2011年广东高考数学试卷

合集下载

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

2011年高考数学广东卷(理科)-带答案

2011年高考数学广东卷(理科)-带答案

2011年高考数学广东卷(理科)注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 球的表面积公式24S R π=, 其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q,则+p q 的值为AB C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3NMD 1C 1B 1A 1DCBA图3(度)150140110100 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校 至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为 A .96 B .114C .128D .136图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点, 那么该圆的方程为 .D 11. 已知数列{}n a是等差数列, 若468212a a a++=, 则该数列前11项的和为.12.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知3,,3c Cπ==2a b=, 则b的值为 .13. 某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件25,2,6.x yx yx-≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是名.(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线, 切点为点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且83fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.17.(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.DC 1A 1B 1CBA若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图519.(本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nk k k a a a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,…… 5分 (2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分 ∴1cos 23θ=. …… 7分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分∴sin θ==. …… 10分∴sin tan cos θθθ==…… 12分解法3:∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.EDA 1B 1BA∴sin 23θ==…… 8分 ∴sin tan cos θθθ=…… 9分 22sin cos 2cos θθθ= …… 10分sin 21cos 2θθ=+=…… 12分 17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分 ∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分 解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都 是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点.∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC 中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = , ∴1BC ⊥平面DFG .∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得1132BF CC GF BC ⨯=== 在Rt △DFG 中, tan DF DGF GF ∠==∴二面角1--C BC D. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==. …… 12分 ∴sin 〈n ,AB 〉==. …… 13分 ∴tan 〈n ,AB 〉= .∴二面角1--C BC D . …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=.∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l 的距离d=212+=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯ …… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l的距离d ==…… 7分12⎫=+…… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥,此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -=-==. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+ ()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。

2011年全国高考文科数学试题(广东卷)及参考答案

2011年全国高考文科数学试题(广东卷)及参考答案

2011年普通高等学校招生全国统一考试(广东B 卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。

答案无效。

5. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。

线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x 1,x 2, (x)21()2(2)()n x x x x x x -+-+-其中,x y 表示样本均值。

N 是正整数,则1221()(ab)n n n n n n a b a b a a b b -----=-+++…… 一、 选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z 满足iz=1,其中i 为虚数单位,则 A.-i B.i C.-1 D.1(2).已知集合A=(,),x y x y 为实数,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为 A.4 B.3 C.2 D.1(3)已知向量a=(1,2),b=(1,0),c=(3,4)。

2011年普通高等学校招生全国统一考试数学卷(广东.文)含详解

2011年普通高等学校招生全国统一考试数学卷(广东.文)含详解

绝密★启用前 试卷类型:B2011年普通高等学校招生全国统一考试(广东卷)线性回归方程 y bxa =+ 中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑ , ay bx =- , 样本数据12,,,n x x x 的标准差,222121[()()()]n s x x x x x x n=-+-++- , 其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A .4B .3C .2D .1 3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ=A .14 B .12C .1D .2 4.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-⋃+∞ D .(,)-∞+∞5.不等式2210x x -->的解集是A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞ 6.已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为(2,1),则z OM OA=⋅的最大值为A .3B .4C .32D .4223正视图 图1侧视图 图22 俯视图 2图37.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆 9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .43 B .4 C .23 D .210.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,则下列等式恒成立的是A .(()f g h )()x =(()f h ()g h )()xB .(()f g h )()x =(()f h ()g h )()xC .(()f g h )()x =(()f g ()g h )()xD .(()f g h )()x =(()f g()g h )()x二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = .12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= .13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:图4BAC DEF时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为5cos sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =, EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n = 的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩n x7076727072(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.18.(本小题满分13分)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右BAB 'A 'CC 'DD 'EE 'G H '1O2O1O '2O '图5水平平移后得到的.,,,A A B B ''分别为 CD , C D '', DE , D E ''的中点,1122,,,O O O O ''分别为CD ,C D '', DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,2n a ≤11n b ++.21.(本小题满分14分)在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标; (3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.1.(A ).1()iz i i i i -===-⨯- 2.(C ).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点 3.(B ).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.(C ).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.(D ).21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.(B ).2z x y =+,即2y x z =-+,画出不等式组表示的平面区域,易知当直线2y x z =-+经过点(2,2)时,z 取得最大值,max 2224z =⨯+=7.(D ).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条8.(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线 9.(C ).该几何体是一个底面为菱形的四棱锥,菱形的面积1223232S =⨯⨯=,四棱锥的高为3,则该几何体的体积112332333V Sh ==⨯⨯= 10.(B ).11.2. 2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=- 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii ni i x x y y bx x ==--++++-===-+-+++-∑∑ , 0.47a y bx =-=∴线性回归方程 0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.5314.25(1,)5.5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =,22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或5x =-(舍去),又因为01y ≤≤,所以它们的交点坐标为25(1,)515.75如图,延长,AD BC ,AD BC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形16.解:(1)(0)2sin()16f π=-=-(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦, ∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=17.解:(1)61(7076727072)756x +++++=,解得690x = PBAC DEFxy O2x =-AP l MM标准差22222222212611[()()()](5135315)766s x x x x x x =-+-++-=+++++= (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种 这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中” 则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A == 18.证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心∴,,,CD C D DE D E ''''是圆柱底面圆的直径∵,,A B B ''分别为 C D '', DE , D E ''的中点∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O O ',四边形22O O B B ''是平行四边形∴2BO ∥2BO ' ∴1A O ''∥2BO ∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠==''∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形∴2BO '∥1HO '∴2BO H G ''⊥,H G H B H ''''= ∴2BO '⊥平面H B G ''21.解:(1)如图所示,连接OM ,则PM OM =∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或M 在x 的负半轴上,设(,)M x yxy O 2x =-TN l HNH∙H xy O TA 1l 1l1l① 当MP l ⊥时,2MP x =+,22OM x y =+222x x y +=+,化简得244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <- ① 若H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 则HO HT HN HT +=+当,,N H T 三点共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- (3)如图,设抛物线顶点(1,0)A -,则直线AT 的斜率12AT k =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论: ① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点 ② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点 ③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点 综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

