2019-2020学年山东省淄博市部分学校高一上学期期末联考数学试题(解析版)

合集下载

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。

山东诗营市广饶县第一中学高一数学上学期期末考试试题含解析

山东诗营市广饶县第一中学高一数学上学期期末考试试题含解析
山东省东营市广饶县第一中学2019—2020学年高一数学上学期期末考试试题(含解析)
一、单选题(本题共8个小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)。
1。 下列各式中成立的是( )
A。 B.
C。 D。
【答案】D
【解析】
【分析】
由指数的运算法则和根式与分数指数幂的互化,A中应为 ;B中等式左侧为正数,右侧为负数;C中x=y=1时不成立,排除法即可得答案.
则C也正确,D错误.
故选:ABC.
【点睛】本题考查幂函数的图象与性质,掌握幂函数的性质是解题关键,理解并熟记幂函数的奇偶性、单调性,定义域等等.
12. 给出以下四个结论,其中所有正确结论的序号是( )
A. 若函数 的定义域为 ,则函数 的定义域是 ;
B. 函数 (其中 ,且 )的图象过定点 ;
C。 当 时,幂函数 的图象是一条直线;
【解析】
【分析】
由内到外依次将自变量代入函数求值即可。
【详解】由 ,得 ,
所以 .
故答案为:2。
【点睛】本题主要考查了分段函数的求值,属于基础题.
14。 数据10,9,8,7,6,5,4,3,2,1的25%分位数、80%分位数分别是_______;
【答案】3;8。5
【解析】
【分析】
直接利用 分位数的定义求解.
A. 1B。2C. 3D. 4
【答案】B
【解析】
【分析】
画出 的图像,由此确定 的最大值.
【详解】画出 图像如下图所示,由图可知 的最大值为 .
故选:B
【点睛】本小题主要考查分段函数图像与性质,考查分析与解决问题的能力,考查数形结合的数学思想方法,属于基础题.

