A算法实验
A算法

A*算法 算法
上一节讨论的启发式搜索算法,都没有 对估价函数f(n)做任何限制。实际上,估 价函数对搜索过程是十分重要的,如果 选择不当,则有可能找不到问题的解, 或者找到的不是问题的最优解。为此, 需要对估价函数进行某些限制。A*算法 就是对估价函数加上一些限制后得到的 一种启发式搜索算法。
假设f*(n)为从初始节点S0出发,约束经过节点n到达 目标节点的最小代价值。估价函数f(n)则是f*(n)的估 计值。显然,f*(n)应由以下两部分所组成:一部分是 从初始节点S0到节点n的最小代价,记为g*(n);另一 部分是从节点n到目标节点的最小代价,记为h*(n), 当问题有多个目标节点时,应选取其中代价最小的一 个。因此有 f*(n)=g*(n) +h*(n) 把估价函数f(n)与 f*(n)相比,g(n)是对g*(n)的一 个估计,h(n)是对h*(n)的一个估计。在这两个估计中, 尽管g(n)的值容易计算,但它不一定就是从初始节点 S0到节点n的真正最小代价,很有可能从初始节点S0到 节点n的真正最小代价还没有找到,故有
再证明A*算法只能终止在最佳路径上(反证 法)。 假设A*算法未能终止在最佳路径上,而是终 止在某个目标节点t处,则有 f (t ) = g (t ) > f * ( S 0 ) 但由引理5.2可知,在A*算法结束前,必有最 佳路径上的一个节点n’在Open表中,且有 f ( n ′) ≤ f * ( S 0 ) < f (t ) 这时,A*算法一定会选择n’ 来扩展,而不可能选择t,从而也不会去测试 目标节点t,这就与假设A*算法终止在目标节 点t相矛盾。因此,A*算法只能终止在最佳路 径上。
g (n ′) = g * ( n ′)
′) ≤ f * ( S 0 ) f (n
迷宫探路系统实验报告(3篇)

第1篇一、实验背景迷宫探路系统是一个经典的计算机科学问题,它涉及到算法设计、数据结构以及问题求解等多个方面。
本实验旨在通过设计和实现一个迷宫探路系统,让学生熟悉并掌握迷宫问题的求解方法,提高算法实现能力。
二、实验目的1. 理解迷宫问题的基本概念和求解方法。
2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)算法的原理和实现。
3. 了解A搜索算法的基本原理,并能够实现该算法解决迷宫问题。
4. 学会使用数据结构如栈、队列等来辅助迷宫问题的求解。
三、实验原理迷宫问题可以通过多种算法来解决,以下为三种常用的算法:1. 深度优先搜索(DFS):DFS算法通过递归的方式,沿着一条路径深入搜索,直到遇到死胡同,然后回溯并尝试新的路径。
DFS算法适用于迷宫的深度较深,宽度较窄的情况。
2. 广度优先搜索(BFS):BFS算法通过队列实现,每次从队列中取出一个节点,然后将其所有未访问过的邻接节点加入队列。
BFS算法适用于迷宫的宽度较宽,深度较浅的情况。
3. A搜索算法:A算法结合了DFS和BFS的优点,通过估价函数f(n) = g(n) +h(n)来评估每个节点的优先级,其中g(n)是从起始点到当前节点的实际代价,h(n)是从当前节点到目标节点的预估代价。
A算法通常能够找到最短路径。
四、实验内容1. 迷宫表示:使用二维数组表示迷宫,其中0表示通路,1表示障碍。
2. DFS算法实现:- 使用栈来存储路径。
- 访问每个节点,将其标记为已访问。
- 如果访问到出口,输出路径。
- 如果未访问到出口,回溯到上一个节点,并尝试新的路径。
3. BFS算法实现:- 使用队列来存储待访问的节点。
- 按顺序访问队列中的节点,将其标记为已访问。
- 将其所有未访问过的邻接节点加入队列。
- 如果访问到出口,输出路径。
4. A算法实现:- 使用优先队列来存储待访问的节点,按照f(n)的值进行排序。
- 访问优先队列中的节点,将其标记为已访问。
八数码问题C语言A星算法详细实验报告含代码

八数码问题C语言A星算法详细实验报告含代码Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:(a) 初始状态 (b) 目标状态图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或 A* 算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。
A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。
由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
实验三:A星算法求解8数码问题实验

