【冲刺卷】初一数学下期末试题(含答案)
冲刺【北京西城版】初一(七年级)下册数学期末试卷及答案精品

北京西城初一(七年级)下册数学期末试卷一.选择题(本题共30分,每题3分)下面各题均有四个选项,其中只有一个符合题意1.计算 23()a 的结果是( ) 6.A a 5.B a .5C a .D a2.已知a b <,下列不等式变形正确的是( ).22A a b ->- .22a b B > .22C a b ->- .3131D a b +>+3.下列长度的三条线段能组成三角形的是( ).2,3,6A .4,4,8B .5,9,14C .6,12,13D4.已知一个多边形的内角和是它外角和的3倍,则这个多边形是( )A.六边形B.七边形C.八边形D.九边形5.如果点(4,)P a a -在y 轴上,则点P 的坐标是( )(4,0)A .(0,4)B .(4,0)C - .(0,4)D - 6.下列格式中,从左向右的变形是因式分解的是( )2.2(2)Aa ab a a a b ++=+ 2.1025(10)25B a a a a ++=++222.()C ax ay a x y +=+ 22.4(2)(2)D a b a b a b -=+-7.下列命题中,是真命题的是( )①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①②B.①③C.②③D.③④8.如图,在△ABC 中,将△ABC 沿射线BC 方向移动,使点B 移动到点C ,得到△DCF ,连接AF,若△ABC 的面积为4,则△ACF 的面积为( )A. 2B. 4C. 8D. 169.在平面直角坐标系中,定义两种新的变换:对于平面内任一点(,)P m n ,规定: F D CB A①(,)(,)f m n m n =-,例如:(2,1)(2,1);f =-②(,)(,)g m n m n =-,例如:(2,1)(2,1)g =-.按照以上变换有:[](3,4)(3,4)(3,4),g f g -=--=-那么[](5,2)f g 等于( ).(5,2)A -- .(5,2)B - .(5,2)C - .(5,2)D10.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( )1.1ax A bx >⎧⎨>⎩ 1.1ax B bx >⎧⎨<⎩ 1.1ax C bx <⎧⎨>⎩ 1.1ax D bx <⎧⎨<⎩二.细心填一填(本题共20分,第11 14题,每小题3分,第15 18题,每小题2分)11.分解因式:2242ax ax a -+= . 12.关于x 的方程5336x x m =+-的解是负数,则m 的取值范围是 .13.将一副直角三角尺如图放置,已知AB ∥DE ,则∠AFC= 度.14.抽取某校学生的一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图所示,已知该校有学生1500名,则可以估计出该校身高位于160 cm 至165cm 之间大约有 人.15.若3,1,a b ab +==则22a b += . 16.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是格点.若格点(2,1)P m m -+在第二象限,则m 的值为 .17.点O 在直线AB 上,35AOC ∠=︒,射线,OD OC BOD ⊥∠的度数是 度.18.如图,一张长为20cm ,宽为5cm 的长方形纸片ABCD ,分别在边AB 、CD 上取点M 、N ,沿MN 折叠纸片,BM 与DN 交于点K ,得到△MNK.则△MNK 的面积的最小值是cm 2.三.解答题(本题共25分,第19 21题,每小题6分,第22小题7分)19.解不等式组20.先化简,再求值:231(1)(2)(2)63,.2x x x x x x +++--÷=其中21.已知:如图,四边形ABCD 中,AD ∥BC ,AC 为对角线,点E 在BC 边上,点F 在AB 边上,且∠1=∠2.(1)求证:EF ∥AC(2)若CA 平分∠BCD ,∠B=50︒,∠D=120︒,求∠BFE 的度数.22.在平面直角坐标系中,A 、B 、C 三点的坐标分别为(-6,7)、(-3,0)、(0,3)(1)画出△ABC ,并求出它的面积;523(2)12123x x x x +<+⎧⎪--⎨≤⎪⎩ A F ED C B(2)在△ABC 中,点C 经过平移后的对应点(5,4)C ',将△ABC 作同样的平移得到A B C '''∆,画出平移后的A B C '''∆,并写出A B ''、的坐标; (3)点-3P(,m)为△ABC 内一点,将点P 向右平移4个单位后,再向下平移6个单位得到点(,3)Q n -,则m= ,n= .四.解答题(本题共13分,第23题7分,第24题6分)23.列方程组或不等式组解应用题:某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?24.图①、图②反映是杭州银泰商场今年1-5月份的商品销售额统计情况.观察图①和图②,解答下面问题:(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由上两图获得的信息;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?五.解答题(本题共12分,每小题6分)25.阅读下列材料:小明同学遇到如下问题:解方程他发现如果直接用代入消元法或加减消元法求解,运算量比容易出错.如果把方程组中的23x y +看作一个数,把较大,也23x y -看作一个数,通过换元,可以解决问题.以下是他的解题过程:令23,23.m x y n x y =+=-这时方程组化为把60,23,23.24.m m x y n x y n =⎧=+=-⎨=-⎩代入得2360,9,2324.14.x y x x y y +==⎧⎧⎨⎨-=-=⎩⎩解得请你参考小明同学的做法,解决下面的问题:(1)解方程组(2)若方程组23237,4323238.32x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩7,60,4324.8.32m n m m n n ⎧+=⎪=⎧⎪⎨⎨=-⎩⎪+=⎪⎩解得3,610 1.610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩11111122222251,,3,63.. 2.51.63a x b y c a x b y c x a x b y c y a x b y c ⎧+=⎪+==⎧⎧⎪⎨⎨⎨+==⎩⎩⎪+=⎪⎩解得求方程组的解26.在Rt △ABC 中,∠ACB=90°,∠ABC=45°,点E 在线段BC 上,射线ED ⊥AB 于点D.(1)如图,点F 在线段DEA 上,过点F 作MN ∥BC ,分别交AB 、AC 于点M 、N ,点G 在线段AF 上,且∠GFN=∠GNF,∠GDF=∠GFD.①试判断线段DG 与NG 有怎样的位置关系,直接写出你的结论;②求证:∠1=∠2;(2)如图2,点F 在线段ED 的延长线上,过F 作FN ∥BC,分别交AB 、AC 于点M 、N ,点G 在线段AF 上,且∠GFN=∠GNF,∠GDF=∠GFD.探究线段DG 与NG 的位置关系,并说明理由. 图121E GFNM D CB AB 图2 D G F M N EC A。
【冲刺卷】七年级数学下期末模拟试卷(及答案)