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。

2019-2020学年河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

2019-2020学年河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

2019-2020学年河南省天⼀⼤联考⾼⼀上学期第⼀次阶段性测试数学试题(解析版)2019-2020学年河南省天⼀⼤联考⾼⼀上学期第⼀次阶段性测试数学试题⼀、单选题1.已知集合{1,0,1,2,3,4},{|3}A B x x =-=<,则A B ?=() A .{1,0,1,2}- B .{1,0,1}- C .{0,1,2} D .{|3}x x <【答案】A【解析】根据集合的交运算,结合已知,进⾏求解. 【详解】由集合的交运算,可得{}1,0,1,2A B ?=-.故选:A. 【点睛】本题考查集合的交运算,属基础题.2.已知22,0,()log ,0x x f x a x x ?≤=?+>?,若()(2)1f f -=-,则实数a 的值为()A .2-B .2C .0D .1【答案】D【解析】由已知条件,利⽤分段函数性质,先求出1(2)4f -=,再算出14f ??,即可求出a . 【详解】由题意得:已知函数22,0,()log ,0,x x f x a x x ?≤=?+>?所以1(2)4f -=,则()1(2)214f f f a ??-==-=-得1a =,故选:D.本题考查分段函数的概念,还涉及函数的性质和函数值的求法,同时考查运算能⼒. 3.函数1()lg f x x=+ ) A .(],2-∞- B .(]0,2C .()(]0,11,2UD .(]1,2-【答案】C【解析】由函数解析式可知,根据对数真数⼤于0,分母不为0和⼆次根式的被开⽅数⼤于等于0,即可求出定义域. 【详解】由题意可得0lg 020x x x >??≠??-≥?,化简得02x <≤且1x ≠,即()(]0,11,2x ∈?.故选:C. 【点睛】本题考查求具体函数的定义域的⽅法,注意函数的定义域是函数各个部分的定义域的交集.4.若()y f x =的定义域为R ,值域为[1,2],则(1)1y f x =-+的值域为() A .[2,3] B .[0,1] C .[1,2] D .[1,1]-【答案】A【解析】根据函数的平移规则,结合原函数的值域求解. 【详解】因为(1)1y f x =-+是将原函数()f x ,向右平移1个单位,再向上平移1个单位得到,但是左右平移不改变值域,故(1)1y f x =-+的值域为[]2,3. 故选:A. 【点睛】本题考查函数图像的上下平移和左右平移对函数值域的影响. 5.函数21()log 1xf x e x=--的零点所在的区间是()C .1,12?? ???D .(1,2)【答案】C【解析】将选项中区间左右端点代⼊函数解析式,若发现两端函数值异号,则零点就在该区间. 【详解】因为1202f ??=<,⽽()110f e =-> 则()1102f f ??<,根据零点存在性定理可知函数零点所在区间为:1,12?? ???. 故选:C. 【点睛】本题考查函数零点所在区间的确定,判断依据是零点存在性定理.6.设0.2【答案】B【解析】将,,a b c 与1和0进⾏⽐较,从⽽得出结果. 【详解】0.20331a =>=,0.30.3log 0.4log 0.31?b =<=且0b >, 44log 0.2log 10c =<=,故a b c >>,故选:B. 【点睛】本题考查指数式和对数式⼤⼩的⽐较,⼀般地,先与1和0进⾏⽐较,即可区分. 7.设m R ∈,幂函数1()(22)m f x m x +=+,且(1)(2)f a f a +>-,则a 的取值范围C .(1,2]-D .[2,)+∞【答案】B【解析】由()f x 是幂函数,求得参数的值,再求解不等式即可. 【详解】因为1()(22)m f x m x +=+是幂函数,故221m +=,解得12m =-,则()f x x =,其在[)0,+∞为单调增函数,则不等式(1)(2)f a f a +>-等价于102012a a a a+≥??-≥??+>-?,解得1,22a ??∈ .故选:B. 【点睛】本题考查幂函数解析式的求解,以及利⽤函数单调性求解不等式. 8.函数|1|1()10x f x -=的图象⼤致为() A . B .C .D .【答案】A【解析】根据函数的定义域,以及单调性,结合选项进⾏选择. 【详解】因为|1|1()10x f x -=定义域为R ,故排除C 、D 选项;故选:A. 【点睛】本题考查由函数的解析式,选择函数的图像.⼀般地,要从定义域、值域、单调性、特殊点出发进⾏选择.9.已知函数(22()log 2f x x x a =-+的最⼩值为3,则a =() A .6 B .7C .8D .9【答案】D【解析】判断函数的单调性,找到最⼩值点对应的⾃变量,代值计算即可. 【详解】若220x x a -+>在R 上恒成⽴,则根据复合函数的单调性可知,()f x 区间(),1-∞单调递减,则()1,+∞单调递增,故()()()21log 13min f x f a ==-=,解得9a =,此时满⾜2290x x -+>在R 上恒成⽴,若220x x a -+>在R 上不恒成⽴,则该函数没有最值. 综上所述:9a =. 故选:D. 【点睛】本题考查对数型复合函数的单调性的判断,遵循同增异减的原则.10.常见的三阶魔⽅约有194.310?种不同的状态,将这个数记为A ,⼆阶魔⽅有85603?种不同的状态,将这个数记为B ,则下列各数与AB最接近的是()(参考数据:43 4.3log 10 2.1,0.63560-≈≈?) A .280.63-? B .280.610? C .280.63? D .320.63?【答案】C【解析】根据题意,结合参考数据,应⽤对数运算法则,对数据进⾏估算.由题可知:A B =1984.3105603?两边取对数可得 1933384.310log log log 5603A B =+4198333333log log log 3log 10log 35A B -≈++- 333log log 419 2.185A B -≈-+?-35log 27.93A B ?≈故27.93A B ≈? 解得:27.90.63A B ≈?,故与之最接近的为280.63?. 故选:C. 【点睛】本题考查对数的运算,涉及数据的估算;要结合参考数据进⾏处理,是解决本题的重要思路. 11.已知函数2()x x x xe e xf x e e--++=+的最⼤值为M ,最⼩值为m ,则M m +=() A .1 B .2C .211e e++ D .221ee++ 【答案】B【解析】对()f x 分离参数,构造⼀个奇函数,再进⾏求解. 【详解】因为2()x x x xe e xf x e e--++=+=1+2x x x e e -+ 不妨令()2x xxh x e e -=+,显然()h x 为奇函数,故()()max 0min h x h x +=,则()()()()max 22max min min f x f x h x h x +=++=.【点睛】本题考查函数的奇偶性与函数最值之间的关系,本题的难点在于分离常数,构造奇函数. 12.设函数222,2,()54, 2.x a x f x x ax a x ?-<=?-+?…若()f x 有两个零点,则实数a 的取值范围是() A .1,2??+∞B .1,2(2,)2+∞?C .1,2[4,)2+∞?D .1,2(4,)2+∞?【答案】C【解析】分段考虑函数的零点,结合⼀元⼆次⽅程根的分布,对参数进⾏讨论. 【详解】为⽅便说明,不妨令()22?(2)?h x a x =-<,()()22542g x x ax ax =-+≥因为()h x 是单调函数,故其在定义域上的零点个数可以是0或1;对()g x ,因为290a =≥n ,故其可以在定义域有1个零点,或2个零点;故当()f x 有两个零点,只有下⾯两种可能:①当()40,4a -∈时,即()0,4a ∈时,()h x 在其定义域内有1个零点,此时只要保证()g x 在其定义域1个零点即可,等价于⽅程22540x ax a -+=有1个根在区间[)2,+∞,只需()20g <,即:241040a a -+<,解得1,22a ??∈或()20g =且522a <,解得12a =,故1,22a ??∈②当()40,4a -?,即(][),04,a ∈-∞?+∞时,()h x 在其定义域内没有零点,此时只要保证()g x 在其定义域2个零点即可等价于⽅程22540x ax a -+=有2个根在区间[)2,+∞,只需()52220ag ?>?≥?,解得[)4,a ∈+∞综上所述:[)1,24,2a ??∈?+∞. 故选:C. 【点睛】本题考查根据函数的零点个数求参数的范围,涉及⼆次⽅程根的分布,其难点是对参数进⾏分类讨论.⼆、填空题13.已知函数2(0,1)x y a a a =+>≠且的图象恒过点M ,则M 的坐标为________. 【答案】(0,3)【解析】根据函数平移,结合指数函数恒过定点()0,1即可求得. 【详解】⼜函数2x y a =+是由x y a =向上平移2个单位得到,故2x y a =+恒过定点()0,3. 故答案为:()0,3. 【点睛】本题考查指数型函数恒过定点的问题,其⼀般思路为,根据函数图像变换进⾏求解. 14.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为___________. 【答案】3【解析】由集合A 的元素,以及2A ∈,分类讨论,结合集合元素互异性,即可得出实数m 的值. 【详解】由题可得,若2m =,则2320m m -+=,不满⾜集合元素的互异性,舍去;若2322m m -+=,解得3m =或0m =,其中0m =不满⾜集合元素的互异性,舍去,故答案为:3. 【点睛】本题考查集合元素的互异性,结合元素与集合关系以及通过对集合中元素构成的特点求参数值.15.已知函数()log (0,1)a f x x b a a =+>≠的定义域、值域都是[1,2],则a b +=__________.