第1课时 实数的有关概念

合集下载

实数的有关概念[下学期]--北师大版

实数的有关概念[下学期]--北师大版
2
7.如果 x
3
a
a
a
,那么x 称为 a 的立方根 ;一个数 a 的立方根记为
3
a

8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字. 9.科学记数法是把一个大于10或小于l的正数记成 a 10 n 的形式,其 中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法. 10.实数的分类 实数 有理数 整数 (有限小数或无限循环小数 )
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数 (4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数 (6)下列说法正确的是( ). (A)49的算术平方根是±7 (B)一64的平方根是4
4.在数轴上。两点所表示的两个数.右边的数总比 左边的数大;正数都大 于零。负数都 小于零。正数大于一切负教;两个负数.绝对值大的反而小。 5.求n个 a的连乘积的运算叫做乘方,记作“a n”.乘方的结果叫做 幂.在“ a n ”中,a 叫做底数,n叫做指数。正数的任何次幂都是正数;负数 的偶次幂是正数;负数的奇次幂是负数;零的非零次幂等于零。 6.如果 x a ,那么 x 称为 a的平方根 ;正数 a有2个平方根,其中 正的平方根称为 a 的算术平方根;0 的平方根是0;负数没有平方根;一个 非负数的平方根记 ;—个非负数的算术平方根记为 .

第一课时实数的有关概念

第一课时实数的有关概念


3 ) , -8
的相反数是 ( )
) ;
-л 的绝对值是( ) ,0 的绝对值是( ) , 2 - 3 的倒数是( (2) .数轴上表示-3.2 的点它离开原点的距离是 。 1 1 A 表示的数是- ,且 AB= ,则点 B 表示的数是 2 3 。
(3) .实数在数轴上的对应点的位置如图,比较下列每组数的大小: c-b 和 d-a bc 和 ad 4、计算
5 [4 (1 0.2 ) ( 2)] (1)
2
1 5
(5) (3 ) (7) (3 ) 12 (3 ) (2)
6 7
6 7
6 7
(3) ( ) (4) 0.25 (5) (4)
2
5 8
3
பைடு நூலகம்
(4)
1 2 2 (3)2 (1 )3 6 2 9 3
6
②-81÷
4 9 × ÷(-16) 9 4
(3)实数的运算律 (1)加法交换律 a+b=b+a (2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab=ba. (4)乘法结合律 (ab)c=a(bc) 三、实数的比较 (1)正数大于 0,负数小于 0,正数大于负数 (2)两个负数比较,绝对值大的反而小
考查题型:以填空和选择题为主。 一、典型例题
1.把下列各数分别填入相应的集合里 3 -1 22 Л -|-3|,21.3,-1.234,- ,0,sin60°,- 9 ,- , - , 8 , 7 8 2 ( 2 - 3 ),3-2,ctg45°,1.2121121112. . . . . .中 无理数集合{ } 负分数集合{ 整数集合 { } 非负数集合{ 2、已知|a+3|+ b+1 =0,则实数(a+b)的相反数( 3、-[-(-9)]的相反数是( ) 4、数-3.14 与-Л 的大小关系是( ) 5、已知(1-a)²+(b-2)²=0,则 a+b=( ) 6、已知 1<x<2,则|x-3|+ (1-x)2 等于( ) 7、在数轴上与原点距离是 3 的点表示的数是( ) 8、已知 a=-10,|a|=|b|,则 b 的值是( ) ) } }

第一课时 实数的有关概念

第一课时 实数的有关概念

[2010²巴中]下列各数:
1A. 2
,0,
,0.303003„„,
中无理数的个数为( B. 3 ,1-
B
C .Байду номын сангаас4
【解析】属于无理数的是:
,0.303 003„„, ∴选B.
【点悟】实数可分为有理数(整数、分数)和无理数,只要是整数、分数,就一定不是无 理数.
类型之二
倒数、相反数和绝对值
(1)[2011²扬州]A. 2 B. 12
18,19,20,21,22,23,24题中的预测变形3,4题.
[学生用书P1] 1.[2011²湖州]-5的相反数是( A. 5 B. -5 C.
A A

