振动筛动力学参数计算方法解析
联合收割机脱粒系统中振动筛的动力学分析

2叭2年5月农机化研究第5期联合收割机脱粒系统中振动筛的动力学分析洪美琴(株洲职业技术学院机电工程系,湖南株洲412001)摘要:联合收割机振动筛工作时由于往复摆动和筛上物料的变化,存在着强度低、工作动负荷大、轴承温升大等问题。
为此,针对某一结构的曲柄连杆机构振动筛进行动力学分析,建立其力学方程,以求出振动筛所受约柬力的大小,为振动筛关键零件的强度分析提供理论依据。
关键词:联合收割机;振动筛;约束力;力学方程中图分类号:S226.1文献标识码:A文章编号:1003—188X(2012)05—0079—040引言振动筛作为联合收割机的清选机构,是联合收割机的重要工作部件"J。
由于联合收割机工作环境差,振动筛在往复摆动和筛上物料的作用下长期承受交变载荷,所以极易发生疲劳失效。
目前,振动筛普遍存在着强度低、使用寿命短、噪声大、工作动负荷大和轴承温升大等问题,这些问题的存在影响了联合收割机的使用寿命和工作的可靠性【6J。
考虑振动筛工作过程中变加速度和变载荷的影响,对振动筛进行动力学分析计算,其结果为振动筛的静强度和疲劳强度分析的准确性奠定了基础。
1振动筛的工作原理与运动分析图l所示的运动示意图是由曲柄连杆机构的运动而实现振动筛往复摆动的一种形式的收割机清选机构。
当曲柄舷转动时,与曲柄相连的连杆8C随着转动,从而带动传动摇杆cD转动。
传动摇杆cD的D端与振动筛轴通过平键相连,从而使振动筛轴旋转一定的角度;振动筛筛体一端的前吊杆E(G)端也通过平键与振动筛轴相连,当振动筛轴旋转一定的角度时带动前吊杆也旋转相应的角度,从而实现振动筛在一定角度上往复摆动,达到振动清选目的。
该机构由曲柄、连杆、传动摇杆、前吊杆、振动筛轴、振动筛体和后吊杆组成。
进行动力学分析之前,首先要计算振动筛的加速度。
从机构的工作原理可知,传动摇杆、振动筛轴、前吊杆的角速度和角加速度是相等的,只要计算出传动收稿日期:2们l—07一04作者简介:洪美琴(1966一),女.湖南株洲人,讲师,工程硕士,(E—m ai l)hm ql6@8i na.Ⅲno79-摇杆的角速度和角加速度,其它两个就可知了。
振动筛分机结构的优化设计与动力学分析

振动筛分机结构的优化设计与动力学分析引言振动筛分机是一种常用的固体物料分离设备,广泛应用于矿山、建筑材料、化工等行业。
其主要原理是通过振动力将物料进行筛分,以达到不同颗粒大小的分离。
本文将探讨振动筛分机的结构优化设计和动力学分析,以期提升其工作效率和使用寿命,满足生产需求。
一、振动筛分机结构优化设计1.工作原理振动筛分机的工作原理是通过激振器产生的振动力将物料进行筛分。
传统的振动筛分机结构通常由筛箱、筛网、弹簧支撑、激振器等部分组成。
然而,这种结构存在着一些问题,如振动不稳定、易损件寿命短等。
因此,进行结构优化设计十分必要。
2.结构优化方案结构优化的关键是改善振动筛分机的工作稳定性和使用寿命。
一种常见的优化方案是采用新型的振动器,如气弹簧振动器或电动振动器。
这些振动器具有振动稳定、无噪音、使用寿命长等优点,可以显著改善振动筛分机的工作效率和可靠性。
此外,还可以考虑引入阻尼装置,以减少振动筛分机的共振现象。
阻尼装置可以通过在筛箱和支撑结构之间安装阻尼垫或阻尼弹簧来实现,有效地减小共振幅值,提高筛分效果。
3.材料选择振动筛分机的材料选择也是结构优化的关键。
由于振动筛分机在工作过程中需要承受较大的振动力和冲击力,因此优选高强度、耐磨、耐腐蚀的材料十分重要。
常见的选择包括高强度合金钢、不锈钢等。
二、振动筛分机动力学分析1.数学模型建立对于振动筛分机的动力学分析,需建立相应的数学模型。
振动筛分机可视为一个多自由度的振动系统,可以通过运动方程和边界条件建立其数学模型。