【冲刺卷】七年级数学下期末模拟试卷(及答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-13.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤54.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块B.8块,24块C.20块,12块D.12块,20块5.计算2535-+)A.-1B.1C.525-D.2556.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限7.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩8.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.59.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.810.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3 C .1≤x ﹤3 D .1﹤x ≤311.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)二、填空题13.若264a =,则3a =______.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.64的立方根是_______.16.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)17.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.18.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________; 19.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 20.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.如图,12180∠+∠=︒,B DEF ∠=∠,55BAC ∠=︒,求DEC ∠的度数.23.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.24.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?25.已知AB CD ∥,CE 平分ACD ∠,交AB 于点E ,128∠=︒,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个, 故选C .【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m n m n -=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.3.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可.【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x ,y . 则, 解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D .5.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.6.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.8.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.9.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.10.D解析:D【解析】【分析】【详解】解:1212x x +>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3, 所以解集为:1<x≤3;故选D .11.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.12.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.3a2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.16.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b∴﹣4a<﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都解析:<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.17.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m、n的方程,求出m、n的值,再代入m-n进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.18.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.19.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.55︒【解析】【分析】只要证明AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:∵1180CDF ∠+∠=︒,12180∠+∠=︒,∴2CDF ∠=∠,∴//EF BC ,∴DEF CDE ∠=∠,∵B DEF ∠=∠,∴B CDE ∠=∠,∴//DE AB ,∴55DEC BAC ∠=∠=︒.【点睛】此题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.23.(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【解析】【分析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)分两种情况:①点P 在A 、M 两点之间,②点P 在B 、O 两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出结论.【详解】解:(1)∠CPD =∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.24.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x辆,中型车有y辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x和y的二元一次方程组,解之即可.【详解】解:设小型车有x辆,中型车有y辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.25.124A ∠=︒.【解析】【分析】首先根据角平分线的性质可得∠ACE=∠DCE ,再根据平行线的性质可得∠AEC=∠ECD ,∠A+∠ACD=180°,进而得到∠A 的度数.【详解】解:∵CE 平分∠ACD 交AB 于E ,∴∠ACD=2∠DCE ,∵AB ∥CD ,128∠=︒∴∠ECD=128∠=︒,∴∠ACD=56°,∵AB ∥CD ,∴180********A ACD ∠=︒-∠=︒-︒=︒.【点睛】此题考查平行线的性质,解题关键是掌握平行线的性质定理.。
【冲刺卷】初一数学下期末模拟试卷(含答案)

9.A
解析:A
【解析】
试题分析:先把 a、b 当作已知条件求出不等式组的解集,再与已知解集相比较即可求出 a、b 的值.
解:
xa2 2x b 1
0① 0②
,由①得,x>2﹣a,由②得,x<
1 b 2
,
故不等式组的解集为;2﹣a<x< 1 b , 2
∵原不等式组的解集为 0<x<1,
∴2﹣a=0, 1 b =1,解得 a=2,b=1. 2
【解析】 【分析】 先过点 B 作 BF∥CD,由 CD∥AE,可得 CD∥BF∥AE,继而证得∠1+∠BCD=180°,
∠2+∠BAE=180°,又由 BA 垂直于地面 AE 于 A,∠BCD=120°,求得答案. 【详解】 如图,过点 B 作 BF∥CD,
(a 8)2 c 4 0 ,P 点从 A 点出发沿 x 轴正方向以每秒 2 个单位长度的速度匀速移动,
Q 点从 O 点出发沿 y 轴负方向以每秒 1 个单位长度的速度匀速移动.
