第1课时 实数的分类及性质

合集下载

第1课时_实数

第1课时_实数

第1课时 实数【课标要求】1.有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。

④理解有理数的运算律,并能运用运算律简化运算。

⑤能运用有理数的运算解决简单的问题。

⑥能对含有较大数字的信息作出合理的解释和推断。

2.实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。

③了解无理数和实数的概念,知道实数与数轴上的点一一对应。

④能用有理数估计一个无理数的大致范围。

⑤了解近似数与有效数字的概念;解决实际问题中,能用计算器进行近似计算,并按问题要求对结果取近似值。

【知识要点】1.实数的分类:实数可分为: 和 ;也可以分为: 、 和 。

◆数轴上的点和 一一对应。

2.有理数:叫做有理数。

◆整数和分数统称为有理数。

3.无理数:叫做无理数。

◆常见的几种无理数:①根号型:如35,2等开方开不尽的数。

②三角函数型:如sin60°,cos45°等。

③圆周率π型:如2π,π-1等。

④构造型:如1.121121112…等无限不循环小数。

4.相反数、倒数和绝对值: (1)若a a =, 则:a 0; (2)若a a -=,则:a 0。

5.负指数幂、零指数幂:pp aa 1=-, ()010≠=a a6.平方根、算术平方根和立方根:(1)3的平方根表示为: ; (2)3的算术平方根表示为: ; (3)3的立方根表示为: 。

◆正数有两个平方根,这两个平方根互为相反数;0的平方根是它本身;负数没有平方根。

◆正数、0、负数都只有一个立方根,正数的立方根是正数;0的立方根是它本身;负数的立方根是负数。

人教版七年级下册6.3.1 实数及其分类

人教版七年级下册6.3.1  实数及其分类
第六章 实 数
6.3 实 数 第1课时 实数及其分类
1 课堂讲解
无理数 实数及其分类 实数与数轴上的点的关系
2 课时流程
பைடு நூலகம்
逐点 导讲练
课堂 小结
课后 作业
回顾旧知
什么是有理数?有理数怎样分类?
有理数
整数 分数
正有理数
有理数

0
负有理数
知识点 1 无理数
知1-导
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
如,将3看成3.0), 那么任何一个有理数都可以写成有
限小数或无限循环小数的形式. 反过来,任 何有限小
数或无限循环小数也都是有理数.
(来自教材)
知1-讲
1. 定义:无限不循环小数叫做无理数. 判断标准:小数位数无限,小数形式为不循环.
2. 三种常见形式: (1)开方开不尽的数,如 3 ,3 5 ,…; (2)含有π的一类数: 1 π, 1 π,π+1,…;
5 8
,0,0.8,
45 6
,-4.2.
正数:{ ,…};负数:{ ,…};
正整数:{ ,…};正分数:{ ,…};
负整数:{ ,…};负分数:{ ,…}.
分析: 以前学过的0以外的数就是正数,正数前面加上 “-”号就是负数,再看它们是整数还是分数.
解:正数:{13,+6, ,0.8,4 5 ,…}; 6
议一议 (1)如图,OA=OB,数轴上点A对应的数是什么?它介
于哪两个整数之间? (2)你能在坐标轴上找到 5 对应的点吗?与同伴进
行交流.
知3-讲
1.实数与数轴间的关系:实数和数轴上的点是一一对应 的. 它包含着两层含义:

6.2 第1课时 实数的概念及分类

6.2 第1课时 实数的概念及分类

6.2 实 数第1课时 实数的概念及分类1.理解并掌握无理数的概念,会判定一个数是不是无理数;2.理解实数的概念,会把实数进行分类.(重点、难点)一、情境导入在上节课中,我们学习了这个问题:为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?二、合作探究探究点一:无理数 【类型一】 无理数的识别 在下列实数中:157,3.14,0,9,π,3,0.1010010001…,无理数有( ) A .1个 B .2个 C .3个 D .4个解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,3,0.1010010001….故选C.方法总结:无限不循环小数叫无理数,常见无理数的三种形式:第一类是开方开不尽的数,第二类是化简后含有π的数,第三类是有规律不循环的小数.【类型二】 无理数的应用设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .8解析:根据特殊有理数找出最接近的完全平方数,问题可得到解决.∵64<65<81,∴8<65<9.∵n <65<n +1,∴n =8.故选D.方法总结:开不尽的平方根形式的无理数的估算一般步骤是首先将原数平方,看其在哪两个相邻的平方数之间,运用这种方法可以估计一个带根号的数的整数部分,估计其大致范围.探究点二:实数把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2,0.10100…,…}; (3)整数集合{4,5,0,-3125,…};(4)负实数集合{-3.6,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.三、板书设计1.无理数无理数包含的三类数:(1)开方开不尽而得到的数;(2)圆周率π以及含有π的数;(3)看似循环,但不循环的无限小数.2.实数有理数和无理数统称为实数.本节课学习了无理数、实数的有关概念及实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数。