) D. -1 ) D.
2.[2011²义乌]-3的绝对值是( A. 3 B. -3 C.
3.[2011²广东]-2的倒数是(
A. 2 B. - 2 C.
若实数x,y满足|x-2|+(3-y)2=0,则代数式xy-x2的值为 2 【解析】由非负数的意义确定x,y的值,再求代数式xy-x2的值. 由题意得 解得 【点悟】 (1)常见的非负数有|a|,a2, (a≥0);
.
(2)若几个非负数(式)的和为零,那么这几个数(式)都为零.
精确度:一个近似数,四舍五入
到哪一位,就说这个近似数精确到哪一位.
有效数字:对于一个近似数,从左边第一个不是0的数字起到 精确到的数位 止,所有的数字都叫做这个数的有效数字.
8.平方根与立方根 平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(也叫二次方根),记 为x=± (a≥0 ) .
[学生用书P1] 类型之一 实数的概念 、sin30°中,无理数的个数为( D.4 B )

1.1实数的有关概念及运算2

1.1实数的有关概念及运算2
1.1 实数 (2)
——实数的相关概念及运算
1.1实数 (2) ——实数的相关概念及运算
复习目标:
1、理解平方根、算术平方根、立方根的概念; 2、会求一个数的平方根、算术平方根、立方根。 3、会比较实数的大小,并能进行实数的运算。
剖析关键词 (1)了解平方根、算术平方根、立方根的概念 (2)会用实数的运算法则进行实数的简单运算 (一)“了解”: “关键词”:概念
2 8 的立方根是___________;
3、填空并举例计算: (1) a ____; ( a ) _____( a 0);
2 2
(2) a ____; ( a ) _____;
3 3 3 3
反思: 1、求一个数的平方根、算数平方根、立方根的方法及 应该注意的问题; 2、练习3的化简公式中对字母a的取值范围有什么要 求?
( 4 ) 3 , ,10 ;
复习指导三: 看试题研究第3页考点4、5,完成填空。 计算下列各题。
1 1 (1) 9 (2) (1) ( ) 3
0
(2)(1)
2011
1 3 0 ( ) (sin 58 - ) 3 - 4 cos60 2 2
反思:上述计算中容易出错的地方是什么?
算术平方根记作____ ____; 2 、立方根记作3 2
2 9 ___; 2 3 27 ___; 3 (3)3 8 ___; 3 (2) 4 ___;
巩固练习:2、填空: 3 (1) 9 的平方根是_______; (2) (3)
3
2 的算术平方根是 ________; 16
巩固练习:计算下列各题。 1 3 (1) 32 3 2 12
6 3

中考数学知识点总结完整版

中考数学知识点总结完整版

第一讲 数与式第1课时 实数的有关概念考点一、实数的概念及分类 〔3分〕正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数〔π〕、开方开不尽的数 负无理数凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;考点二、实数的倒数、相反数和绝对值 〔3分〕2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;5、倒数假设ab =1⇔ a 、b 互为倒数;假设ab =-1⇔a 、b 互为负倒数。

倒数等于本身的数是1和-1。

零没有倒数。

11a a-=考点三、平方根、算数平方根和立方根 〔3—10分〕 6、平方根①如果一个数的平方等于a ,那么这个数就叫做a 的平方根〔或二次方跟〕。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±〞。

②算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a 〞。

正数和零的算术平方根都只有一个,零的算术平a ,2a =;注意a 的双重非负性:0≥a a ≥07、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根〔或a 的三次方根〕。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