(1)直接写出点 B 的坐标,AO 和 BC 位置关系是;
(2)当 P、Q 分别是线段 AO,OC 上时,连接 PB,QB,使 SPAB 2SQBC ,求出点 P 的坐 标;
A.a=2,b=1
B.a=2,b=3
C.a=-2,b=3 D.a=-2,b=1
10.如图,如果 AB∥CD,那么下面说法错误的是( )
A.∠3=∠7
B.∠2=∠6
C.∠3+∠4+∠5+∠6=180° D.∠4=∠8
11.如图,已知两直线 l1 与 l2 被第三条直线 l3 所截,下列等式一定成立的是( )
(3)在 P、Q 的运动过程中,当∠CBQ=30°时,请探究∠OPQ 和∠PQB 的数量关系,并
京课改版七年级下册数学期末冲刺试题(有答案)

京课改新版七年级下册数学期末冲刺试题一.选择题(共8小题,满分16分,每小题2分)1.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.9的平方根是()A.3B.C.±3D.3.不等式组的解集在数轴上的表示是()A.B.C.D.4.已知a>b,则在下列结论中,错误的是()A.a+1>b+1B.﹣a<﹣b C.a﹣2>b﹣2D.1﹣3a>1﹣3b 5.把方程4x﹣y=3改写成用含x的式子表示y的形式,正确的是()A.y=4x﹣3B.y=4x+3C.x=D.x=6.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生近视情况的调查B.对我市市民国庆出游情况的调查C.对全国人民掌握新冠防疫知识情况的调查D.对我国自行研制的大型飞机C919各零部件质量情况的调查7.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°8.如图,已知三角形ABC如图所示放置在平面直角坐标系中,其中C(﹣4,4).则三角形ABC的面积是()A.4B.6C.12D.24二.填空题(共8小题,满分16分,每小题2分)9.“a与2的和是非负数”用不等式表示为.10.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.11.已知x=﹣2,y=1是方程mx+2y=6的一个解,则m的值为.12.请你写出一个比3大且比4小的无理数,该无理数可以是:.13.如图,要把河中的水引到农田P处,想要挖的水渠最短,我们可以过点P作PQ垂直河边l,垂足为点Q,然后沿PQ开挖水渠,其依据是.14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.15.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出十二,盈八;人出十,不足六,问人数、物价各几何?译文:今有人合伙购物,每人出12钱,会多8钱;每人出10钱,又会差6钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.16.对于整数a,b,c,d,符号表示运算ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.三.解答题(共12小题,满分68分)17.计算:﹣22+﹣﹣|﹣2|.18.已知2(x﹣2)2=8,求x的值.19.解不等式:+<1,并把它的解集在数轴上表示出来.20.解下面一元一次不等式组,并写出它的所有非负整数解..21.解方程组:.22.解方程组:(1);(2).23.已知关于x、y的方程组的解满足x+y=5,求:m2021+2的值.24.在所给网格图(每个小格均为边长是1的正方形)中完成下列各题:(1)作出△ABC向右平移4格,向下3格后所得的△A1B1C1;(2)连接AA1,BB1,判断AA1与BB1的关系,并求四边形AA1B1B的面积.25.某中学为了提高学生的综合素质,成立了以下社团:A(机器人),B(围棋),C(羽毛球),D(电影配音),每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图(如图).根据上述信息,解答下列问题:(1)这次一共调查了多少人?(2)求“A”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.26.本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地起步价(元)超过1千克的部分(元/千克)上海a b北京a+3b+4实际收费目的地质量费用(元)上海29北京322求a,b的值.27.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).28.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.解:点P(﹣3,2)在第二象限,故选:B.2.解:9的平方根是±3.故选:C.3.解:由3x﹣2>1得x>1,由x﹣5<﹣3得x<2,所以1<x<2.故选:C.4.解:A.∵a>b,∴a+1>b+1,故本选项不符合题意;B.∵a>b,∴﹣a<﹣b,故本选项不符合题意;C.∵a>b,∴a﹣2>b﹣2,故本选项不符合题意;D.∵a>b,∴﹣3a<﹣3b,∴1﹣3a<1﹣3b,故本选项符合题意;故选:D.5.解:4x﹣y=3,y=4x﹣3.故选:A.6.解:A、对我市中学生近视情况的调查,人数众多,应采用抽样调查,故此选项不合题意;B、对我市市民国庆出游情况的调查,人数众多,应采用抽样调查,故此选项不合题意;C、对全国人民掌握新冠防疫知识情况的调查,人数众多,应采用抽样调查,故此选项不合题意;D、对我国自行研制的大型飞机C919各零部件质量情况的调查,意义重大,应采用全面调查,故此选项符合题意;故选:D.7.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.8.解:由图象可知,A(﹣2,0),B(4,0),∴AB=2+4=6,∵C(﹣4,4),==12,∴S△ABC故选:C.二.填空题(共8小题,满分16分,每小题2分)9.解:“a与2的和是非负数”用不等式表示为a+2≥0,故答案为:a+2≥0.10.解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).11.解:把x=﹣2,y=1代入方程得:﹣2m+2=6,移项合并得:﹣2m=4,解得:m=﹣2,故答案为:﹣2.12.解:∵32=9,42=16,∴大于3且小于4的无理数的平方可以是14,∴该无理数可以是.故答案为:(答案不唯一).13.解:要把河中的水引到农田P处,想要挖的水渠最短,我们可以过点P作PQ垂直河边l,垂足为点Q,然后沿PQ开挖水渠,这样做依据的几何学原理是垂线段最短,故答案为:垂线段最短.14.解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.15.解:依题意,得:.故答案为:.16.解:由题意得,1<1×5﹣xy<3,即1<5﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=3,∴x=±1时,y=±3;x=±3时,y=±1;∴x+y=1+3=4或x+y=﹣1﹣3=﹣4,故答案为±4.三.解答题(共12小题,满分68分)17.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.18.解:2(x﹣2)2=8,(x﹣2)2=4,,x﹣2=±2,x﹣2=2或x﹣2=﹣2,解得x=4或x=0.19.解:去分母得:x﹣4+4x﹣2<4,移项合并得:5x<10,解得:x<2..20.解:,解不等式①得x>﹣1;解不等式②得x≤2;∴原不等式组的解集为﹣1<x≤2,∴原不等式组的所有非负整数解为0,1,2.21.解:,①×3+②,得7x=14,解得x=2,把x=2代入①,得2﹣y=3,解得y=﹣1.故方程组的解为.22.解:(1),将②代入①,得:3(y+3)+2y=14,解得:y=1,将y=1代入②,得:x=4,则方程组的解为;(2)原方程组整理为,①×4﹣②×3,得:7x=42,解得:x=6,将x=6代入①,得:24﹣3y=12,解得:y=4,则方程组的解为.23.解:,①﹣②,得x+y=4﹣m,∵关于x、y的方程组的解满足x+y=5,∴4﹣m=5,解得m=﹣1.∴m2021+2=(﹣1)2021+2=﹣1+2=1.24.解:(1)如图△A1B1C1即为所求.(2)AA1∥BB1,四边形AA1B1B的面积=7×5﹣2××3×4﹣2××2×3=17.25.解:(1)30÷30%=100(人),答:本次一共调查100人;(2)360°×10%=36°,答:“A”在扇形统计图中所占圆心角的度数为36°;(3)“A类”人数:100×10%=10(人),“D类”人数:100﹣10﹣30﹣40=20(人),补全条形统计图如图所示.26.解:依题意,得:,解得:.答:a的值为7,b的值为2.27.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.28.解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BC,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.。
七年级下期末数学冲刺试卷(五)(有答案)(浙教版)