【答案】52或3. 【解析】分析:分类讨论a 的取值范围,得到函数的单调性,代⼊数据即可求解. 详解:当01a <<时,易知函数()f x 为减函数,由题意有()()122log 21a fb f b ===+=,解得:1,22a b ==,符合题意,此时52a b +=;当1a >时,易知函数()f x 为增函数,由题意有()()112log 22a fb f b ===+=,解得2,1a b ==,符合题意,此时3a b +=.综上可得:+a b 的值为52或3. 故答案为:52或3. 点睛:在对数式中,真数必须是⼤于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因⽽,在研究对数函数的单调性时,要按01进⾏分类讨论.16.已知()f x 是定义在R 上的奇函数,且当0x …时,2log (1),01,()31,1,x x f x x x +⽅程1()2f x =的所有实根之和为________. 21【解析】画出分段函数的图像,根据图像,结合解析式,进⾏求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称,且31y x =---+在区间(],1-∞上,关于3x =-对称,故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根,此时()21log 12x +=,解得21x =.21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应⽤,属函数综合题.三、解答题17.计算(1)142110.2542216----÷- ? ?(2)()()3334839322log 2log log 8log 3log 3log 2log 29-+-++ 【答案】(1)4-(2)34【解析】(1)根据指数运算法则,直接计算即可得出结果;(2)根据对数运算法则,直接计算即可得出结果. 【详解】解:(1)原式14421242444-?- =?--=--22=-4(2)原式232233log 2log 3log 328log log 2322329??=-++ ?323111533log 9log 3log 212232624=-?+??+=-?= ? ?????.本题主要考查指数运算以及对数运算,熟记运算法则即可,属于基础题型.18.已知集合{}2{|32},|log 3,{|13}A x x B x x C x m x m =-<<=<=-<<+. (1)求R A C B ?;(2)若()C A B ?U ,求实数m 的取值范围. 【答案】(1){|30}x x -<…(2)(,4]-∞【解析】(1)求解对数不等式,再求补集和交集即可;(2)先求并集,对集合C 是否为空集进⾏讨论,分别求解. 【详解】(1)∵函数2log y x =在(0,)+∞上单调递增,∴由2log 3x <得08x <<,∴{|08}B x x =<<.∴{|08}R B x x x =或剠e. ∴(){|30}R A B x x ?=-<…e. (2){|38}A B x x ?=-<<.若C =?,则13m m -+…,解得1m -…. 若C ≠?,则13,13,38,m m m m -<+??--??+≤?…,解得14m -<….∴实数m 的取值范围为(,4]-∞. 【点睛】本题考查集合的运算,以及集合之间的包含关系,涉及对数不等式的求解.19.已知函数21()2x x f x a-=+的图象经过点11,3??-- .(1)求a 的值;(2)求函数()f x 的定义域和值域;(3)判断函数()f x 的奇偶性并证明.【答案】(1)1;(2)定义域为R ,值域为(1,1)-;(3)()f x 是奇函数,证明见详解.(2)利⽤分母不为零求定义域,采⽤不等式法求函数值域;(3)先判断函数的定义域是否关于原点对称,再判断()f x 与()f x -之间的关系. 【详解】(1)由题意知11112112(1)1232f a a -----===-++,解得1a =.(2)因为212()12121x x xf x -==-++. ∵20x >,∴211x +>,∴()f x 的定义域为R . ∵2(0,)x ∈+∞,∴2(0,2)21x∈+,∴()f x 的值域为(1,1)-. (3)函数()f x 是奇函数.证明如下:∵()f x 的定义域为R ,关于原点对称,且2112()()2112x x x xf x f x -----===-++,∴()f x 是奇函数,即证. 【点睛】本题考查函数解析式,定义域和值域的求解,以及函数奇偶性的证明,涉及指数运算,属函数综合基础题.20.某投资公司计划在甲、⼄两个互联⽹创新项⽬上共投资1200万元,每个项⽬⾄少要投资300万元.根据市场分析预测:甲项⽬的收益P 与投⼊a满⾜30P =,⼄项⽬的收益Q 与投⼊a 满⾜1505Q a =+.设甲项⽬的投⼊为x . (1)求两个项⽬的总收益关于x 的函数()F x .(2)如何安排甲、⼄两个项⽬的投资,才能使总收益最⼤?最⼤总收益为多少?(注:收益与投⼊的单位都为“万元”)【答案】(1)1()260,3009005F x x x =-+≤≤;(2)甲项⽬投资500万元,【解析】(1)由题意得,分别代⼊甲和⼄的收益函数即可得出两个项⽬的总收益关于x 的函数()F x ; (2)利⽤换元法,令t x =,则103,30t ??∈??,得出关于t 的⼆次函数,根据已知区间内的⼆次函数即可求出最⼤值以及对于的x 值,即可得出答案. 【详解】(1)由题知,甲项⽬投资x 万元,⼄项⽬投资1200x -万元. 所以11()4530(1200)504526055F x x x x x =-+-+=-++ 依题意得3001200300x x ≥??-≥?解得300900x ≤≤.故1()45260,3009005F x x x x =-++≤≤ (2)令t x =221145260(105)36055y t t t =-++=--+当105t =,即500x =,y 的最⼤值为360.所以当甲项⽬投资500万元,⼄项⽬投资700万元时,总收益最⼤,最⼤总收益为360万元. 【点睛】本题考查函数模型的应⽤以及⼆次函数的性质,利⽤换元法及⼆次函数求最值. 21.已知函数2()22f x x kx =-+.(1)若函数(1)f x -是偶函数.求k 的值,并在坐标系中画出()y f x =的⼤致图象;(2)若当[]1,2x ∈-时,()4f x ≥-恒成⽴,求k 的取值范围.【答案】(1)4k =-,图像见解析;(2)8,43?-【解析】(1)根据(1)f x -是偶函数,得出()f x 的对称轴,结合⼆次函数对称轴,求出k ,便可以得出()f x 解析式,即可画出⼆次函数图像;(2)由条件,得出min ()4f x ≥-,分类讨论对称轴和所给区间⽐较,结合单调性,分别求出每种情况的最⼩值,分析加以排除,即可得出k 的取值范围. 【详解】(1)由题得,函数(1)f x -是偶函数,可得函数()f x 的图象关于1x =-对称,即14k=-,得4k =- 则2()242y f x x x ==++的⼤致图象如图所⽰.(2)因为当[]1,2x ∈-时,()4f x ≥-恒成⽴,所以min ()4f x ≥-. 由题可知()f x 的对称轴为4k x =. 当14k≤-,即4k ≤-时,()f x 在[]1,2-上单调递增,此时min ()(1)224f x f k =-=++≥-,得8k ≥-,所以84k -≤≤-;当24k≥,即8k ≥时,()f x 在[]1,2-上单调递减,此时min ()(2)8224f x f k ==-+≥-,得7k ≤,不符合条件;当124k -<<,即48k -<<时,()f x 在(1,)4k -上单调递减,在,24k ??上单调递增,此时22min()()24484k k k f x f ==-+≥-,得4343k -≤≤443k -<≤综上所述,k 的取值范围是8,43?-?.【点睛】值,同时还考查⼆次函数图像的画法和分类讨论思想,以及数形结合思想.22.设a R ∈,函数 ()1,11ln ,1ax x f x x a x x +?=-??-≥?,且()()3f f e -=()1求()f x 的最⼤值()2若⽅程()()0f x f x --=在区间[)(),1k k k Z +∈上存在实根,求出所有可能的k值【答案】(1)3;(2)3,0,2-【解析】(1)由(3)()f f e -=求得a ,分段考查函数值的取值范围可得最⼤值.(2)由()31,113ln ,1x x f x x x x +?=-??-≥?,分类讨论,分11x -<<,1x ≥和1x ≤-三类讨论其零点,其中1x ≤-可由1x ≥得出,主要是()()0f x f x --=的解都是成对出现的.【详解】(1)由()()3f f e -=得31131a a -+=---,解得3a =当1x <时,()3143311x f x x x +==+<-- 当1x ≥时,()3ln f x x =-单调递减,()()13f x f ≤= 所以()f x 的最⼤值为3(2)由(1)知()31,113ln ,1x x f x x x x +?=-??-≥?当11x -<<时,11x -<-< 由()()0f x f x --=得3131011x x x x +-+-=---,解得0x =,因为[)00,1∈,故可取0k = 当1x >时,1x -<-,由()()0f x f x --=得313ln 01x x x -+--=--,整理得4ln 01x x -=+设()()4ln 11g x x x x =-≥+,易知()g x 在[)1,+∞上单调递减⼜因为()()42ln 20,31ln 303g g =->=-<,所以()g x 在[)2,3上存在唯- -点,当⾮零实数0x 满⾜()()000f x f x --=时,0x -也满⾜()()000f x f x --=, 即原⽅程的⾮零实根总是成对出现,所以在[)3,2--上也仅有⼀个实根,故可取3k =-. 综上所述,k 的值可以为3,0,2-.【点睛】本题考查对数型复合函数的最值,考查函数的零点问题.通过零点存在定理可确定函数零点所在区间.对分段函数⼀般需要分类讨论.。