中考数学课后强化训练:第1课《实数的有关概念》ppt-课件

中考数学课后强化训练:第1课《实数的有关概念》ppt-课件

移动 5 次后该点对应的数为-5+12=7,到原点的距离为 7; …… ∴移动(2n-1)次后该点到原点的距离为 3n-2,移动 2n 次后该点到原点 的距离为 3n-1. ①当 3n-2≥41 时,n≥433. ∵n 是正整数,∴n 的最小值为 15,此时移动了 29 次. ②当 3n-1≥41 时,n≥14. ∵n 是正整数,∴n 的最小值为 14,此时移动了 28 次. 综上所述,至少移动 28 次后该点到原点的距离不小于 41.
(第 7 题图) B. 点 A 与点 C D. 点 B 与点 C
8.有理数 a,b 在数轴上的位置如图所示,有:①a-b>0;②a+b>0; ③1a>1b;④b-a>0.其中正确的个数是( B )
(第 8 题图)
A. 1 个
B. 2 个
C. 3 个
D. 4 个
9.把下列各数填入相应的括号里:
0, 8, 4,3.1415926,sin 60°,-2, 3, 3-1,272,0.1010010001…
(第 14 题图) 解:墨迹盖住的整数共有(238-23)+[(-52)-(-188)]=215+136= 351(个),相反数有-(52)-(-188)=136(对).
15.若|x|=3,|y|=2,且 x>y,求 x+y 的值.
解:由题意,得 x=3,y=2 或-2,∴x+y=5 或 1.
16.如图,点 A 的初始位置位于数轴上的原点,现对点 A 做如下移动: 第 1 次从原点向右移动 1 个单位长度至点 B,第 2 次从点 B 向左移动 3 个单 位长度至点 C,第 3 次从点 C 向右移动 6 个单位长度至点 D,第 4 次从点 D 向左移动 9 个单位长度至点 E……依此类推,这样至少移动___2_8____次后该 点到原点的距离不小于 41.

2020中考复习第01课时实数及其运算

2020中考复习第01课时实数及其运算

用科学记数法表示为
考点聚焦
考向四 实数的大小比较与运算
例4 [2019·南京]实数a,b,c满足a>b且 [答案] A
ac<bc,它们在数轴上的对应点的位置
[解析]因为a>b且ac<bc,所以c<0.
可以是 (
选项A符合a>b,c<0条件,故满足条件的
)
对应点位置可以是A.
选项B不满足a>b,选项C,D不满足c<0,
第 1 课时
实数及其运算
第一单元
数与式
2020年中考复习
考点聚焦
考点一 实数的概念及分类
1.按定义分
有理数
整数
分数:① 有限
② 循环
实数
无理数
正无理数
负无理数
小数或无限
小数
无限③ 不循环 小数
考点聚焦
2.按大小分
(1)实数可分为正实数、0和负实数.0既不是正数,也不是负数.
(2)正负数的意义:一般地,对于具有相反意义的量,我们可以把其中一种意义的
考点聚焦
考点二
实数的有关概念
1.数轴:规定了原点、④ 正方向 和⑤ 单位长度 的直线.数轴上的点与实数一
一对应.
图1-1
2.相反数:a的相反数是⑥
-a
,0的相反数是0.
3.倒数:乘积是⑦ 1 的两个数互为倒数.0没有倒数,倒数等于本身的数是±1.
考点聚焦
4.绝对值:一般地,数轴上表示数 a 的点与原点的距离,叫做数 a 的绝对值,记作|a|,
ba
(a+b)+c=⑳ a+(b+c) ,
(ab)c=㉑ a(bc)
分配律 a(b+c)= ㉒ ab+ac

人教版七年级下册《6.3第1课时实数的概念》同步练习(含答案)

人教版七年级下册《6.3第1课时实数的概念》同步练习(含答案)