七年级(下)期末数学冲刺试卷(五)一、选择题1.计算a•a﹣1的结果为()A.﹣1 B.0 C.1 D.﹣a2.下列运算正确的是()A.x2•x3=x6B.(x2)3=x6C.x3+x2=x5D.x+x2=x33.计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b24.分式方程=1的解为()A.1 B.2 C.D.05.下列等式成立的是()A. +=B.=C.=D.=﹣6.下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2D.(a+2)(a﹣2)=a2﹣47.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.19.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.210.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2二、填空题11.计算﹣3a2×a3的结果为.12.分解因式:3x2﹣27=.13.把多项式9a3﹣ab2分解因式的结果是.14.因式分解:9bx2y﹣by3=.15.利用加减消元法解方程组,要消去x,可以将①×+②×.16.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.18.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD上的数是12,则AD上的数是.三、解答题19.解方程组(1)(2).20.化简:(1)+.(2)•.21.先简化,再求值:﹣,其中a=﹣1.22.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.23.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?24.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?七年级(下)期末数学冲刺试卷(五)参考答案与试题解析一、选择题1.计算a•a﹣1的结果为()A.﹣1 B.0 C.1 D.﹣a【考点】分式的乘除法;负整数指数幂.【分析】利用同底数幂的乘法,零指数幂的计算法则计算即可得到结果.【解答】解:a•a﹣1=a0=1.故选:C.2.下列运算正确的是()A.x2•x3=x6B.(x2)3=x6C.x3+x2=x5D.x+x2=x3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法、同类项和幂的乘方判定即可.【解答】解:A、x2•x3=x5,错误;B、(x2)3=x6,正确;C、x3与x2不是同类项,不能合并,错误;D、x与x2不是同类项,不能合并,错误;故选B3.计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b2【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(ab2)3,=a3(b2)3,=a 3b 6故选C .4.分式方程=1的解为( )A .1B .2C .D .0【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x ﹣2,解得:x=1,经检验x=1是分式方程的解.故选A .5.下列等式成立的是( )A . +=B . =C . =D . =﹣【考点】分式的混合运算.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A 、原式=,错误;B 、原式不能约分,错误;C 、原式==,正确;D 、原式==﹣,错误, 故选C6.下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2D.(a+2)(a﹣2)=a2﹣4【考点】完全平方公式;合并同类项;去括号与添括号;平方差公式.【分析】根据合并同类项,去括号与添括号的法则,完全平方公式公式,平方差公式,进行解答.【解答】解:A、4a﹣a=3a,故本选项错误;B、应为2(2a﹣b)=4a﹣2b,故本选项错误;C、应为(a+b)2=a2+2ab+b2,故本选项错误;D、(a+2)(a﹣2)=a2﹣4,正确.故选:D.7.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【考点】二元一次方程的应用.【分析】根据题意设5人一组的有x个,6人一组的有y个,利用把班级里40名学生分成若干小组,进而得出等式求出即可.【解答】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.9.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.2【考点】多项式乘多项式.【分析】依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.10.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.二、填空题11.计算﹣3a2×a3的结果为﹣3a5.【考点】单项式乘单项式.【专题】计算题;整式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=﹣3a5,故答案为:﹣3a512.分解因式:3x2﹣27=3(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).故答案为:3(x+3)(x﹣3).13.把多项式9a3﹣ab2分解因式的结果是a(3a+b)(3a﹣b).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式9a,进而利用平方差公式法分解因式得出即可.【解答】解:9a3﹣ab2=a(9a2﹣b2)=a(3a+b)(3a﹣b).故答案为:a(3a+b)(3a﹣b).14.因式分解:9bx2y﹣by3=by(3x+y)(3x﹣y).【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法,可得平方差公式,根据平方差公式,可得答案.【解答】解:原式=by(9x2﹣y2)=by(3x+y)(3x﹣y),故答案为:by(3x+y)(3x﹣y).15.利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】利用加减消元法变形即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2故答案为:(﹣5);216.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为a=3,b=1.【考点】同类项.【分析】依据同类项的定义列出关于a、b的方程组,从而可求得a、b的值.【解答】解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴a﹣b=2,a+b=4.解得a=3,b=1.故答案为:a=3,b=1.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,,故答案为:.18.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD上的数是12,则AD上的数是8.【考点】一元一次方程的应用.【分析】根据题意首先设A端点数为x,B点为y,则C点为:7﹣y,D点为:z,得出x+y=3①,C点为:7﹣y,z+7﹣y=12,而得出x+z的值.【解答】解:设A端点数为x,B点为y,则C点为:7﹣y,D点为:z,根据题意可得:x+y=3①,C点为:7﹣y,故z+7﹣y=12②,故①+②得:x+y+z+7﹣y=12+3,故x+z=8,即AD上的数是:8.故答案为:8.三、解答题19.解方程组(1)(2).【考点】解二元一次方程组.【分析】(1)由②得x=7﹣3y③,再把③代入①可得关于y的方程,解出y的值,进而可得x的值,从而可得方程组的解;(2)①+②可消去y,进而可得x的值,再把x的值代入①kedey的值,从而可得方程组的解.【解答】(1)解法1:由②得x=7﹣3y③,③代入①,得3(7﹣3y)﹣2y=﹣1.解得y=2.把y=2代入③,得x=7﹣3y=1.所以方程组的解是;解法2:①×3+②×2,得:11 x=11,∴x=1.把x=1代入②,得1+3y=7,∴y=2.所以方程组的解是;(2),①+②得3x=3,解得x=1,代入①得2+y=4,所以y=2,因此方程组的解是.20.化简:(1)+.(2)•.【考点】分式的混合运算.【分析】(1)首先对第一个分式进行化简,然后利用同分母的分式的加法法则即可求解;(2)把第二个分式的分母进行分解因式,然后进行约分即可.【解答】解:(1)原式=+=+=1.(2)原式=•=.21.先简化,再求值:﹣,其中a=﹣1.【考点】二次根式的化简求值.【分析】先对题目中的式子化简,再将a的值代入即可解答本题.【解答】解:===,当a=时,原式==.22.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.23.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【考点】二元一次方程组的应用.【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.24.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?【考点】二元一次方程组的应用.【分析】(1)设出租车的起步价是x元,超过1.5千米后每千米收费y元.根据他们的对话列出方程组并解答;(2)5.5千米分两段收费:1.5千米、(5.5﹣1.5)千米.根据(1)中的单价进行计算.【解答】解:(1)设出租车的起步价是x元,超过1.5千米后每千米收费y元.依题意得,,解得.答:出租车的起步价是元,超过1.5千米后每千米收费2元;(2)+(5.5﹣1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费12.5元.。
【冲刺卷】七年级数学下期末试题(含答案)