2.系统参数计算系统参数的计算是动力学分析的基础。
主要包括筛箱的质量、弹簧刚度、阻尼系数等。
这些参数的准确计算对于分析振动筛分机的动态特性具有重要意义,可通过实验测试或仿真计算获得。
3.振动特性分析通过求解振动筛分机的运动方程,可以得到其振动特性,如共振频率、振幅、加速度等。
这些特性对于筛分过程的控制具有重要意义,可以帮助优化筛分机的结构参数和工作条件。
振动筛原理和常用计算

振动筛原理及常用计算公式一、直线振动筛工作原理振动筛工作时,两电机同步反向旋转使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分功课。
适宜采石场筛分砂石料,也可供选煤、选矿、建材、电力及化工等行业作产品分级用。
饲料行业加工中筛分技术的应用集中在二个方面,一是对原料中的杂质进行清理,二是将原料或产品按粒径进行分级,包括原料杂质清理、破碎摧毁物料分级、制粒前的粉料杂质清理、制粒产品的分级。
加工过程中筛分效果的好坏对饲料产品的质量和产量具有相称重要的影响。
振动筛电念头经三角带使激振器偏心块产生高速旋转。
运转的偏心块产生很大的离心力,激发筛箱产生一定振幅的圆运动,筛上物料在倾斜的筛面上受到筛箱传给的冲量而产生连续的抛掷运动,物料与筛面相遇的过程中使小于筛孔的颗粒透筛,从而实现分级。
振动筛采用双振动电机驱动,当两台振动电机做同步、反缶旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一协力,因此筛机的运动轨迹为一直线。
其两电机轴相对筛面有一倾角,在激振力和物料自重力的协力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。
可用于流水线中实现自动化功课。
具有能耗低、效率高、结构简朴、易维修、全封锁结构无粉尘溢散的特点。
最高筛分目数325目,可筛分出7种不同粒度的物料。
二、常用计算公式振动筛处理量的计算常用的经验公式q=φAq0ρs K1K2K3K4K5K6K7K8 (1)式中q——振动筛的处理量,t/h;A——筛面名义面积,m2;φ——有效筛分面积系数:单层或多层筛的上层筛面φ=~;双层筛的下层筛面φ=~;q0——单位筛分面积容积处理量,m3/(m2·h),按表(2)取值或按下式近似计算:细粒筛分(筛孔a<3mm) q0=41ga/;中粒筛分(a=4~40mm)q0=24lga/;粗粒筛分(a>40mm) q0=51lga/;ρs——意义同前;K1~K8——影响因素修正系数,见表(3).筛面及筛孔形状筛面种类编织筛网冲孔筛板橡胶筛板筛孔形状方形长方形方形圆形方形条缝K8①r-筛子振幅(单振幅);mm;n-筛子轴的转数,r/min.需要的振动筛总面积按下式计算:式中A t——需要的振动筛总面积,m2;q t——振动筛总给矿量,t/h;其它符号同(1)式。
振动筛原理和常用计算

振动筛原理和常用计算振动筛原理及常用计算公式一、直线振动筛工作原理振动筛工作时,两电机同步反向旋转使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分功课。
适宜采石场筛分砂石料,也可供选煤、选矿、建材、电力及化工等行业作产品分级用。
饲料行业加工中筛分技术的应用集中在二个方面,一是对原料中的杂质进行清理,二是将原料或产品按粒径进行分级,包括原料杂质清理、破碎摧毁物料分级、制粒前的粉料杂质清理、制粒产品的分级。
加工过程中筛分效果的好坏对饲料产品的质量和产量具有相称重要的影响。
振动筛电念头经三角带使激振器偏心块产生高速旋转。
运转的偏心块产生很大的离心力,激发筛箱产生一定振幅的圆运动,筛上物料在倾斜的筛面上受到筛箱传给的冲量而产生连续的抛掷运动,物料与筛面相遇的过程中使小于筛孔的颗粒透筛,从而实现分级。