6.3实数第1课时实数的有关概念关键问答①无理数有几种常见的表现形式?②数轴上的每一点都可以表示一个什么样的数?1.①2017·滨州下列各数中是无理数的是()A. 2B.0 C.12017D.-12.②如图6-3-1,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr),把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是________,属于__________(填“有理数”或“无理数”).图6-3-1命题点1无理数[热度:90%]3.③下列说法正确的是()A.无理数就是无限小数B.无理数就是带根号的数C.无理数都是无限不循环小数D.无理数包括正无理数、0和负无理数易错警示③(1)无理数的特征:无理数的小数部分位数无限且不循环,不能表示成分数的形式.(2)常见的无理数有三种表现形式:化简后含π的数;有规律的无限不循环小数,如:1.3131131113…;含有根号且开方开不尽的数,如5,36.4.④在下列各数:0.51525354…,0,0.2,3π,227,9,39,13111,27中,是无理数的有________________________.方法点拨④一个数不是有理数就是无理数,识别一个数是不是有理数,只需看其是不是整数或分数即可.5.有一个数值转换器,原理如图6-3-2所示:当输入的x 为256时,输出的y 是________.图6-3-26.⑤在1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有多 少个?方法点拨⑤分别找出1~100这100个自然数的算术平方根和立方根中有理数的个数,即可得出无理数的个数.命题点 2 实数的概念与分类 [热度:95%] 7.⑥下列说法中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数C .实数包括无限小数与无限不循环小数D .实数包括有理数与无理数 易错警示⑥实数包括有理数和无理数,即有限小数、无限循环小数、无限不循环小数. 8.⑦有下列说法:①两个无理数的和还是无理数;②无理数与有理数的积是无理数;③有理数与有理数的和不可能是无理数;④无限小数是无理数;⑤不是有限小数的数不是有理数.其中正确的有( )A .0个B .1个C .2个D .3个 解题突破⑦两个无理数的和或差不一定是无理数.9.⑧实数13,24,π6中,分数有( )A .0个B .1个C .2个D .3个 方法点拨⑧分数是两个整数作商,不能整除的数. 10.下列说法错误的是( ) A.14是有理数 B.2是无理数 C .-3-27是正实数 D.22是分数11.在数轴上,表示实数2与10的点之间的整数点有________个;表示实数2与10之间的实数点有________个.12.将下列各数填在相应的集合里: 3512,π,3.1415926,-0.456,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),0,511,-321,(-13)2,0.1.有理数集合:{_____________________________________________…};无理数集合:{_____________________________________________…};正实数集合:{_____________________________________________…};整数集合:{_______________________________________________…}.命题点3实数与数轴[热度:98%]13.下列说法中正确的是()A.每一个整数都可以用数轴上的点表示,数轴上的每一个点都表示一个整数B.每一个有理数都可以用数轴上的点表示,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示,数轴上的每一个点都表示一个实数14.⑨如图6-3-3,数轴上的A,B,C,D四个点表示的数中,与-3最接近的是()图6-3-3A.点A B.点B C.点C D.点D解题突破⑨-3介于哪两个连续的整数之间?这两个连续的整数中哪个整数的平方与3的差的绝对值小?15.2018·宁晋县期中如图6-3-4,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()图6-3-4A.π-1 B.-π-1C.-π-1或π-1 D.-π-1或π+116.⑩在同一数轴上表示2的点与表示-3的点之间的距离是________.方法点拨⑩数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数.17.⑪如图6-3-5所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将数轴的正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样数轴的正半轴上的整数就与圆周上的数字建立了一种对应关系.图6-3-5(1)圆周上数字a与数轴上的数字5对应,则a=__________;(2)数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是________.模型建立⑪数轴绕过圆周n圈(n为正整数)后,一个整数落在圆周上数字2所对应的位置,这个整数是3n+2.18.