ON平分∠BOC,∴∠NOC=∠BOC=15°∴∠MON=∠MOC﹣∠NOC=45°;(2)∵∠AOB=α,∠BOC=30°,∴∠AOC=α+30°,又OM平分∠AOC,∴∠MOC=∠AOC=+15°,又∵ON平分∠BOC,∴∠NOC=∠BOC=15°∴∠MON=∠MOC﹣∠NOC=;(3)∵∠AOB=90°,∠BOC=β,∴∠AOC=90°+β,又OM平分∠AOC,∴∠MOC=∠AOC=+45°,又∵ON平分∠BOC,∴∠NOC=∠BOC=∴∠MON=∠MOC﹣∠NOC=45°;(4)从(1)(2)(3)的结果可知∠MON=∠AOB;(5)①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长;②若把线段AB的长改为a,其余条件不变,求线段MN的长;③若把线段BC的长改为b,其余条件不变,求线段MN的长;④从①②③你能发现什么规律.规律为:MN=AB.【点评】本题考查了学会对角平分线概念的理解,会求角的度数,同时考查了学会归纳总结规律的能力,以及会根据角和线段的紧密联系设计实验的能力.39.如图,已知OA⊥OD,∠FOD=2∠COD,OB平分∠AOC,OE平分∠COF.(1)若∠COD=30°,求∠BOE的度数;(2)若∠BOE=85°,求∠COD的度数.(提示:设∠COD=x°)【分析】(1)根据∠COD=30°,OA⊥OD,可求出∠AOC,根据OB平分∠AOC和∠FOD=2∠COD,可求出∠FOD,再根据OE平分∠COF,求出∠COE,即可求出∠BOE;(2)设∠COD=x°,根据已知条件可得∠BOC=,∠COE=,然后列方程,解方程即可求出答案.【解答】解:(1)∵∠COD=30°,OA⊥OD,∴∠AOC=60°,∵OB平分∠AOC,∴∠BOC=30°,∵∠FOD=2∠COD,∴∠FOD=60°,∵OE平分∠COF,∴∠COE=45°,∴∠BOE=30+45=75°;(2)设∠COD=x°,由已知可得:∠BOC=,∠COE=,∴+=85,解之x=40答:∠COD=40°.【点评】此题主要考查学生对角的计算的理解和掌握,此题涉及到方程思想,有一定拔高难度,属于中档题.40.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?【分析】(1)根据角平分线的性质和角的和差倍分关系求∠EOF的度数;(2)①用字母代替数字理由同(1);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e a
d
s
i n
t 1、选择题
1.下列说法正确的是( )
A .两点之间直线最短
B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大
C .把一个角分成两个角的射线叫角的平分线
D .直线l 经过点A ,那么点A 在直线l 上呢
2、下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )
3.下列关于平角、周角的说法正确的是( ).
A .平角是一条直线
B .周角是一条射线
C .反向延长射线OA ,就形成一个平角
D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )
A.5个
B.6个
C.7个
D.8个答案:D
5.(变式练习)如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )
A.155 °
B.205 °
C.85°
D.105°
6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )
A .60°
B .15° C.45° D.70°二、填空题:
7.角也可以看作由 旋转面形成的图形。
答案:一条射线绕着它的端点8.2周角= 1平角=
9.1°的_____ 是1′
10.1周角= 平角= 直角= ;
11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是 度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分
北
西
南东
75︒
40︒O
B
A
14.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛
方向的射线.
D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D
15.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠
ACB
16、如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,
求∠EOF的度数。