3.3 第1课时 实数的概念及性质

3.3 第1课时 实数的概念及性质

(2)∵ 225=15,∴ 225的相反数是-15,倒数是115,绝对值是15;
(3)
11的相反数是-
11,倒数是
1 ,绝对值是 11
11;
(4) 2-2的相反数是2- 2,倒数是 21-2,绝对值是2- 2.
【点悟】
(1)|a|=a0aa>=00;; -aa<0.
(2)∵ 2<2,∴| 2-2|=-( 2-2)=2- 2.
6.1- 2的相反数是 2-1 . 7.[2018·徐州]化简:| 3-2|= 2- 3 .
【解析】 ∵ 3-2<0,∴| 3-2|=2- 3.
8.实数a在数轴上的位置如图3-3-4,则|a-1|= 1-a .
图3-3-4 【解析】 由图可知,a<1,∴a-1<0, ∴|a-1|=-(a-1)=-a+1=1-a.
C. 4是无理数
D.3 -8是有理数
3.[2018·巴彦淖尔] 16的算术平方根的倒数是( C )
1 A.4
B.±14
C.12
D.±12
【解析】 16=4,则4的算术平方根为2,故2的倒数是12.故选C.
4.[2018秋·宝安区期中]在实数π2,272,0.141 4,3 9, 12,-52,0.101 001
第3章 实 数
3.3 实 数 第1课时 实数的概念及性质
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
★本节学习主要解决以下问题★ 1.实数的概念及分类 为此设计了【归类探究】中的例1;【当堂测评】中的第2,4题;【分层作 业】中的第2,3,4,12,13题. 2.实数与数轴之间的关系 此内容为本节的重点.为此设计了【归类探究】中的例3; 【当堂测评】中 的第2题;【分层作业】中的第5,8,11,14题.

2020中考复习第01课时实数及其运算

2020中考复习第01课时实数及其运算

用科学记数法表示为
考点聚焦
考向四 实数的大小比较与运算
例4 [2019·南京]实数a,b,c满足a>b且 [答案] A
ac<bc,它们在数轴上的对应点的位置
[解析]因为a>b且ac<bc,所以c<0.
可以是 (
选项A符合a>b,c<0条件,故满足条件的
)
对应点位置可以是A.
选项B不满足a>b,选项C,D不满足c<0,
第 1 课时
实数及其运算
第一单元
数与式
2020年中考复习
考点聚焦
考点一 实数的概念及分类
1.按定义分
有理数
整数
分数:① 有限
② 循环
实数
无理数
正无理数
负无理数
小数或无限
小数
无限③ 不循环 小数
考点聚焦
2.按大小分
(1)实数可分为正实数、0和负实数.0既不是正数,也不是负数.
(2)正负数的意义:一般地,对于具有相反意义的量,我们可以把其中一种意义的
考点聚焦
考点二
实数的有关概念
1.数轴:规定了原点、④ 正方向 和⑤ 单位长度 的直线.数轴上的点与实数一
一对应.
图1-1
2.相反数:a的相反数是⑥
-a
,0的相反数是0.
3.倒数:乘积是⑦ 1 的两个数互为倒数.0没有倒数,倒数等于本身的数是±1.
考点聚焦
4.绝对值:一般地,数轴上表示数 a 的点与原点的距离,叫做数 a 的绝对值,记作|a|,
ba
(a+b)+c=⑳ a+(b+c) ,
(ab)c=㉑ a(bc)
分配律 a(b+c)= ㉒ ab+ac

湘教版八年级数学上册实数的分类及性质同步练习题

湘教版八年级数学上册实数的分类及性质同步练习题

3.3 实 数第1课时 实数的分类及性质1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、23的倒数的平方是 ,2的立方根的倒数的立方是 。