实验三:A星算法求解8数码问题实验实验三:A*算法求解8数码问题实验一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
二、实验内容1、八数码问题描述所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。
将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示图1 八数码问题的某个初始状态和目标状态对于以上问题,我们可以把数码的移动等效城空格的移动。
如图1的初始排列,数码7右移等于空格左移。
那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。
最少有两种(当空格位于方阵的4个角时)。
所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。
2、八数码问题的求解算法2.1 盲目搜索宽度优先搜索算法、深度优先搜索算法2.2 启发式搜索启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。
先定义下面几个函数的含义:f*(n)=g*(n)+h*(n) (1)式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。
评价函数的形式可定义如(2)式所示:f(n)=g(n)+h(n) (2)其中n是被评价的当前节点。
f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。
利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。
在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。
基于启发式搜索算法A星解决八数码问题

int statue[size][size]; //记录当前节点的状态 struct Node * Tparent; //用来构成搜索树,该树由搜索图的反向指针构成 struct Node * opennext; //用来构成 open 表,该指针指向该节点在 open 表中的下一个 节点 struct Node * closenext; //用来构成 open 表,该指针指向该节点在 close 表中的下一个 节点 struct Node * brothernext; //构成兄弟链表,该指针指向该节点在兄弟链表中的下一个节 点 int f; //记录当前节点的 f 函数值 int g; //记录当前节点的 g 函数的值 int h; //记录当前节点的 h 函数的值 };
5
get_bestroute (bestNode); return; }
2.2.7 生成 bestNode 所指节点的后继节点
定义一个后继节点链表,表头为 head_b,将 bestNode 所指节点的不是前驱节点的后继 节点,链接到后继及诶单链表中。getchild 函数可以实现这个功能。
//产生 bestNode 的一切后继节点。。 head head_b; //定义 bestNode 的后继节点表 head_b.next=NULL; getchild (&head_b,bestNode); //产生 bestNode 的子节点,将不是 bestNode 的父节点的
while (head_b.next!=NULL) { Node *tmp=getbrother (&head_b); //从后继节点表中取出一个节点记为 tmp,并从
八数码实验报告

八数码实验报告八数码实验报告引言:八数码,也被称为滑块拼图,是一种经典的益智游戏。
在这个实验中,我们将探索八数码问题的解决方案,并分析其算法的效率和复杂性。
通过这个实验,我们可以深入了解搜索算法在解决问题中的应用,并且探讨不同算法之间的优劣势。
1. 问题描述:八数码问题是一个在3x3的方格上进行的拼图游戏。
方格中有8个方块,分别标有1到8的数字,还有一个空方块。
游戏的目标是通过移动方块,将它们按照从左上角到右下角的顺序排列。
2. 算法一:深度优先搜索(DFS)深度优先搜索是一种经典的搜索算法,它从初始状态开始,不断地向前搜索,直到找到目标状态或者无法继续搜索为止。
在八数码问题中,深度优先搜索会尝试所有可能的移动方式,直到找到解决方案。
然而,深度优先搜索在解决八数码问题时存在一些问题。
由于搜索的深度可能非常大,算法可能会陷入无限循环,或者需要很长时间才能找到解决方案。
因此,在实际应用中,深度优先搜索并不是最优的选择。
3. 算法二:广度优先搜索(BFS)广度优先搜索是另一种常用的搜索算法,它从初始状态开始,逐层地向前搜索,直到找到目标状态。
在八数码问题中,广度优先搜索会先尝试所有可能的一步移动,然后再尝试两步移动,依此类推,直到找到解决方案。
与深度优先搜索相比,广度优先搜索可以保证找到最短路径的解决方案。
然而,广度优先搜索的时间复杂度较高,尤其是在搜索空间较大时。
因此,在实际应用中,广度优先搜索可能不太适合解决八数码问题。
4. 算法三:A*算法A*算法是一种启发式搜索算法,它在搜索过程中利用了问题的启发信息,以提高搜索效率。
在八数码问题中,A*算法会根据每个状态与目标状态之间的差异,选择最有可能的移动方式。
A*算法通过综合考虑每个状态的实际代价和启发式估计值,来评估搜索路径的优劣。
通过选择最优的路径,A*算法可以在较短的时间内找到解决方案。
然而,A*算法的实现较为复杂,需要合适的启发函数和数据结构。
人工智能a算法