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省潍坊市高一(上)期中数学试卷一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .1808.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .49.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40二、填空题:本题共4小题,每小题5分,共20分.12.函数1()1f x x =+-的定义域为 . 13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= . 14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 .15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围.20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数.2019-2020学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共11小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1U =-,0,1,2},{1A =-,1},则集合(U A =ð ) A .{0,2}B .{1-,0}C .{0,1}D .{1,2}【解答】解:因为全集{1U =-,0,1,2},{1A =-,1}, 所以:{0U A =ð,2}, 故选:A .2.命题“(0,)x ∃∈+∞,13x x +…”的否定是( )A .(0,)x ∃∈+∞,13x x+…B .(0,)x ∃∈+∞,13x x+<C .(0,)x ∀∈+∞,13x x +< D .(0,)x ∀∈+∞,13x x+…【解答】解:命题“(0,)x ∃∈+∞,13x x+…”的否定是:否定限定量词和结论,故为:(0,)x ∀∈+∞,13x x+<, 故选:C .3.设x R ∈,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:由|3|1x -<,131x ∴-<-<,解得24x <<. 则由“24x <<” ⇒ “2x >”, 由“2x >”推不出“24x <<”,则“|3|1x -<”是“2x >”的充分不必要条件; 故选:A .4.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<【解答】解:()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,()f x ∴在(,0)-∞上单调递减,距对称轴越远,函数值越大, (1)(3)()f f f π-<-<,则c a b <<, 故选:D .5.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:)m 与时间t (单位:)s 之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米【解答】解:2() 4.914.717h t t t =-++, ∴烟花冲出后在爆裂的最佳时刻为14.71.52( 4.9)t =-=⨯-,此时2(1.5) 4.9 1.514.7 1.51728h =-⨯+⨯+≈, 故选:B .6.对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( )A .[2,6]B .[2,6){2}-C .(,2)[2-∞-,6)D .[2,6)【解答】解:对x R ∀∈,不等式221(4)(2)02m x m x m -+-+>+恒成立, ①当240m -=且20m +≠,即2m =时,104>对x R ∈恒成立, 2m ∴=满足题意;②当2m ≠且2m ≠-时,则有2240(2)4(2)0m m m ⎧->⎨=---<⎩,解得26m <<. 综合①②,可得26m <…,故实数m 的取值范围为[2,6), 故选:D .7.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( )A .120B .130C .150D .180【解答】解:本题的大意为:《毛诗》、《春秋》和《周易》共94本,3个人读《毛诗》一册,4个人读《春秋一册》,5个人读《周易》一册,问由多少个学生? 11194()345÷++479460=÷120=(人)故选:A .8.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <>;②若1a b +=,则14a b+的最小值是10; ③11()()4a b a b ++…;④函数11y a a =++的最小值为1. A .1 B .2 C .3 D .4【解答】解:已知a ,b 为正实数,①11a b a b<⇒>⇒>①正确; ②1414414()()14529b b a a b a b a b a a a b+=++=++++=…,所以②不正确; ③1122a a a a +=…,同理12b b +…,11()()4a b a b∴++…,所以③正确;④11111)11111y a a a a a =+=++--=+++…,当且仅当111a a +=+,即0a =时取等号,而0a >,所以1y >,不能取等号,所以 ④不正确. 故选:B .9.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x --剟的x 的取值范围是( ) A .[2-,2]B .[2-,1]C .[1-,3]D .[0,2]【解答】解:由奇函数()f x 在[0,)+∞是减函数,可知()f x 在(,0)-∞是减函数,从而可得,()f x 在R 上单调递减, 由(2)1f -=,可知f (2)1=-, f (2)1(1)1(2)f x f =--=-剟,212x ∴--剟,解可得,13x -剟,即解集为[1-,3] 故选:C .10.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( ) A .(3,1)--B.(11)(3,17)-+C .(2-,1)(2-⋃,3)D .(2,6)【解答】解:设函数22()5(9)2f x x a x a a =-++--,方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内, ∴函数22()5(9)2f x x a x a a =-++--的两个零点分别在区间(0,1)和(1,2)内,∴(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即2222026030a a a a a a ⎧-->⎪--<⎨⎪->⎩,解得:11a -<<-或31x <<+, 故选:B .11.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图象交点为1(x ,1)y ,2(x ,2)y ,⋯,8(x ,8)y ,则128128x x x y y y ++⋯++++⋯+的值为( )A .20B .24C .36D .40【解答】解:函数()f x 满足(2)(2)6f x f x -++=的对称中心为(2,3), 函数315()322x g x x x -==+--也关于(2,3)中心对称, 则若交点为1(x ,1)y 时,1(4x -,16)y -也为交点,若交点为2(x ,2)y 时,2(4x -,26)y -也为交点,⋯,所以128128112288()()()x x x y y y x y x y x y ++⋯++++⋯+=++++⋯++1111222288881[()(46)()(46)()(46)]402x y x y x y x y x y x y =++-+-+++-+-+⋯+++-+-=.故选:D .二、填空题:本题共4小题,每小题5分,共20分. 12.函数1()1f x x =+-的定义域为 [2-,1)(1⋃,)+∞ . 【解答】解:由题意得: 2010x x +⎧⎨-≠⎩…, 解得:2x -…且1x ≠,故函数的定义域是[2-,1)(1⋃,)+∞, 故答案为:[2-,1)(1⋃,)+∞.13.已知函数()f x 是定义域为R 的奇函数,当0x …时,()(1)f x x x =-,则(2)f -= 2 . 【解答】解:因为()f x 是定义在R 上的奇函数,且当0x …时,2()f x x x =-, 所以(2)f f -=-(2)(24)2=--=, 故答案为:2.14.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为 {|6x x <或1}2x > . 【解答】解:不等式20ax bx c ++>的解集为{|26}x x <<, 所以方程20ax bx c ++=的解为2和6,且0a <; 由根与系数的关系得, 26260b a c a a ⎧+=-⎪⎪⎪⨯=⎨⎪<⎪⎪⎩, 解得8b a =-,12c a =,且0a <;所以不等式20cx bx a ++<化为212810x x -+>, 解得16x <或12x >,所以所求不等式的解集为1{|6x x <或1}2x >. 故选:1{|6x x <或1}2x >. 15.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1x a ∀∈-,1]a +,都有[1y b ∈-,1]b +,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图象上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是 11[,]22- .