【冲刺卷】七年级数学下期末试题(含答案)一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=03.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .24.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =15.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-4 6.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°7.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°8.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行9.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-10.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②11.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6C .4D .2 12.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩二、填空题 13.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________. 16.3的平方根是_________.17.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.18.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 19.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.20.已知方程1(2)(3)5m n m x n y --+-=是二元一次方程,则mn =_________;三、解答题21.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?22.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.23.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件) 质量(吨/件)A 型商品 0.8 0.5B 型商品 21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?24.某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.()1求甲、乙商品每件各多少元?()2本次计划采购甲、乙商品共30件,计划资金不超过460元,①最多可采购甲商品多少件?②若要求购买乙商品的数量不超过甲商品数量的45,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.25.如图,已知在ABC ∆中,FGEB ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB (已知),∴_________=_____________(____________________).∵23∠∠=(已知),∴_________=_____________(____________________).∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.4.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.5.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.7.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.8.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.9.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.10.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.11.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.B解析:B【解析】根据题意,易得B.二、填空题13.(10)【解析】【分析】根据点的坐标求出四边形ABCD 的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A (11)B (-11)C (-1-2)D (1-2)∴AB=1-(-1)=2B解析:(1,0)【解析】【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA 上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】732的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】479∴27<3,∵a7,a为正整数,∴a的最小值为3,313238∴132<2,∵b32,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.16.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:17.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822x <≤【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x >8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.18.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键19.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P 到l 的距离是垂线段PB 的长度5cm 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.20.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.三、解答题21.(1)6万元、4万元 (2)甲、乙型机器人各4台【解析】【分析】(1)设甲型机器人每台的价格是x 万元,乙型机器人每台的价格是y 万元,根据“购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买a 台甲型机器人,则购买(8-a )台乙型机器人,根据总价=单价×数量结合总费用不超过41万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 为整数可得出共有几种方案,逐一计算出每一种方案的每小时的分拣量,通过比较即可找出使得每小时的分拣量最大的购买方案.【详解】解:(1) 设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意的: 22324x y x y =+⎧⎨+=⎩解得:64x y =⎧⎨=⎩答:甲、乙两种型号的机器人每台价格分别是6万元、4万元:(2)设该公可购买甲型机器人a 台,乙型机器人()8a -台,根据题意得:()64841a a +-≤ 解得: 4.5a ≤ a 为正整数∴a=1或2或3或4当1a =,87a -=时.每小时分拣量为:12001100078200⨯+⨯=(件);当2a =,86a -=时.每小时分拣量为:12002100068400⨯+⨯=(件);当3a =,85a -=时.每小时分拣量为:12003100058600⨯+⨯=(件);当4a =,84a -=时.每小时分拣量为:12004100048800⨯+⨯=(件);∴该公司购买甲、乙型机器人各4台,能使得每小时的分拣量最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩, 解得:4520x y =⎧⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得: 30804520(30)2400z z z z ++⎧⎨++⎩, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1)甲商品每件17元,乙商品每件12元;(2)①最多可采购甲商品20件;②购买方案有四种,方案一:甲商品20件,乙商品10件,此时花费为:20×17+10×12=460(元); 方案二:甲商品19件,乙商品11件,此时花费为:19×17+11×12=455(元); 方案三:甲商品18件,乙商品12件,此时花费为:18×17+12×12=450(元); 方案四:甲商品17件,乙商品13件,此时花费为:17×17+13×12=445(元). 即购买甲商品17件,乙商品13件时花费最少,最少要用445元.【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以解答本题.【详解】解:(1)设甲商品每件x 元,乙商品每件y 元,10153501510375x y x y +=⎧⎨+=⎩, 解得,1712x y =⎧⎨=⎩, 即甲商品每件17元,乙商品每件12元;(2)①设采购甲商品m 件,17m+12(30-m )≤460,解得,m≤20,即最多可采购甲商品20件;②由题意可得,204305m m m ≤⎧⎪⎨-≤⎪⎩, 解得,216203m ≤≤, ∴购买方案有四种,方案一:甲商品20件,乙商品10件,此时花费为:20×17+10×12=460(元), 方案二:甲商品19件,乙商品11件,此时花费为:19×17+11×12=455(元), 方案三:甲商品18件,乙商品12件,此时花费为:18×17+12×12=450(元), 方案四:甲商品17件,乙商品13件,此时花费为:17×17+13×12=445(元). 即购买甲商品17件,乙商品13件时花费最少,最少要用445元.【点睛】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.25.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.。