人工智能a算法
人工智能中的A算法是一种启发式搜索算法,也被称为A算法。
它利用估
价函数f(n)=g(n)+h(n)对Open表中的节点进行排序,其中g(n)是从起始
节点到当前节点n的实际代价,h(n)是从当前节点n到目标节点的估计代价。
A算法在搜索过程中会优先选择估价值最小的节点进行扩展,这样可以更有效地逼近目标节点,提高搜索效率。
A算法可以根据搜索过程中选择扩展节点的范围,将其分为全局择优搜索算法和局部择优搜索算法。
全局择优搜索算法会从Open表的所有节点中选择一个估价值最小的节点进行扩展,而局部择优搜索算法仅从刚生成的子节点中选择一个估价值最小的节点进行扩展。
A算法的搜索过程可能包括以下步骤:
1. 把初始节点S0放入Open表中,计算其估价值f(S0)=g(S0)+h(S0)。
2. 如果Open表为空,则问题无解,算法失败退出。
3. 把Open表的第一个节点取出放入Closed表,并记该节点为n。
4. 考察节点n是否为目标节点。
若是,则找到了问题的解,算法成功退出。
5. 若节点n不可扩展,则转到第2步。
6. 扩展节点n,生成子节点ni(i=1,2,…… ),计算每一个子节点的估价值f(ni) (i=1,2,……)。
7. 把子节点放入Open表中,并根据估价值进行排序。
8. 重复步骤2-7,直到找到目标节点或Open表为空。
总之,人工智能中的A算法是一种有效的人工智能搜索策略,它可以用于解决许多不同的问题,例如路径规划、机器人控制、游戏AI等。
a算法求解八数码问题 实验报告

题目: a算法求解八数码问题实验报告目录1. 实验目的2. 实验设计3. 实验过程4. 实验结果5. 实验分析6. 实验总结1. 实验目的本实验旨在通过实验验证a算法在求解八数码问题时的效果,并对其进行分析和总结。
2. 实验设计a算法是一种启发式搜索算法,主要用于在图形搜索和有向图中找到最短路径。
在本实验中,我们将使用a算法来解决八数码问题,即在3x3的九宫格中,给定一个初始状态和一个目标状态,通过移动数字的方式将初始状态转变为目标状态。
具体的实验设计如下:1) 实验工具:我们将使用编程语言来实现a算法,并结合九宫格的数据结构来解决八数码问题。
2) 实验流程:我们将设计一个初始状态和一个目标状态,然后通过a 算法来求解初始状态到目标状态的最短路径。
在求解的过程中,我们将记录下每一步的状态变化和移动路径。
3. 实验过程我们在编程语言中实现了a算法,并用于求解八数码问题。
具体的实验过程如下:1) 初始状态和目标状态的设计:我们设计了一个初始状态和一个目标状态,分别为:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 42) a算法求解:我们通过a算法来求解初始状态到目标状态的最短路径,并记录下每一步的状态变化和移动路径。
3) 实验结果在实验中,我们成功求解出了初始状态到目标状态的最短路径,并记录下了每一步的状态变化和移动路径。
具体的实验结果如下:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 47 6 5求解路径:1. 上移1 2 37 8 62. 左移1 2 3 4 0 5 7 8 63. 下移1 2 3 4 8 5 7 0 64. 右移1 2 3 4 8 5 0 7 65. 上移1 2 3 0 8 5 4 7 61 2 38 0 54 7 67. 下移1 2 38 7 54 0 68. 右移1 2 38 7 54 6 0共计8步,成功从初始状态到目标状态的最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 A*算法实验
(选修,2学时)
一、实验目的:
熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
二、实验原理:
A*算法是一种有序搜索算法,其特点在于对估价函数的定义上。
对于一般的有序搜索,总是选择f值最小的节点作为扩展节点。
因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的代价以及从节点n到达目标节点的代价。
三、实验条件:
1N数码难题演示程序。
2IE5.0以上,可以上Internet。
三、实验内容:
1分别以8数码和15数码为例实际求解A*算法。
2画出A*算法求解框图。
3分析估价函数对搜索算法的影响。
4分析A*算法的特点。
四、实验步骤:
1开始演示。
进入N数码难题演示程序,可选8数码或者15数码,点击“选择数码”按钮确定。
第一次启动后,点击两次“缺省”或者“随机”按钮,才会出现图片。
2点击“缺省棋局”,会产生一个固定的初始节点。
点击“随机生成”,会产生任意排列的初始节点。
3算法执行。
点击“连续执行”则程序自动搜索求解,并演示每一步结果;点击“单步运行”则每次执行一步求解流程。
“运行速度”可自由调节。
4观察运行过程和搜索顺序,理解启发式搜索的原理。
在下拉框中选择演示“15数码难题”,点击“选择数码”确定选择;运行15数码难题演示实例。
5算法流程的任一时刻的相关状态,以算法流程高亮、open表、close表、节点静态图、当前扩展节点移动图等5种形式在按钮上方同步显示,便于深入学习理解A*算法。
6根据程序运行过程画出A*算法框图。
其它可参考帮助文件。
五、实验报告要求:
1A*算法流程图和算法框图。
2试分析估价函数的值对搜索算法速度的影响。
3根据A*算法分析启发式搜索的特点。