【解答】解:(,)B m n 在函数212y x =-的图象上,∴212n m =-,[1x m ∴∀∈-,1]m +,都有2211[1,1]22y m m ∈---+,①10m +…,即1m -…时,212y x =-在[1m -,1]m +上单调递增,∴2211[(1),(1)]22y m m ∈---+,∴22221111[(1),(1)][1,1]2222m m m m ---+⊆---+,∴222211(1)12211(1)122m m m m ⎧----⎪⎪⎨⎪-+-+⎪⎩……,解得12m -…,又1m -…,∴这种情况不合题意; ②1010m m +>⎧⎨-<⎩,即11m -<<时,由[1x m ∈-,1]m +可得21[(1),0]2y m ∈--或21[(1),0]2y m ∈-+,∴222111[(1),0][1,1]222m m m --⊆---+且222111[(1),0][1,1]222m m m -+⊆---+,∴2222211(1)12211(1)1221102m m m m m ⎧----⎪⎪⎪-+--⎨⎪⎪-+⎪⎩………,解得1122m-剟, ③10m -…,即1m …时,212y x =-在[1m -,1]m +上单调递减,∴2211[(1),(1)]22y m m ∈-+--,∴22221111[(1),(1)][1,1]2222m m m m -+--⊆---+,∴222211(1)12211(1)122m m m m ⎧-+--⎪⎪⎨⎪---+⎪⎩……,解得12m …,又1m …,∴这种情况不合题意,综上得,m 的取值范围是11[,]22-.故答案为:11[,]22-.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.已知集合{|26}A x x =-剟,{|35}B x x =-剟. (1)求AB ,AB ;(2)若{|121}C x m x m =+-剟,()C A B ⊆,求实数m 的取值范围.【解答】解:(1)由已知可得{|25}AB x x =-剟,{|36}AB x x =-剟.(2)①若C =∅,则121m m +>-,2m ∴<; ②若C ≠∅,则12112215m m m m +-⎧⎪+-⎨⎪-⎩………,解得23m 剟, 综上可得3m …. 17.已知函数2()(0)1x af x a x -=>+,若不等式()1f x -…的解集为(,1)[0-∞-,)+∞.(1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数. 【解答】解:(1)由题意211x ax --+…, 变形2311011x a x a x x --++=++…, 这等价于(31)(1)0x a x -++…且10x +≠, 解得1x <-或13a x -…,所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取1x ,2[0x ∈,)+∞,且12x x <,则210x x ->, 那么212121*********()()()11(1)(1)x x x x f x f x x x x x ----=-=++++, 210x x ->,12(1)(1)0x x ++>, 21()()0f x f x ∴->,∴函数()f x 在[0,)+∞上是增函数.18.已知函数223,(02)()43,(2)x x f x x x x -+<⎧=⎨-+⎩……,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图象;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围.【解答】解:(1)由题意知()F x 定义域为R ,关于原点对称, 又()(||)(||)()F x f x f x F x -=-==, ()F x ∴在R 上是偶函数.函数()F x 的大致图象如下图:观察图象可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时, 即()F x 的图象与直线y t =图象有两个交点, 观察函数图象可得3t >或1t =-.19.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1a ∀∈-,1],()0f x …恒成立,求实数x 的取值范围. 【解答】解:(1)不等式2(1)0x a x a +--<等价于()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -; 当1a =-时,不等式的解集为∅; 当1a >-时,不等式的解集为(1,)a -. (2)22(1)(1)x a x a a x x x +--=-+++, 设g (a )2(1)a x x x =-+++,[1a ∈-,1],要使g (a )0…在[1a ∈-,1]上恒成立, 只需(1)0(1)0g g -⎧⎨⎩……,即22210,10,x x x ⎧++⎨-⎩……解得1x …或1x -…, 所以x 的取值范围为{|1x x -…或1}x ….20.第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2020年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+⎪⎩….经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2020年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2020年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少? 注:利润=销售额-成本【解答】解:(1)由题意2(10)1010104000R a =⨯+=,所以300a =, 当040x <<时,22()900(10300)26010600260W x x x x x x =-+-=-+-;当40x …时,22901945010000919010000()900260x x x x W x x x x-+-+-=--=,所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-⎪⎩….(2)当040x <<,2()10(30)8740W x x =--+ 当30x =时,()8740max W x =⋯当40x …,29190100001000010000()9190()9190x x W x x x x x x -+-==--+=-++, 因为0x >,所以10000200x x +=…,当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x -+=…, 所以()8990max W x =万元, 因为87408990<,所以2020年产量为100(千台)时,企业所获利润最大,最大利润是8990万元. 21.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图象与x 轴两交点间距离为4.(1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1x ∈-,2]. (Ⅰ)若()g x 为单调函数,求k 的取值范围;(Ⅱ)记()g x 的最小值为()h k ,讨论2(4)h t λ-=的零点个数. 【解答】解:(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12bx a=-=-①;(0)3f c ==-②; 设()0f x =的两个根为1x ,2x ,则12b x x a+=-,12c x x a=,12||4x x -===;③由①②③解得1a =,2b =,3c =-,2()23f x x x ∴=+-.(2)2()()(2)2I g x x k x =+++,其对称轴22k x +=-.由题意知:212k +--…或222k +-…, 0k ∴…或6k -….()II ①当0k …时,对称轴212k x +=--…,()g x 在[1-,2]上单调递增,()(1)1h k g k =-=-+, ②当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()()24k k k h k g +--+=-=, ③当6k -…时,对称轴222k x +=-…,()g x 在[1-,2]单调递减,()h k g =(2)210k =+,∴21,0,44(),604210,6k k k k h k k k k -+⎧⎪--+⎪=-<<⎨⎪+-⎪⎩……, 令244m t =--…,即()(4)h m m λ=-…,画出()h m 简图,)i 当1λ=时,()1h m =,4m =-或0,244t ∴-=-时,解得0t =,240t -=时,解得2t =±,有3个零点.)ii 当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =有2个零点. )iii 当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且2m ,3(4m ∈-,2)(2--⋃,0),240m +>,340m +>,224t m ∴-=时,解得t =,234t m -=时,解得t =有4个不同的零点.)iv 当2λ=时,()2h m =,224m t =-=-,∴t =2个零点.)v 当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