【冲刺卷】七年级数学下期末试题(及答案)

【冲刺卷】七年级数学下期末试题(及答案)一、选择题1.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤52.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 3.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5 5.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.86.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .7.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3C .1≤x ﹤3D .1﹤x ≤3 8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 9.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .10.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <6 11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.15.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.16.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.17.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.18.如图,在数轴上点A 表示的实数是_____________.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量.①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)23.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?24.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 25.解不等式组533(2)1233x x x x ->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.3.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】36是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.6.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.8.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】 解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②, 解不等式①得:x <2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.10.B解析:B【解析】【分析】 3【详解】∵4+33132,∴3<m <4,故选B .【点睛】此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.C解析:C【解析】试题解析:∵4195,∴319<4,∴这两个连续整数是3和4,故选C.二、填空题13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+ 2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.15.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B 的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B 的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.16.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.17.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA 平分∠COE ,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.18.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA 为半径所以OA=即A 表示的实数是【详解】由题意得OA=∵点A 在原点的左边∴点A 表示的实数是-故答案为-【点睛】本题考查了勾股定理解析:【解析】【分析】如图在直角三角形中的斜边长为22125+=,因为斜边长即为半径长,且OA 为半径,所以OA =5,即A 表示的实数是5.【详解】由题意得,OA =22125+=,∵点A 在原点的左边,∴点A 表示的实数是-5.故答案为-5.【点睛】本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA 的长是解答本题的关键.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E ∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DE F∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×60400=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)y =30035x -,(2)①至少购进A 种40本,②30. 【解析】【分析】(1)根据A 种的费用+B 种的费用=1200元,可求y 关于x 的函数表达式;(2)①根据购进A 种的数量不少于B 种的数量,列出不等式,可求解;②设B 种的数量m 本,C 种的数量n 本,根据题意找出m ,n 的关系式,再根据调换后C 种的数量多于B 种的数量,列出不等式,可求解.【详解】解:(1)∵12x +20y =1200,∴y =30035x -, (2)①∵购进A 种的数量不少于B 种的数量,∴x ≥y ,∴x ≥30035x -, ∴x ≥752, ∵x ,y 为正整数,∴至少购进A 种40本,②设A 种的数量为x 本,B 种的数量y 本,C 种的数量c 本,根据题意得:12x +20y +8c =1200∴y =300235c x -- ∵C 种的数量多于B 种的数量∴c >y∴c >300235c x -- ∴c >30037x -, ∵购进A 种的数量不少于B 种的数量,∴x ≥y∴x ≥300235c x -- ∴c ≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,24.95 2m≤≤【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y mx y m+=+⎧⎨-=+⎩得:422x my m+⎧⎨-⎩==,解方程组10310x yx y+=⎧⎨+=-⎩得:2010xy⎧⎨-⎩==,∵关于x,y的二元一次方程组222104x y mx y m+=+⎧⎨-=+⎩的解是方程组10310x yx y+=⎧⎨+=-⎩的模糊解,因此有:42200.120m+-≤且2100.110m-+≤,化简得:821091122mm≤≤⎧⎪⎨≤≤⎪⎩,即4591122mm≤≤⎧⎪⎨≤≤⎪⎩解得:95 2m≤≤,故答案为952m≤≤.【点睛】本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.25.312-<≤x,图详见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,结合数轴可知其整数解.【详解】533(2)1233x xx x->-⎧⎪⎨-≤-⎪⎩①②解不等式①得32x>-,解不等式②得1x≤,则不等式组的解集为312-<≤x在数轴上表示为:其整数解为:-1,0,1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
人教版(五四制)七年级下册数学期末冲刺试题(有答案)