振动筛采用双振动电机驱动,当两台振动电机做同步、反缶旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一协力,因此筛机的运动轨迹为一直线。
其两电机轴相对筛面有一倾角,在激振力和物料自重力的协力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。
可用于流水线中实现自动化功课。
具有能耗低、效率高、结构简朴、易维修、全封锁结构无粉尘溢散的特点。
最高筛分目数325目,可筛分出7种不同粒度的物料。
二、常用计算公式 2.1 振动筛处理量的计算常用的经验公式q=φAq0ρsK1K2K3K4K5K6K7K8 (1) 式中 q——振动筛的处理量,t/h; A——筛面名义面积,m2;φ——有效筛分面积系数:单层或多层筛的上层筛面φ=0.9~0.8;双层筛的下层筛面φ=0.7~0.6;q0——单位筛分面积容积处理量,m3/(m2·h),按表(2)取值或按下式近似计算:细粒筛分(筛孔a<3mm) q0=41ga/0.08;中粒筛分 (a=4~40mm)q0=24lga/1.74;粗粒筛分 (a>40mm) q0=51lga/9.15;ρs——意义同前;K1~K8——影响因素修正系数,见表(3).①r-筛子振幅(单振幅);mm;n-筛子轴的转数,r/min.需要的振动筛总面积按下式计算:式中 At——需要的振动筛总面积,m2; qt——振动筛总给矿量,t/h; 其它符号同(1)式。
振动筛原理和常用计算

振动筛原理及常用计算公式一、直线振动筛工作原理振动筛工作时,两电机同步反向旋转使激振器产生反向激振力,迫使筛体带动筛网做纵向运动,使其上的物料受激振力而周期性向前抛出一个射程,从而完成物料筛分功课。
适宜采石场筛分砂石料,也可供选煤、选矿、建材、电力及化工等行业作产品分级用。
饲料行业加工中筛分技术的应用集中在二个方面,一是对原料中的杂质进行清理,二是将原料或产品按粒径进行分级,包括原料杂质清理、破碎摧毁物料分级、制粒前的粉料杂质清理、制粒产品的分级。
加工过程中筛分效果的好坏对饲料产品的质量和产量具有相称重要的影响。
振动筛电念头经三角带使激振器偏心块产生高速旋转。
运转的偏心块产生很大的离心力,激发筛箱产生一定振幅的圆运动,筛上物料在倾斜的筛面上受到筛箱传给的冲量而产生连续的抛掷运动,物料与筛面相遇的过程中使小于筛孔的颗粒透筛,从而实现分级。
振动筛采用双振动电机驱动,当两台振动电机做同步、反缶旋转时,其偏心块所产生的激振力在平行于电机轴线的方向相互抵消,在垂直于电机轴的方向叠为一协力,因此筛机的运动轨迹为一直线。
其两电机轴相对筛面有一倾角,在激振力和物料自重力的协力作用下,物料在筛面上被抛起跳跃式向前作直线运动,从而达到对物料进行筛选和分级的目的。
可用于流水线中实现自动化功课。
具有能耗低、效率高、结构简朴、易维修、全封锁结构无粉尘溢散的特点。
最高筛分目数325目,可筛分出7种不同粒度的物料。
二、常用计算公式2.1 振动筛处理量的计算常用的经验公式q=φAq0ρs K1K2K3K4K5K6K7K8 (1) 式中q——振动筛的处理量,t/h;A——筛面名义面积,m2;φ——有效筛分面积系数:单层或多层筛的上层筛面φ=0.9~0.8;双层筛的下层筛面φ=0.7~0.6;q0——单位筛分面积容积处理量,m3/(m2·h),按表(2)取值或按下式近似计算:细粒筛分(筛孔a<3mm) q0=41ga/0.08;中粒筛分(a=4~40mm)q0=24lga/1.74;粗粒筛分(a>40mm) q0=51lga/9.15;ρs——意义同前;K1~K8——影响因素修正系数,见表(3).K8 1.00 1.20 0.85 0.70 0.90 1.20①r-筛子振幅(单振幅);mm;n-筛子轴的转数,r/min.需要的振动筛总面积按下式计算:式中A t——需要的振动筛总面积,m2;q t——振动筛总给矿量,t/h;其它符号同(1)式。