2019-2020学年山东省威海市文登区高一上学期期末考试数学试题

2019-2020学年山东省威海市文登区高一上学期期末考试数学试题

空气质量指数(AQI) (0, 50] (50,100] (100,150] (150, 200] (200, 250] (250, )
空气质量等级


轻度污染 中度污染 重度污染 严重污染
频数(天)
25
40
m
10
5
0
(Ⅰ)求 m , n 的值,并完成频率分布直方图;
(Ⅱ)由频率分布直方图,求该组数据的平均 数与中位数;
2
3 4
log2
6
(2
1
)
3 2
4
.
15.三国时代数学家赵爽在注释《周髀算经》时,用几何的方法讨 x
论一元二次方程 x2 px q 0 的解:将四个长为 x p ,宽
为 x 的矩形围成如图所示正方形,于是中间小正方形的面积 x p

,且大正方形的面积为
,从而得到一元二次
方程的根.(用 p,q 表示. 第一空 2 分,第二空 3 分)
的概率分别为 1 ,1,1 . 则某人从甲地到乙地至少遇到 2 次红灯的概率为 234
6
A.
24
7
B.
24
11
C.
24
17
D.
24
7.下列大小关系正确的是
1
A. 2.32
( 1)2.3
2 2.3
2
1
B. 2.32
22.3
( 1)2.3
2
高一数学 第 1页(共 4 页)
C. ( 1 )2.3
22.3
A.畜牧产品,种植业产品
B.渔业产品,畜牧产品
C.渔业产品,林业产品
D.畜牧产品,渔业产品
5.某班有男生 28 人,女生16 人,用分层抽样的方式从中抽取容量为 n 的样本,若男生抽取
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省淄博市部分学校高一上学期期末联考数学试题一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则U A =ð( ) A .∅ B .{}1,3C .{}2,4,5D .{}1,2,3,4,5【答案】C【解析】根据补集的定义可得结果. 【详解】因为全集{1,2,3,4,5}U =,{1,3}A =,所以根据补集的定义得{}2,4,5U A =ð,故选C. 【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.函数ln(1)y x =-的定义域为( )A .(,0)-∞B 。