阅读下面的文字,解答问题.大家都知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,所以将2减去其整数部分,差就是其小数部分.(1)你能求出5+2的整数部分和小数部分吗?(2)已知10+3=x +y ,其中x 是整数,且0<y <1,请求出x -y 的相反数.19.⑫定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作是分母为1的有理数;反之为无理数.如2不能表示为两个互质的整数的商,所以2是无理数.可以这样证明:设2=a b ,a 与b 是互质的两个整数,且b ≠0,则2=a 2b 2,a 2=2b 2.因为b 是整数且不为0,所以a 是不为0的偶数.设a =2n (n 是整数),所以b 2=2n 2,所以b 也是偶数,这与a ,b 是互质的两个整数矛盾,所以2是无理数.仔细阅读上文,求证:5是无理数.方法点拨⑫从结论的反向出发,经推理,推得与基本事实、定义、定理或已知条件相矛盾的结果,这样的方法称为反证法.典题讲评与答案详析1.A 2.-2π无理数 3.C4.0.51525354…,3π,39,27[解析] 因为0是整数,0.2可化成分数,9=3,是整数,13111,227是分数,所以这五个数都是有理数.0.51525354…,3π,39,27都是无理数.5.2[解析] 由题图中所给的程序可知,把256取算术平方根,结果为16,因为16是有理数,所以再取算术平方根,结果为4,是有理数.再取4的算术平方根,结果为2,是有理数.再取算术平方根,结果为2,2是无理数,所以y= 2.6.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3,…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个.∵13=1,23=8,33=27,43=64,53=125,且64<100,125>100,∴1,2,3,…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个,∴1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186(个).7.D[解析] 正整数、负整数、0统称为整数;有理数分为正有理数、0和负有理数;有理数包括无限循环小数和有限小数;实数包括有理数和无理数.8.B[解析] 两个无理数的和不一定是无理数,如2和-2;无理数与有理数的积也不一定是无理数,如2和0;有理数与有理数的和一定是有理数;无限不循环小数是无理数;有限小数和无限循环小数是有理数.9.B [解析] 分数是两个整数作商,不能整除的数,因此只有13是分数.10.D [解析]A 项,14=12是有理数,故选项正确;B 项,2是无理数,故选项正确;C 项,-3-27=3是正实数,故选项正确;D 项,22是无理数,故选项错误.故选D.11.2 无数12.有理数集合:{3512,3.1415926,-0.456,0,511,(-13)2,…};无理数集合:{π,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),-321,0.1,…};正实数集合:{3512,π,3.1415926,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),511,(-13)2,0.1,…};整数集合:{3512,0,(-13)2,…}.13.D [解析] 实数与数轴上的点具有一一对应的关系. 14.B15.C [解析]∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A ′表示的数是-1-π;当圆向右滚动时点A ′表示的数是π-1.16.2+3 [解析] 在同一数轴上表示2的点与表示-3的点之间的距离是2+||-3=2+ 3.17.(1)2 (2)302 [解析] (1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字a 与数轴上的数字5对应时,a =2.(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字0,1,2与数轴的正半轴上的整数0,1,2,3,4,5,6,7,8,…每3个一组分别对应,∴数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是302.18.解:(1)∵4<5<9,∴2<5<3,∴5的整数部分是2,小数部分是5-2,∴5+2的整数部分是2+2=4,小数部分是5-2.(2)∵3的整数部分是1,小数部分是3-1,∴10+3的整数部分是10+1=11,小数部分是3-1,∴x=11,y=3-1,∴x-y的相反数是y-x=3-12.19.证明:设5=ab,a与b是互质的两个整数,且b≠0,则5=a2b2,a2=5b2.因为b是整数且不为0,所以a不为0且为5的倍数.设a=5n(n是整数),所以b2=5n2,所以b也为5的倍数,这与a,b是互质的两个整数矛盾,所以5是无理数.【关键问答】①无理数有三种常见的表现形式:一是含有根号且开方开不尽的数;二是化简后含π的数;三是人为创造的一些无限不循环小数.②数轴上的每一点都可以表示一个实数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分数与代数