人教五四新版七年级下册数学期末冲刺试题一.选择题(共10小题,满分30分,每小题3分)1.方程x+y=5的自然数解有()个.A.4B.5C.6D.72.不等式组的解集在数轴上表示为()A.B.C.D.3.一组数据1,2,2,3,4的众数是()A.1B.2C.3D.44.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.115.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A.4B.6C.5D.4和66.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.107.下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣bB.若a<b,则ax2≤bx2C.若ac>bc,则a>bD.若m>n,则>8.若方程组的解中x+y=16,则k等于()A.15B.18C.16D.179.在演讲比赛活动中,7位评委分别给出某位选手的原始评分,评定该选手成绩时,从7个原始评分中去掉一个最高分和一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据不可能变化的是()A.中位数B.众数C.平均数D.方差10.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.∠BAD=∠CAE B.AC=DE C.∠ABC=∠AED D.AB=AE二.填空题(共10小题,满分30分,每小题3分)11.已知是二元一次方程4x﹣7y=8的一个解,则代数式17﹣8a+14b的值是.12.甲乙两人进行飞镖比赛,每人各投5次,其中甲所得环数的方差为15,乙所得环数的方差为12.5,那么成绩较稳定的是(填“甲”或“乙”).13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=.14.已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于.15.若关于x的不等式3x+1<m的正整数解是1,2,3,则整数m的最大值是.16.为了解某区2400名初中教师中接种新冠疫苗的教师人数,随机调查了其中200名教师,结果有150人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有人.17.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.18.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.19.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是.20.如图,△ABC中,AB=AC,D为△ABC外一点,CD交AB于点E,且AE=CE,若BC=AD=2,CD=13,则AB的长度为.三.解答题(共7小题,满分60分)21.解方程组(1);(2);22.解下列不等式.(1)3(x+1)<4(x﹣2)﹣5;(2)<1﹣.23.在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数,中位数;(3)社区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?25.如图,△ABC中,AB=AC,AD是BC边上的高,CE是AB边上的高,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.26.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?27.如图1,在等边△ABC中,AB=2,点D是直线BC上一点,在射线DA上取一点E,使AD=AE,以AE为边作等边△AEF,连接EC.(1)若点D是BC的中点,则EA=,EC=;(2)如图2,连接BF,当点D由BC中点向点C运动时,请判断BF和EC的数量关系,并说明理由;(3)如图3,点D在BC延长线上,连接BF,BE,当BE∥AC时,求BF的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵x+y=5,∴y=5﹣x,当x=0时,y=5,当x=1时,y=4;当x=2时,y=3;当x=3时,y=2;当x=4时,y=1;当x=5时,y=0;故选:C.2.解:解不等式4x+2>6,得:x>1,解不等式7﹣3x≥1,得:x≤2,则不等式组的解集为1<x≤2,故选:C.3.解:这组数据中数字2出现次数最多,有2次,所以这组数据的众数为2.故选:B.4.解:设第三边的长为x,∵三角形两边的长分别是3和5,∴5﹣3<x<5+3,即2<x<8.故选:D.5.解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,则这组数据的中位数是5.故选:C.6.解:∵360÷40=9,∴这个多边形的边数是9.故选:C.7.解:A、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,正确,故本题选项不符合题意;B、∵a<b,∴ax2≤bx2,正确,故本题选项不符合题意;C、当c<0时,根据ac>bc不能得出a>b,错误,故本题选项不符合题意;D、∵m>n,∴>,正确,故本题选项不符合题意;故选:C.8.解:由题意得,①+③得:4x=4k+11④,①×6+②得:20x=25k﹣30,即4x=5k﹣6⑤,⑤﹣④得:k=17,故选:D.9.解:七个数从小到大排列处在中间位置的数,与将排序后的七个数去掉一个最大值和一个最小值而剩下的5个数中间位置的数是同一个数,因此中位数不可能改变,故选:A.10.解:A、∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,本选项结论成立;B、∵△ABC≌△ADE,∴AC=AE,而AC与DE不一定相等,本选项结论不成立;C、∵△ABC≌△ADE,∴∠C=∠AED,而∠ABC与∠AED不一定相等,本选项结论不成立;D、∵△ABC≌△ADE,∴AB=AD,而AB与AE不一定相等,本选项结论不成立;故选:A.二.填空题(共10小题,满分30分,每小题3分)11.解:∵是二元一次方程4x﹣7y=8的一个解,∴4a﹣7b=8,∴17﹣8a+14b=17﹣2(4a﹣7b)=17﹣2×8=1.故答案为:1.12.解:∵12.5<15,∴乙所得环数的方差小,∴成绩较稳定的是乙.故答案为:乙.13.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.14.解:根据题意得:(1+7+10+8+x+6+0+3)÷8=5,35+x=40,x=5.故答案为:5.15.解:解不等式3x+1<m,得x<(m﹣1).∵关于x的不等式3x+1<m的正整数解是1,2,3,∴3<(m﹣1)≤4,∴10<m≤13,∴整数m的最大值是13.故答案为13.16.解:估计该区接种新冠疫苗的初中教师人数约有2400×=1800(人),故答案为:1800.17.解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.18.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.19.解:原来的进价为a元,则现在的进价为(1﹣0.05)a元,由题意,得a(1+x%)=0.95a[1+(x+6)%],解得:x=14故答案为:1420.解:若DE=BE时,∵AE=CE,∴AB=CD=13,若BE>DE时,如图,在BE上取点F,使EF=DE,连接CF,∵AE=CE,DE=EF,∴AF=CD=13,∴BF=AB﹣13,在△AED和△CEF中,,∴△AED≌△CEF(SAS),∴CF=AD,∴CF=CB,∴∠B=∠BFC=∠ACB,∴△CBF∽△ABC,∴=,即=,AB>0,解得AB=17.故答案为:13或17.三.解答题(共7小题,满分60分)21.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.22.解:(1)去括号得,3x+3<4x﹣8﹣5,移项、合并同类项得,﹣x<﹣16,把x的系数化为1得,x>16;(2)去分母得,2x<6﹣(x﹣3),去括号得,2x<6﹣x+3,移项、合并同类项得,3x<9,把x的系数化为1得,x<3.23.解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180°;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠OAB=DAB,CBA,∠OCD=BCD,∠ODC=ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,CBA,,,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠AOD+∠BOC=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO+∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,∴=90°,∴∠DAB+∠ADC=180°,∴AB∥CD.24.解:(1)4+10+15+11+10=50(人):(2)(6×4+7×10+8+15+9×11+10×10)÷50=8.26(分),将成绩从小到大排列后处在第25、26位的两个数都是8分,因此中位数是8分,故答案为:8.26分,8分;(3)2000×=400人,答:该小区2000名居民中获一等奖的有400人.25.证明:(1)∵CE⊥AB,∴∠AEF=∠CEB=90°.∴∠AFE+∠EAF=90°,∵AD⊥BC,∴∠ADC=90°,∴∠CFD+∠ECB=90°,又∵∠AFE=∠CFD,∴∠EAF=∠ECB.在△AEF和△CEB中,,∴△AEF≌△CEB(ASA);(2)∵△AEF≌△CEB,∴AF=BC,∵AB=AC,AD⊥BC∴CD=BD,BC=2CD.∴AF=2CD.26.解:(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,依题意,得:,解得:.答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,依题意,得:70m+50(30﹣m)≤1600,解得:m≤5.答:学校最多可购买甲种词典5本.27.解:(1)∵△ABC是等边三角形,点D是BC的中点,∴AC=BC=AB=2,AD⊥BC,CD=BD=BC=1,∴AD===,∵AD=AE,∴EA=,∴DE=AD+AE=2,∴EC===,故答案为:,;(2)BF=EC,理由如下:∵△ABC和△AEF是等边三角形,∴AB=AC,∠BAC=∠EAF=60°,AF=AE,∴∠BAC+∠CAF=∠EAF+∠CAF,即∠BAF=∠CAE,∴△BAF≌△CAE(SAS),∴BF=EC;(3)过E作EM⊥BC于M,过A作AN⊥BC于N,如图3所示:则EM∥AN,∠EMB=90°,同(1)得:AN=,∵AD=AE,∴AN是△DEM的中位线,∴EM=2AN=2,∵BE∥AC,∴∠EBM=∠ACB=60°,∴∠BEM=30°,∴BM=EM=2,BE=2BM=4,∴CM=BM+BC=2+2=4,∴EC===2,同(2)得:△BAF≌△CAE(SAS),∴BF=EC=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.不等式组 的解集在数轴上表示正确的是()