(,1)-∞C 。

(0,)+∞D 。

(1,)+∞ 【答案】B【解析】由01>-x ,得1<x ∴选B3.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A .π3B .π6C .-π3D .-π6【答案】B【解析】由于是晚一个小时,所以是逆时针方向旋转,时针旋转过程中形成的角的弧度数为6π. 【详解】由题意小明需要把表调慢一个小时,所以时针逆时针旋转π6弧度. 故选B. 【点睛】本题考查了弧度数的方向与计算,属于基础题. 4.下列函数是在(0,1)为减函数的是( ) A .lg y x = B .2x y =C .cos y x =D .121=-y x 【答案】C【解析】根据对数函数、指数函数、余弦函数、反比例函数的单调性即可找出正确选项. 【详解】对数函数,底数大于1时,在0x >上增函数,不满足题意; 指数函数,底数大于1时,在0x >上增函数,不满足题意; 余弦函数,从最高点往下走,即[0,]x π∈上为减函数;反比例型函数,在1(,)2-∞与1(,)2+∞上分别为减函数,不满足题意; 故选:C. 【点睛】考查余弦函数,指数函数,正弦函数,以及正切函数的单调性,熟悉基本函数的图象性质是关键. 5.方程3log 280x x +-=的解所在区间是( ).A .(1,2)B .(2,3)C .(3,4)D .(5,6)【答案】C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案. 【详解】∵3()log 82f x x x =-+,∴3(1)log 18260f =-+=-<,3(2)log 2840f =-+<,3(3)log 38610f =-+=-<,3(4)log 40f =>,33(5)log 520,(6)log 640f f =+>=+>∴(3)(4)0f f ⋅<, ∵函数3()log 82f x x x =-+的图象是连续的, ∴函数()f x 的零点所在的区间是(3,4). 故选:C 【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.6.若点2cos ,2sin 66P ππ⎛⎫- ⎪⎝⎭在角α的终边上,则sin α=( )A.12B .12-C .3 D .3-【答案】B【解析】根据任意角的三角函数的定义及特殊角的三角函数值计算可得. 【详解】 解:2cos,2sin66P ππ⎛⎫- ⎪⎝⎭Q 22221212sin 22s 2sin2sin664co 4sin 2cos 2sin 6666παπππππ-⨯∴====-⎛⎫⎛⎫-++⎝- -⎪ ⎪⎭⎝⎭故选:B 【点睛】本题考查任意角的三角函数的定义,属于基础题. 7.已知3sin()35x π-=,则7cos()6x π+等于( ) A .35B .45 C .35-D .45-【答案】C【解析】由诱导公式化简后即可求值. 【详解】7πcos x 6⎛⎫+ ⎪⎝⎭=-π cos x 6⎛⎫+=- ⎪⎝⎭sin[26x ππ⎛⎫-+ ⎪⎝⎭]=π3sin x 35⎛⎫-=- ⎪⎝⎭故选:C . 【点睛】本题主要考查了三角函数诱导公式的应用,属于基础题.8.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2x y x =⋅的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①【答案】A【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到. 【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是;②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫ ⎪⎝⎭上的值为正数,在,2ππ⎛⎫⎪⎝⎭上的值为负数,故第三个图象满足; ③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足; ④2x y x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足, 故选:A . 【点睛】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.二、多选题9.下列命题是真命题的是( )A .若幂函数()a f x x =过点1,42⎛⎫ ⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x >D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥” 【答案】BD【解析】根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D . 【详解】解:对于A :若幂函数()af x x =过点1,42⎛⎫⎪⎝⎭,则142a骣琪=琪桫解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x =两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x =与12log y x =两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x>,当1x =时,1123log log x x=,当(1,)x ∈+∞时,1123log log x x<,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确;故选:BD 【点睛】本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题.10.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=【答案】ABD【解析】根据所给条件,利用同角三角函数的基本关系计算可得. 【详解】解:1sin cos 5θθ+=Q ① ()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭即221sin 2sin cos cos 25θθθθ++=242sin cos 25θθ∴=-(0,)θπ∈Qsin 0θ∴>,cos 0θ<,2πθπ⎛⎫∴∈ ⎪⎝⎭()249sin cos 12sin cos 25θθθθ∴-=-= 7sin cos 5θθ∴-=②①加②得4sin 5θ=①减②得3cos 5θ=- 4sin 45tan 3cos 35θθθ∴===--综上可得,正确的有ABD 故选:ABD 【点睛】本题考查同角三角函数的基本关系,属于基础题. 11.若0a b >>,则下列不等式成立的是( ) A .11a b< B .11b b a a +>+ C .11a b b a+>+ D .11a b a b+>+ 【答案】AC【解析】根据不等式的性质进行判断. 【详解】 解:0a b >>Q , 由反比例函数1y x=的性质可知,11a b∴<,故A 正确; b a <Q ,且11a b <,根据不等式的同向可加性知11a b b a+>+,即C 正确,对于D ,0a b >>Q ,且11a b <,无法确定1a a+与1b b +的大小关系,当2a =,12b =时,11a b a b +=+故D 错误: 0a b >>Q0ab ∴>,()10a a +>a ab b ab ∴+>+ ()()11a b b a ∴+>+11b ba a+∴>+,故B 错误; 综上可得,正确的有AC 故选:AC 【点睛】本题考查不等式的性质,属于基础题. 12.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z时,0()f x <≤【答案】CD【解析】求得()f x 的最小正周期为2π,画出()f x 在一个周期内的图象,通过图象可得对称轴、最小值和最大值,即可判断正确答案. 【详解】解:函数sin ,sin cos ()cos ,sin cos x x x f x x x x ⎧=⎨>⎩„的最小正周期为2π, 画出()f x 在一个周期内的图象, 可得当52244k x k ππππ++剟,k Z ∈时, ()cos f x x =,当592244k x k ππππ+<+„,k Z ∈时, ()sin f x x =,可得()f x 的对称轴方程为4x k ππ=+,k Z ∈,当2x k ππ=+或322x k ππ=+,k Z ∈时,()f x 取得最小值1-; 当且仅当22()2k x k k Z πππ<<+∈时,()0f x >,()f x的最大值为()42f π=0()2f x <„,综上可得,正确的有CD . 故选:CD .【点睛】本题考查三角函数的图象和性质,主要是正弦函数和余弦函数的图象和性质的运用,考查对称性、最值和周期性的判断,考查数形结合思想方法,属于中档题.三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________. 【答案】1;【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅Q222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.已知某扇形的半径为3,面积为3π2,那么该扇形的弧长为________. 【答案】π【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为l ,由扇形的面积12S lr =,可得3π1322l =⨯,解得πl =. 故答案为π. 【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15.已知0a >,且1a ≠,log 2a x =,则x a =________;22x x a a -+=_________. 【答案】2174【解析】(1)根据指对数的互化求解即可. (2)根据(1)中2x a =再求解22x x a a -+即可. 【详解】(1)由指对数的互化, log 22xa x a =⇒= (2) ()()2222221117224x xx xaa a a-=+=+=+故答案为:(1)2; (2)174【点睛】本题主要考查指对数的互化以及指数的基本运算等,属于基础题型.16.若两个正实数x ,y 1=26m m >-恒成立,则实数m 的取值范围是________. 【答案】(2,8)-.【解析】m 的不等式,解不等式即可. 【详解】 解:1=Q44⎛⎫=+=++816≥+= 当且仅当16x y =,即4y =且64x =时取等号.26m m >-Q 恒成立,则2166m m >-解得28m -<<即()2,8m ∈-故答案为:()2,8- 【点睛】本题考查基本不等式的应用,以及不等式恒成立的问题,属于中档题.四、解答题17.已知全集为R ,集合6|03x A x x -⎧⎫=∈>⎨⎬+⎩⎭R ,{}2|2(10)50B x x a x a =∈-++≤R .(1)若B A ⊆R ð,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是B A ⊆R ð的什么条件(充分必要性). ①[7,12)a ∈-;②(7,12]a ∈-;③(6,12]a ∈.