第一单元实数
一、选择题(每题4分,共44分)
1.[2012·丽水]如果零上2℃记作+2℃,那么零下3℃记作(A) A.-3℃B.-2℃
C.+3℃D.+2℃
2.[2013·邵阳]-8的相反数是(D)
A.-8 B.1 8
C.0.8 D.8
3.[2013·安徽]-2的倒数是(A)
A.-1
2 B.
1
2
C.2 D.-2
4.[2013·内江]下列四个实数中,绝对值最小的数是(C) A.-5 B.- 2
C.1 D.4
5.[2013·威海]下列各式化简结果为无理数的是(C)
A.3
-27 B.(2-1)0
C.8
D.(-2)2
6.[2013·广州]比0大的数是(D)
A.-1 B.-1 2
C.0 D. 1
7.[2013·淮安]在-1,0,-2,1四个数中,最小的数是(C) A.-1 B.0
C.-2 D.1
8.[2013·包头]若|a|=-a,则实数a在数轴上的对应点一定在(B) A.原点左侧
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
9.[2013·济宁]2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出将达到23 000多亿元.将23 000用科学记数法表示就为(A) A.2.3×104
B.0.23×106
C.2.3×105
D.23×104
10.[2013·贵港]纳米是非常小的长度单位,1纳米=10-9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是(C) A.5×10-10米B.5×10-9米
C.5×10-8米D.5×10-7米
11.[2013·淮安]如图1-1,数轴上A,B两点表示的数分别为2和5.1,则A,B 两点之间表示整数的点共有(C)
图1-1
A.6个B.5个
C.4个D.3个
二、填空题(每题4分,共16分)
12.[2013·乐山]如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作__-2__千米.
13.[2013·钦州]比较大小:-1__<__2(填“>”或“<”).
14.[2012·泰州]如图1-2,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是__2__.
图1-2
15.[2013·雅安]已知一组数2,4,8,16,32,…,按此规律,则第n个数是__2n__.【解析】∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.
16.(8分)把下列各数填入相应的括号内:
1,-4,25
361,3.14,-2,-3.1
·
,0,1.4×103,211,
π
2,|-4|,
-2.101 001…(两个1之间依次多一个零).
整数
正分数
负数 2.101__001…(两个1之间依次多一个零)__}
无理数
2
17.(5分)[2013·乌鲁木齐]如图1-3所示的数阵叫“莱布尼兹调和三角形”,它
是由整数的倒数组成的,第n行有n个数,且两端的数都为1
n,每个数是它下
一行左右相邻两数的和,则第8行第3个数(从左往右数)为(B)
图1-3
A.1
60 B.1168 C.1
252
D.1280
18.(5分)[2012·自贡]一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为
( D )
图1-4
A.1n
2
B.1
2
n -1
C.⎝ ⎛⎭
⎪⎫12n +1
D.12n
【解析】 每次跳动后,到原点O 的距离为跳动前的一半,故第n 次跳动后,该质点到原点O 的距离为1
2n .
19.(10分)[2013·台州]任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72――→ 第1次 [72]=8――→ 第2次 [8]=2――→ 第3次 [2]=1,这样对72只需进行3次操作后变为1,类似地,①对81只需进行__3__次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是__255__.
20.(6分)(1)[2013·连云港]如图1-5,数轴上的点A ,B 分别对应实数a ,b ,下列结论正确的是
( C )
图1-5
A .a >b
B .|a |>|b |
C .-a <b
D .a +b <0
(2)[2012·广安]实数m ,n 在数轴上的位置如图1-6所示,则||n -m =__m -n __.
图1-6
(3)[2010·潍坊]如图1-7,数轴上A,B两点对应的实数分别是1和3,若点
A关于B点的对称点为点C,则点C所对应的实数为(A)
图1-7
A.23-1 B.1+ 3
C.2+ 3 D.23+1
21.(6分)[2013·深圳]如图1-8,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有__91__个正方形.
图1-8
【解析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…,第6个有1+4+9+16+25+36=91个正方形,故答案为91.。

相关文档
最新文档