5、23-的绝对值是 ,13111-的绝对值是 。

6、9的平方根的绝对值的相反数是 。

7、23+的相反数是 ,23-的相反数的绝对值是 。

8、27-的绝对值与726-+的相反数之和的倒数的平方为 。

9、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---•-有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ };1.下列各式中正确的是( )A . B. C. D.2.的平方根是( )A .4 B. C. 2 D.3. 下列说法中 ①无限小数都是无理数 ②无理数都是无限小数 ③-2是4的平方根 ④带根号的数都是无理数。

其中正确的说法有( )A .3个 B. 2个 C. 1个 D. 0个 4.和数轴上的点一一对应的是( )A .整数 B.有理数 C. 无理数 D. 实数 5.对于来说( )A .有平方根B .只有算术平方根 C. 没有平方根 D. 不能确定6.在(两个“1”之间依次多1个“0”)中,无理数的个数有()A.3个 B. 4个 C. 5个 D. 6个7.面积为11的正方形边长为x,则x的范围是()A. B. C. D.8.下列各组数中,互为相反数的是()A.-2与 B.∣-∣与 C. 与 D.与9.-8的立方根与4的平方根之和是()A.0 B. 4 C. 0或-4 D. 0或410.已知一个自然数的算术平方根是 a ,则该自然数的下一个自然数的算术平方根是()A. B. C. D.掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。

中考数学(湘教版全国通用)复习课件:第1课时 实数的有关概念

中考数学(湘教版全国通用)复习课件:第1课时 实数的有关概念

考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
探究四 非负数的性质的运用
命题角度: 根据非负数的性质求值.
例4 (1)[2012·长沙] 若实数a,b满足|3a-1|+b2=0, 则ab的值为_____1___.
解析
依题意a=13,b=0,∴ab=130=1.
依题意a=13,b=0,∴ab=130=1.
第1课时 实数的有关概念
第1课时┃ 实数的有关概念
考点聚焦
考点1 实数的概念及分类
1. 按定义分类:
实数
有理数
整数
分数
正整数 零
负整数
正分数 有限小数或 负分数 无限循环小数
无理数
正 负无 无理 理数 数无限不循环小数
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
2. 按正负分类:
正有理数
正实数
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
[注意] 0既不是正数,也不是负数,但0是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
考点2 实数的有关概念 1. 数轴的三个要素是__原__点____、_正__方__向___、_单___位__长__度___.
归类探究
回归教材
第1课时┃ 实数的有关概念
(2)[2014·岳阳] 实数2的倒数是( D )
A. -12
B. ±12
C. 2
1 D.2
解析
∵2×12=1,∴实数2的倒数是12.故选D.
(3)[2014·株洲] 下列各数中,绝对值最大的数是( A )

人教版七年级下册数学作业课件 第1课时 实数

人教版七年级下册数学作业课件 第1课时 实数

⑤正实数集合:{
3,7,-3 32
-8,π,1.2020020002…
(相邻两个 2 之间 0 的个数逐次加 1)…};
⑥负实数集合:{-1,- 3,-11,-0.1·21· …}.
2
7
逐次加 1)
①有理数集合:{-12,72,-3 -8,0,-171, -0.1·2·1 …};
②无理数集合:{- 3,33,π,1.2020020002…(相 邻两个 2 之间 0 的个数逐次加 1)…};
③整数集合:{0,-3 -8…}; ④分数集合:{-1,7,-11,-0.1·21·…};
22 7
目 录页
要点归纳 典例导学 当堂检测
知识要点 1 无理数的概念
知识要点 2 实数概念及分类 (1)实数的定义:有理数和无理数统称实数.
(2)实数的分类: ①按定义分类:
知识要点 3 实数与数轴的关系
(1)实数与数轴上点的对应关系:实数与数轴上 的点是 一一对应 的.它包含两层含义: ①每一个实数都可以用数轴上的一个 点 来表示; ②反过来,数轴上的每一个点都表示一个 实数 .
方法点拨:要确定两点间的整数点的个数,也 就是需要比较两个端点与邻近整点的大小,牢记数 轴上右边的点表示的实数比左边的点表示的实数 大.
1.下列实数中,为无理数的是( C )
A.0.2 C. 2
B.12 D.-5
2.下列各数:3.14159,π, 25,0.131131113…,-
3 8,-17,无理数的个数有( B ) A.1 个 B.2 个 C.3 个 D.4 个
(2)利用数轴比较实数的大小:在数轴上表示的 两个实数,右边的点表示的实数总比左边的点表示 的实数 大 .
如图,数轴上 A,B 两点表示的数分别是 3和 5.7,则 A,B 两点之间表示整数的点共有( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档