振动筛基本数值的计算方法振动电机

振动筛基本数值的计算方法振动电机
振动筛基本数值的计算方法
1、直线振动筛物料运行速度的计算方法为:
v=kv*λ*ω*cos(δ)*[1+tg(δ)*tg(α)]2、处理量的计算方法:
Q=3600*b*v*h*γ
其中Q:处理量,单位t/h
b:筛机宽度,单位m
h:物料平均厚度,单位m
γ:物料堆密度,单位t/m3
v:物料运行速度,单位m/s
3、动负荷:P=k*λ
其中k:复合弹簧刚度,单位N/m
λ:振幅,单位m
P:动负荷,单位N
最大动负荷(共振动负荷)按上述结果的4~7倍计算。
4、圆振动筛物料运行速度的计算方法为:
v=kv*λ*ω2*(1+)*α
其中kv:综合经验系数,一般取0.75~0.95
λ:单振幅,单位mm
ω:振动频率,单位rad/s
δ:振动方向角,单位°
α:筛面倾角单位°
以上就是我技术人员给大家总结的计算振动筛处理量的一些简要的方法,从中我们可以看出和筛分量关联最大的因素就是振动筛网孔的大小,网孔的密度,振动的频率,物料的比重,物料的粘度,筛分物所占的百分比等等。
振动筛分机构的动力学特性研究

振动筛分机构的动力学特性研究振动筛分机是一种常用的固体废料处理设备,广泛应用于矿石、煤炭等行业。
其主要作用是将杂质和颗粒分离,达到筛选和分级的目的。
本文将研究振动筛分机构的动力学特性,探讨其在工程实践中的应用和优化。
首先,我们需要了解振动筛分机构的基本原理和结构。
振动筛分机由筛箱、振动器、弹簧等部件组成。
在工作过程中,振动器产生的激振力通过弹簧传递给筛箱,筛箱上的物料因振动而运动,实现筛分作用。
振动筛分机构的动力学特性研究,就是研究这些部件之间的力学相互作用和运动规律。
其次,我们将从动力学模型入手,解析振动筛分机构的运动特性。
振动筛分机在工作中的振动主要是由激振力和杂质物料的阻力所致。
基于这一原理,我们可以建立一个简化的动力学模型,用于描述振动筛分机构的运动规律。
通过对模型的分析和计算,我们可以得到振动筛分机的位移、速度、加速度等动力学参数,进而了解其运动特性。
进一步研究振动筛分机的动力学特性,有助于优化设计和改进工艺。
例如,通过调整激振力的大小和频率,可以改变振动筛分机的筛分效率和物料流动性。
同时,通过对筛箱结构和弹簧刚度等参数的优化,可以减小振动筛分机的振动幅值,降低设备的噪音和能耗。
这些改进措施不仅可以提高振动筛分机的工作效率,还可以降低对环境和工人的影响,提高设备的可持续发展性。
振动筛分机构的动力学特性研究还可以拓展到其他领域。
例如,可以将振动筛分机的运动规律与材料力学相结合,研究不同颗粒在筛分过程中的受力和破碎行为。
这将有助于优化筛分过程,提高材料的利用率和产品质量。
在工程实践中,振动筛分机是一种重要的筛分设备。
通过研究其动力学特性,我们可以更好地了解其工作原理和运动规律,进而优化设计和改进工艺。
这不仅有助于提高设备的工作效率和产品质量,还可以减少对环境的影响,为可持续发展做出贡献。
总结起来,振动筛分机构的动力学特性研究是一个综合性的课题,涉及力学、材料学和工程学等多个学科领域。
通过对其运动特性的研究和分析,我们可以更好地了解振动筛分机的工作原理和运行规律,为优化设计和改进工艺提供科学依据。
(推荐)振动筛参数计算