A. B.
C. D.
12.在平面直角坐标系中,点 的坐标 ,点 的坐标 ,将线段 平移,使得 到达点 ,点 到达点 ,则点 的坐标是()
A. B. C. D.
二、填空题
13.若 ,则 ______.
14.如果 的平方根是 ,则 _________
故选:C
【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.
8.C
解析:C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
19.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(﹣3,2),点B(5,﹣8)平移到点D,则D点的坐标是________.
20.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是________.
三、解答题
21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.
6.C
解析:C
【解析】
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
即210x+90(15﹣x)≥1800
故选C.
【点睛】
本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.
7.C
A.16cmB.18cmC.20cmD.21cm
9.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )
A.35°B.45°C.55°D.125°
10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
故点 的横坐标为: ,纵坐标为: ,点 第100次跳动至点 的坐标为 .
故选: .
【点睛】
本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.
5.A
解析:A
【解析】
【分析】
【详解】
该班男生有x人,女生有y人.根据题意得: ,
故选D.
考点:由实际问题抽象出二元一次方程组.
3.A
解析:A
【解析】
【分析】
观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.
【详解】
解:
②-①得36x-36y=-72
则x-y=-2
所以m-1=-2
所以m=-1.
故选:A.
【点睛】
考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.
解析:a=-1或a=-7.
【解析】
【分析】
由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.
【详解】
解:∵点P到两坐标轴的距离相等,
∴|2-a|=|2a+5|,
∴2-a=2a+5,2-a=-(2a+5)
∴a=-1或a=-7.
故答案是:a=-1或a=-7.
【点睛】
本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.
【分析】
根据平方根、立方根的定义解答.
【详解】
解:∵ ,∴a=±8.∴ =±2
故答案为±2
【点睛】
本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..
14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义
A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8
7.如图,下列能判断AB∥CD的条件有()
①∠B+∠BCD=180°②∠1 =∠2③∠3 =∠4④∠B=∠5
A.1B.2C.3D.4
8.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
二、填空题
13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数
解析:±2
【解析】
(2)用加减法解
23.某校在“传承经典”宣传活动中,计划采用四种形式:A-器乐,B-舞蹈,C-朗诵,D-唱歌.每名学生从中选择并且只能选择一种自己最喜欢的形式,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有人,补全条形统计图;
根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.
【详解】
ห้องสมุดไป่ตู้因为∠1=∠2,
所以AB∥CE
所以∠B=∠3=
故选B
【点睛】
熟练运用平行线的判定和性质.
2.D
解析:D
【解析】
分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.
详解:
②-①得m+n=-1.
故选:D.
点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.
考点:平移的性质.
9.C
解析:C
【解析】
【分析】
利用平行线的判定和性质即可解决问题.
【详解】
如图,
∵∠1+∠2=180°,
∴a∥b,
∴∠4=∠5,
∵∠3=∠5,∠3=55°,
∴∠4=∠3=55°,
故选C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.
10.A
解析:A
【解析】
分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE= S△A′EF=2,S△ABD= S△ABC= ,根据△DA′E∽△DAB知 ,据此求解可得.
详解:如图,
∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,
∴S△A′DE= S△A′EF=2,S△ABD= S△ABC= ,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则 ,即 ,
解得A′D=2或A′D=- (舍),
故选A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
(2)求扇形统计图中“B-舞蹈”项目所对应扇形的圆心角度数;
(3)该校共有1200名学生,请估计选择最喜欢“唱歌”的学生有多少人?
24.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
【冲刺卷】初一数学下期末试题(含答案)
一、选择题
1.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )
A. B. C. D.
2.已知二元一次方程组 ,则m+n的值是( )
A.1B.0C.-2D.-1
3.已知方程组 的解满足 则m的值为( )
A.-1B.-2C.1D.2
4.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )
12.C
解析:C
【解析】
【分析】
根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
15.若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.
16.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为_______.
17.如图,已知直线 相交于点 ,如果 , 平分 ,那么 ________度.
18.用适当的符号表示a是非负数:_______________.
(1)求y关于x的函数表达式.
(2)若购进A种的数量不少于B种的数量.