2011年高考试题——数学理(广东卷)word版含答案bycbw

2011年高考试题——数学理(广东卷)word版含答案bycbw

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)
2 . 已 知 集 合 A {( x, y ) | x, y 为 实 数 , 且 x y 1} , B {( x, y ) | x, y 为 实 数 , 且
2 2
x y 1} ,则 A B 的元素个数为
A.4 B.3 C. 2
2 2
D. 1
2.(C). A B 的元素个数等价于圆 x y 1 与直线 x y 1 的交点个数,显然有 2 个交点 3.已知向量 a (1, 2), b (1, 0), c (3, 4) .若 为实数, (a b) ∥ c ,则
n
( x x)
i 1 i
n
2
, a y bx ,
s
1 [( x1 x ) 2 ( x2 x ) 2 ( x n x ) 2 ] n ,
n n n 1 n 2 n 2 n 1 n 是正整数,则 a b (a b )(a a b ab b ) .
1 V Sh 3 ,其中 S 为锥体的底面积, h 为锥体的高. 参考公式:锥体体积公式
b 线性回归方程 y bx a 中系数计算公式 x , x , , xn 的标准差, 样本数据 1 2
其中 x , y 表示样本均值.
( x x)( y y)
i 1 i i
4.函数
f ( x)
A. ( , 1)
1 x 0 x 1 1 x 0 4.(C). 且 x 1 ,则 f ( x ) 的定义域是 ( 1,1) (1, )
5.不等式 2 x x 1 0 的解集是
2
1 ( ,1) 2 A . 1 (, ) (1, ) 2 D.