振动筛参数计算筛分粒度:1㎜ 处理量:180T/h筛分效率:90% 料层厚度:50-100㎜ 取h=100㎜ 物料做抛掷运动振幅λ:根据香蕉形直线振动筛参数标准选λ=5mm 振动方向角δ:同上选取︒=45δ筛面倾角α:筛体分为3段,倾角依次为 ︒-︒-︒101520 振动次数:70045sin 005.015cos 8.9230sin cos 3014.322≈︒⨯⨯︒⨯⨯⨯==δλαπDg n 次/min(其中:振动筛对于易筛分物料取抛掷指数D=2~2.8,取D=2,α :在计算中取α=︒15)根据所选电机取n=730次/min 工作频率:s rad n/41.76602==πω 振动强度:98.22==gK λω当抛掷指数D=2~3.3时,物料的理论平均速度可近似为:s m V d /243.045cos 005.041.769.0cos 9.0=︒⨯⨯⨯==δωλ物料实际平均速度s m V C C C V d w m h m /27.0243.01.19.09.025.1=⨯⨯⨯⨯==αγ (其中,9.0~8.0=m C 取9.0=m C , 9.0~8.0=h C 取9.0=h C6.1~25.1=αγ 取25.1=αγ 1.1~05.1=w C 取1.1=w C )筛体宽度:m h V Q B m 06.29.01.027.036001803600=⨯⨯⨯==γ 取B=2.2m(其中:松散密度3/9.0m t =γ)根据我国香蕉形直线振动筛设计经验及标准选取筛面长度为6.1m筛分面积:S=2.2×6.1=13.42㎡估算参振质量:M=166.8+584.08S=166.8+584.08×13.42=8005.15kg(具体见资料 )激振力:F=M 2λω=8005.15×0.005×34.241.762=510⨯N 弹簧刚度:⑴弹簧静强度要求:cm kg M K /25.20015.0815.800581=⨯==λ 选四组弹簧:每组刚度为cm kg K /31.50041= 取每组六个弹簧:每个刚度mm N K /38.83631.5002==(1)弹簧选材:60Si2MnA , 负荷性质Ⅰ类 ,许用切应力[τ]=480MPa 剪切弹性模数G=80MPa , 弹性模数E=210MPa , 硬度HRC 52~47 (2)初步选取弹簧旋绕比C=6 , N Mg F 48.33356415.8005641=⨯=⨯=∴ λ12F F K -=, N F K F 38.375248.3335538.8312=+⨯=+=∴λ线径:d ≧mm KCF 25.1248038.3752625.16.1][6.12=⨯⨯=τ (其中由机械手册图7.1-4查得曲度系数K=1.25)由机械手册标准系列值取d=16㎜ , 中径D=Cd=16⨯6=96㎜ 同上取D=100㎜有效圈数n=86.738.831008161080834334=⨯⨯⨯⨯=K D Gd (G:剪切弹性模数) 由机械手册有效圈数系列值选取n=8取支撑圈22=n ,则总圈数102821=+=+=n n n(3)刚度校核:K=mm N nD Gd /92.8110088161080834334=⨯⨯⨯⨯= 与所需刚度基本符合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动筛动力学参数计算方法解析
中小型振动筛大型振动筛在工作原理方面和没有差别,但设计制造的难度却很大,例如,因设计制造误差造成筛箱在4个支点处的运协轨迹不一致,以及4个支点的合力位置和重心位置不一致等均会引起筛箱工作时的扭摆,易造成横梁和筛箱侧板的断裂、固定螺栓的松动或其他严重事故。
为此,我们采用计算机进行重心位置、振动方向角、激振力、二次隔振效果等进行了较精确的计算。
1 、采用双轴振动器自同步的工作原理,从根本上取消了原振动筛的齿形同步皮带,简化了结构,降低了备件费用。