【答案】(1)612a -≤≤(2)选择①,则结论是不充分不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是是充分不必要条件.【解析】(1)解出集合A ,根据补集的定义求出A R ð,由B A ⊆R ð,得到关于a 的不等式,解得;(2)由(1)知B A ⊆R ð的充要条件为[6,12]a ∈-,再根据集合的包含关系判断即可. 【详解】解:(1)集合6|0(3)(6,)3x A x x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭R , 所以[3,6]A =-R ð,集合{}2|2(10)50{|(2)(5)0}B x x a x a x x a x =∈-++≤=∈--≤R R , 若B A ⊆R ð,且5[3,6]A ∈=-R ð, 只需362a-≤≤,所以612a -≤≤.(2)由(1)可知B A ⊆R ð的充要条件是[6,12]a ∈-,选择①,[7,12)[6,12]-⊄-且[6,12][7,12)-⊄-,则结论是不充分不必要条件; 选择②,[6,12]- (7,12]-,则结论是必要不充分条件; 选择③,(6,12] [6,12]-,则结论是充分不必要条件. 【点睛】本题考查根据集合的包含关系求参数的取值范围,以及充分条件必要条件的判断,属于基础题.18.已知,,a b c ∈R ,二次函数2()f x ax bx c =++的图象经过点(0,1),且()0f x >的解集为11,32⎛⎫- ⎪⎝⎭. (1)求实数a ,b 的值;(2)若方程()7f x kx =+在(0,2)上有两个不相等的实数根,求实数k 的取值范围. 【答案】(1)6a =-,1b =(2)(14,11)--【解析】(1)根据一元二次不等式的解集和一元二次方程的关系计算可得.(2)由(1)知2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈分析可得.【详解】解:(1)因为()f x 的图象经过点(0,1),所以1c =, 所以2()1f x ax bx =++,2()10f x ax bx =++>的解集为11,32⎛⎫- ⎪⎝⎭,所以11()032f x a x x ⎛⎫⎛⎫=+-> ⎪⎪⎝⎭⎝⎭,且0a <,且1c =,得2()61f x x x =-++, 故6a =-,1b =(2)由2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈,所以必有(0)0(2)0102120g g k>⎧⎪>⎪⎪⎨-<<⎪⎪∆>⎪⎩, 即142311311k k k k >-⎧⎪-<<⎨⎪><-⎩或,解得1411k -<<-, 所以实数k 的取值范围是(14,11)-- 【点睛】本题考查一元二次方程,二次函数以及一元二次不等式的关系,二次函数的零点问题,属于中档题. 19.已知函数2()()4x bf x b x +=∈+R 为奇函数. (1)求b和log 22f f ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的值;(2)判断并用定义证明()f x 在(0,)+∞的单调性.【答案】(1)0b =,log 202f f ⎛⎫⎛-+= ⎪ ⎪⎝⎭⎝⎭(2)()f x 在(0,2)上单调递增,在(2,)+∞上单调递减,证明见解析【解析】(1)根据奇函数的性质,对x ∀∈R ,都有()() f x f x -=-,得到方程求出参数b的值,即可求出函数解析式,根据对数的性质可得log 22=得解. (2)利用定义法证明函数的单调性的一般步骤为:设元,作差,变形,判断符号,下结论. 【详解】解:(1)因为函数2()4x bf x x +=+为奇函数,所以对x ∀∈R ,都有()() f x f x -=-,即22()44x b x bx x -++=--++,解得0b =,所以2()4xf x x =+log 22f f ⎛⎫⎛⎫∴-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭f f ⎛=+⎝⎭⎝⎭0=.(2)()f x 在(0,2)上单调递增,在(2,)+∞上单调递减. 证明如下:12,(0,)x x ∀∈+∞,且12x x <,有()()1212221244x x f x f x x x -=-++ ()()()()22122122124444x x x x xx +-+=++()()()()21122212444x x x x x x --=++因为120x x <<,所以210x x ->,()()2212440x x ++>当2x >时,1240x x ->,()()()()211222124044x x x x xx -->++,()()120f x f x ->即()()12f x f x >,此时()f x 单调递减. 当02x <<时,1240x x -<,()()()()211222124044x x x x xx --<++,()()120f x f x -<即()()12f x f x <,此时()f x 单调递增.所以,()f x 在(0,2)上单调递增,在(2,)+∞上单调递减. 【点睛】本题考查根据奇偶性求函数的解析式,定义法证明函数的单调性,属于基础题.20.已知函数()2sin 124f x x ππ⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的最小正周期及其单调递减区间; (2)若1x ,2x 是函数()f x 的零点,用列举法表示()12cos2x x π+的值组成的集合.【答案】(1)最小正周期为4;单调递减区间是154,4()22k k k ⎡⎤++∈⎢⎥⎣⎦Z (2)22⎧⎪-⎨⎪⎪⎩⎭【解析】(1)根据正弦函数的最小正周期公式计算可得,根据正弦函数的单调性求出函数的单调区间.(2)首先求出函数的零点,得1x ,2x 是5|4,6A x x k k ⎧⎫==-∈⎨⎬⎩⎭Z 或11|4,6B x x k k ⎧⎫==+∈⎨⎬⎩⎭Z 中的元素,再分类讨论计算可得.【详解】解:(1)()f x 的最小正周期为:242T ππ==.对于函数()2sin 124f x x ππ⎛⎫=++ ⎪⎝⎭,当322()2242k x k k ππππππ+≤+≤+∈Z 时,()f x 单调递减, 解得1544()22k x k k +≤≤+∈Z , 所以函数()f x 的单调递减区间是154,4()22k k k ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为2sin 1024x ππ⎛⎫++=⎪⎝⎭,即1sin 242x ππ⎛⎫+=- ⎪⎝⎭,所以函数()f x 的零点满足:2246x k ππππ+=-或2()246x k k πππππ+=++∈Z即546x k =-或114()6x k k =+∈Z所以1x ,2x 是5|4,6A x x k k ⎧⎫==-∈⎨⎬⎩⎭Z 或11|4,6B x x k k ⎧⎫==+∈⎨⎬⎩⎭Z 中的元素 当12,x x A ∈时,()1252()26x x k k πππ+=-∈Z 则()1255coscos 2cos 266x x k ππππ+⎛⎫=-== ⎪⎝⎭当1x A ∈,2x B ∈(或1x B ∈,2x A ∈)时,()122()22x x k k πππ+=+∈Z则()12coscos 2cos 0222x x k ππππ+⎛⎫=+== ⎪⎝⎭当12,x x B ∈,()122()26x x k k πππ+=-∈Z ,则()12coscos 2cos 266x x k ππππ+⎛⎫=-== ⎪⎝⎭ 所以()12cos2x x π+的值的集合是⎧⎪⎨⎪⎪⎩⎭. 【点睛】本题考查正弦函数的性质,以及函数的零点,特殊角的三角函数值,属于中档题. 21.汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km 的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F (单位:L )与速度v (单位:km /h )(0120v ≤≤)的下列数据:为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:32()F v av bv cv =++,1()2vF v a ⎛⎫=+ ⎪⎝⎭,()log a F v k v b =+. (1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.(2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少? 【答案】(1)选择函数32()F v av bv cv =++,32117()(0120)3840024024F v v v v v =-+≤≤(2)这辆车在该测试路段上以80km /h 的速度行驶时总耗油量最少【解析】(1)根据表中数据分析可知,所选模型必须满足定义域为[0,120],且在[0,120]上为增函数,故选32()F v av bv cv =++,在代入数据计算可得.(2)设这辆车在该测试路段的总耗油量为y ,行驶时间为t ,由题意得:y F t =⋅,根据二次函数的性质求出最值. 【详解】解:(1)由题意可知,符合本题的函数模型必须满足定义域为[0,120],且在[0,120]上为增函数;函数1()2vF v a ⎛⎫=+ ⎪⎝⎭在[0,120]是减函数,所以不符合题意;而函数()log a F v k v b =+的v 0≠,即定义域不可能为[0,120],也不符合题意; 所以选择函数32()F v av bv cv =++.由已知数据得:()()()22220404040365606060880808010a b c a b c a b c ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解得:1384001240724a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩所以,32117()(0120)3840024024F v v v v v =-+≤≤(2)设这辆车在该测试路段的总耗油量为y ,行驶时间为t ,由题意得:y F t =⋅321172403840024024v v v v ⎛⎫=-+⋅ ⎪⎝⎭2170160v v =-+ 21(80)30160v =-+ 因为0120v ≤≤,所以,当80v =时,y 有最小值30.所以,这辆车在该测试路段上以80km /h 的速度行驶时总耗油量最少,最少为30L . 【点睛】本题考查给定函数模型解决问题,利用待定系数法求函数解析式以及二次函数的性质,属于中档题.22.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 【答案】(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根,所以00322x x =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =- 设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =, 所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+= 【点睛】本题考查函数方程思想,函数的零点问题,属于难题.。

相关文档
最新文档