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•广东)设复数z满足iz=1,其中i为虚数单位,则z=()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中iz=1,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi∵iz=1,∴i(x+yi)=﹣y+xi=1故x=0,y=﹣1∴Z=﹣i故选A【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3 C.2 D.1【考点】交集及其运算.【专题】集合.【分析】观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数.【解答】解:联立两集合中的函数关系式得:,由②得:x=1﹣y,代入②得:y2﹣y=0即y(y﹣1)=0,解得y=0或y=1,把y=0代入②解得x=1,把y=1代入②解得x=0,所以方程组的解为或,有两解,则A∩B的元素个数为2个.故选C【点评】此题考查学生理解交集的运算,考查了求两函数交点的方法,是一道基础题.本题的关键是认识到两集合表示的是点坐标所构成的集合即点集.3.(5分)(2011•广东)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A.B.C.1 D.2【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.【点评】本题考查两个向量平行的坐标表示,考查两个向量坐标形式的加减数乘运算,考查方程思想的应用,是一个基础题.4.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.5.(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是()A.(﹣,1)B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,﹣)∪(1,+∞)【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】将不等式的左边分解因式得到相应的方程的根;利用二次方程解集的形式写出解集.【解答】解:原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D【点评】本题考查二次不等式的解法:判断相应的方程是否有根;若有根求出两个根;据二次不等式解集的形式写出解集.6.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4【考点】二元一次不等式(组)与平面区域;数量积的坐标表达式.【专题】不等式的解法及应用.【分析】首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z有最大值.【解答】解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B【点评】本题考查线性规划、向量的坐标表示,考查数形结合思想解题.7.(5分)(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15 C.12 D.10【考点】棱柱的结构特征.【专题】立体几何.【分析】抓住上底面的一个顶点,看从此顶点出发的对角线有多少条即可解决.【解答】解:由题意正五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条.正五棱柱对角线的条数共有2×5=10条.故选D【点评】本题考查计数原理在立体几何中的应用,考查空间想象能力.8.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆 D.圆【考点】圆的切线方程;圆与圆的位置关系及其判定;抛物线的定义.【专题】直线与圆.【分析】由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.【解答】解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r ∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A【点评】本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.9.(5分)(2011•广东)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.2【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据已知中的三视图及相关视图边的长度,我们易判断出该几何体的形状及底面积和高的值,代入棱锥体积公式即可求出答案.【解答】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C【点评】本题考查的知识点是由三视图求面积、体积其中根据已知求出满足条件的几何体的形状及底面面积和棱锥的高是解答本题的关键.10.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g (x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.【解答】解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(g(h(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.【点评】此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.二、填空题(共5小题,考生作答4小题每小题5分,满分20分)11.(5分)(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= 2.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.12.(5分)(2011•广东)设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)=﹣9.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.【解答】解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9【点评】本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.13.(5分)(2011•广东)工人月工资y(元)与劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是②①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.【考点】线性回归方程.【专题】概率与统计.【分析】回归方程═50+80x变量x增加一个单位时,变量产生相应变化,从而对选项一一进行分析得到结果.【解答】解::∵对x的回归直线方程=50+80x,∴=(x+1)+50,∴﹣=80(x+1)+50﹣80x﹣50=80.所以劳动生产率提高1千元,则工资提高80元,②正确,③不正确.①④不满足回归方程的意义.故答案为:②.【点评】主要考查知识点:统计.本题主要考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.14.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).【考点】参数方程化成普通方程;直线的参数方程;椭圆的参数方程.【专题】坐标系和参数方程.【分析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.【解答】解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).【点评】本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.15.(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为7:5.【考点】相似三角形的性质.【专题】解三角形.【分析】根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.【解答】解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,故答案为:7:5【点评】本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.三、解答题(共6小题,满分80分)16.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.【解答】解:(1)∵f(x)=2sin(x﹣),x∈R,∴f(0)=2sin(﹣)=﹣1(2)∵f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=【点评】本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.17.(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【考点】极差、方差与标准差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.【解答】解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.【点评】本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.18.(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.(1)证明:O1′,A′,O2,B四点共面;(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G.【考点】直线与平面垂直的判定;棱柱的结构特征;平面的基本性质及推论.【专题】空间位置关系与距离;立体几何.【分析】(1)要证O1′,A′,O2,B四点共面,即可证四边形BO2A′O1′为平面图形,根据A′O1′与B′O2′在未平移时属于同一条直径知道A′O1′∥B′O2′即BO2∥A′O1′再根据BO2=A′O1′=1即可得到四边形BO2A′O1′是平行四边形,则证.(2)建立空间直角坐标系,要证BO2′⊥平面H′B′G只需证,,根据坐标运算算出•,的值均为0即可【解答】证明:(1)∵B′,B分别是中点∴BO2∥B′O2′∵A′O1′与B′O2′在未平移时属于同一条直径∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四边形BO2A′O1′是平行四边形即O1′,A′,O2,B四点共面(2)以D为原点,以向量DE所在的直线为X轴,以向量DD′所在的直线为Z轴,建立如图空间直角坐标系,则B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)则=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵•=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G⊂面H′GB′∴BO2′⊥平面H′B′G【点评】本题考查了直线与平面垂直的判定,棱柱的结构特征,平面的基本性质及推论以及空间向量的基本知识,属于中档题.19.(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出函数的定义域,求出导函数,设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞),讨论a=1,a>1与0<a<1三种情形,然后利用函数的单调性与导函数符号的关系求出单调性.【解答】解:定义域{x|x>0}f′(x)==设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞)①若a=1,则g(x)=1>0∴在(0,+∞)上有f'(x)>0,即f(x)在(0,+∞)上是增函数.②若a>1则2a(1﹣a)<0,g(x)的图象开口向下,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)>0方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根为x1=,x2=且x1<0<x2∴在(0,)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,+∞)上g(x)<0,即f'(x)<0,f(x)是减函数;③若0<a<1则2a(1﹣a)>0,g(x)的图象开口向上,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)可知当≤a<1时,△≤0,故在(0,+∞)上,g(x)≥0,即f'(x)≥0,f(x)是增函数;当0<a<时,△>0,方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根满足>>0故在(0,)和(,+∞)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,)上g(x)<0,即f'(x)<0,f(x)是减函数.【点评】本题考查利用导函数讨论函数的单调性:导函数为正函数递增;导函数为负,函数递减,同时考查了分类讨论的数学思想方法,属于难题.20.(14分)(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.【考点】数列递推式;数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【解答】解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,【点评】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.21.(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P 是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M 是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.【解答】解:(1)如图所示,连接OM,则|PM|=|OM|,∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y)①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x≤﹣1),综上所述,点M的轨迹E的方程为y2=4x+4(x≥﹣1)或y=0(x<﹣1).(2)由题意画出图形如下:∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,由H引直线HB垂直准线x=﹣2与B点,则利用抛物线的定义可以得到:|HB|=|HO|,∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,故|HO|+|HT|的最小值时的H.(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率,∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点,则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点,②当时,直线l1与轨迹E有且只有一个不同的交点,③当K=0时,直线l1与轨迹E有且只有一个交点,④当K>0时,直线l1与轨迹E有且只有两个不同的交点.综上所述,直线l1的斜率K的取值范围是(﹣]∪(0,+∞).【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档