自同步原理是双轴振动器的两根轴分别由两台电动机通过方向联轴器传动,双轴振动器的两根轴无任何机械联系,由于筛箱是支承在弹簧上,当两台电动机同时起动(不同时起动也能很快实现同步)时,通过偏心块轴线相对筛箱重心的扭摆,振动器上两根轴的偏心块能很快实现同步,一般达到同步的时间小于电动机的起动时间,由于双轴振动器的两根轴做等速反向旋转,筛箱的运动轨迹为直线。
在自同步理论的应用和实践方面,国内已积累了较多的经验,技术已趋于成熟,在BTS型双层筛上应用是完全可行的。
2、大型动振筛是安装在混凝土结构支架上,为了尽量减小对混凝土支架的动负荷,增加了二次隔振系统。
通过合理确定二次隔振架质量m2和筛箱参振质量m1的质量比和二次隔振弹簧与一次隔振弹簧的刚性系数比,取得了较好的二次隔振效果,传动基础上的单点动负荷小,振动筛正常工作时,操作和维护人员站在平台上,感觉不到基础的振动。
其振动微分方程为:
M1y1+K1 (y1-y2)=mrω2sinωt
M2y2-K1(y1-y2)+K2y2=0
式中
M1——筛体持量
M2——二次隔振架质量
K1——一次隔振弹簧刚度
K2——二次隔振弹簧刚度
y1y2——位移
m——偏心质量
r——偏心距
ω——激振园频率
ω=πn/30
引入符号
ω。
=K1/M1 μ=M1/M2
ξ=K2/K1 q=mrω?/M1
原方程改写为
y1+ω。
y1-ω。
y2=qsinωt
y2-ω。
μy1+ω。
μ(1+ξ)y2=0
由此可以求解出二次隔振系统的固有频率和振幅P1.22=ωμ[1+μ+ξ)
±]/2
λ1=q[ω。
μ(1+ξ-ω2]/ [(p12-ω2)(p22-ω2)]
λ2=qω。
μ/[(p12-ω2)( p22-ω2)]
基础总动负荷为
Pd=K2λ2
单点动负荷为
P2=Pd/4
隔振系数为
η=K2λ2/K1λ1
参数的选择
已知:筛箱重量M1,激振电机转速n。
确定K1、K2、M2、mr,并求实际振幅λ1、λ2和动负荷Pd
为了获得良好的隔振效果,二次隔振架重量应满足下列条件
M2=(0.4-0.6)M1
②按压缩量法选择弹簧刚度
初选λ1,并取δ1、δ2=(7-10)λ 1
则K1=M1/δ1 K2=(M1+M1)/δ2
③计算激振力
F。
=mrω? mr≈M1λ1
④利用前面分析结果,验算振幅λ1、λ2和动负荷Pd。
在振动强度相同的条件下,筛机的运动轨迹、筛分方法等是影响筛分效果的主要因素:
筛机的运动轨迹一般有直线运动、圆运动和椭圆运动。
直线运动时,具有一个确定的振动方向角,即使水平安装也能获得较大处理量,但物料翻转、分层的力较小,物料易卡堵筛孔。
圆振动筛机上的物料获得了一个旋转加速度矢量,物料翻转、分层力较大,但筛机有15~25度的安装倾角,筛网磨损快,筛分效率低。
椭圆振动筛综合了直线筛和圆振筛的优点,在同样的筛分面积和振动强度条件下,能获得大处理量的高效筛分。
振动筛的筛分方法一般有普通筛分、等厚筛分、概率筛分等。
普通筛分机结构简单,但处理量和筛分效率一般较低。
概率筛分处理量大,但筛分精度不高。
等厚筛分是通过改变筛面倾角,优化振动参数,使物料层在筛面上厚度近似相等的筛分技术,从而强化筛分过程,是提高筛机处理量和筛分效率的有效措施。
三轴椭圆等厚振动筛的特点
1、三轴驱动能使筛机产生理想的椭圆运动,且椭圆轨迹可调(这是目前国内所有其它振动筛所不具备的特征),可根据实际物料特性调整振动轨迹的椭园度,以达到筛分效率与生产能力等筛分工艺参数的优化。
2、三轴激振器采用齿轮同步,使筛机获得稳定的工作状态,对大处理量的物料筛分尤其有利。
3、三轴驱动改善了筛框受力状态,减轻了单个轴承负荷,提高了筛机的可靠性和寿命。
4、采用二次隔振,减少传给基础的动负荷。
5、筛机工作在超共振状态,工作频率远离系统固有频率,提高振动系的稳定性。
6、筛板材质采用耐磨的镍铬合金。