高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件
合集下载
高中数学必修一必修1全章节ppt课件幻灯片

22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学第一章集合与函数概念1.1.1.1集合的含义课件新人教A版必修1

随堂达标自测
1.下列给出的对象中,能组成集合的是( ) A.一切很大的数 B.好心人 C.漂亮的小女孩 D.方程 x2-1=0 的实数根
解析 只有选项 D 具备集合的特性.
2.下列结论不正确的是( )
A. 100∈N B. 8∉Q
C.0∉Q
D.|-1|∈Z
解析 0 是有理数,即 0∈Q.
3.已知集合 A 是由 0,m,m2-3m+2 三个元素组成的
第一章 集合与函数概念
1.1 集合 1.1.1 集合的含义与表示
第1课时 集合的含义
课前自主预习
1.集合的概念
(1)元素: □1 把研究对象统称为元素;怎么表示:
□2 通常用小写拉丁字母 a,b,c,…表示 .
(2)集合:
□3 把一些元素组成的总体叫做
集合(简称为集)
;怎么表示:
□4 通常
用大写的拉丁字母 A,B,C,…表示 .
【跟踪训练 1】 判断下列说法是否正确?并说明理 由.
(1)大于 3 的所有自然数组成一个集合; (2)未来世界的高科技产品构成一个集合; (3)1,0.5,32,12组成的集合含有四个元素; (4)出席 2018 年 19 大的所有参会代表组成一个集合.
解 (1)中的对象是确定的,互异的,所以可构成一个 集合,故(1)正确;(2)中的“高科技”的标准是不确定的, 所以不能构成集合,故(2)错误;由于 0.5=12,所以 1,0.5,32, 12组成的集合含有 3 个元素,故(3)错误;(4)中的对象是确定 的,所以可以构成一个集合,故(4)正确.
(6)不能构成集合.因为“年轻”的标准是模糊的,不 确定的,故而不能构成集合.
(7)不能构成集合.因为有两个 a 是重复的,不符合元 素的互异性.
高中数学第一章集合与函数概念1.1.1.1集合的含义课件新人教A版必修1

2.集合相等 只要构成两个集合的__元__素__是__一__样___的___,我们就称这两个集合 是__相__等__的__.例如,集合{-1,1}与集合{1,-1}是相等的.
知识点三 元素与集合的关系
关系
语言描述 记法
示例
a 属于集合 AΒιβλιοθήκη a 是集合 A 中的元素a_∈__A_
若 A 表示由“世界 四大洋”组成的集
①12∈R;② 2∉Q;③|-3|∈N;④|- 3|∈Q. A.1 个 B.2 个 C.3 个 D.4 个 (2)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N”,有且只有 2 个元素的集合 A 的个数是( ) A.0 B.1 C.2 D.3
【解析】 (1)12是实数, 2是无理数,|-3|=3 是非负整数,| - 3|= 3是无理数.因此,①②③正确,④错误.
【解析】 由于较胖与很大没有一个确定的标准,因此 A,C 不能构成集合;B 中由于 sin 30°=cos 60°不满足互异性;D 满足集 合的三要素,因此选 D.
【答案】 D 构成集合的元素具有确定性.
方法归纳, 判断一组对象组成集合的依据
判断给定的对象能不能构成集合,关键在于能否找到一个明确 的标准,对于任何一个对象,都能确定它是不是给定集合的元素.
解析:“老人”无明确的标准,对于某个人是否“老”无法客 观地判断,因此“所有的老人”不能构成集合,故选 B.
答案:B
3.已知集合 A 由 x<1 的数构成,则有( )
A.3∈A
B.1∈A
C.0∈A
D.-1∉A
解析:很明显 3,1 不满足不等式,而 0,-1 满足不等式. 答案:C
4.下列三个命题:①集合 N 中最小的数是 1;②-a∉N,则 a∈N; ③a∈N,b∈N,则 a+b 的最小值是 2.其中正确命题的个数是( )
高中数学必修1 集合与函数概念 PPT课件 图文

a23a0 0a3
1 . 下 面 四 组 中 的 函 数 f ( x ) 与 g ( x ) , 表 示 同 一 个 函 数 的 是 ( C )
A .f(x )x ,g (x )( x)2
B .f(x)x,g(x)x2
C .f(x)x,g(x)3x3
D .f(x ) |x 2 1 |,g (x ) |x 1 |
函数值, 函数值y的集合叫做
.
, 与X的值对应的y值 叫做
(2)函数的三要素: , ,
。
(3)区间的概念。
(4)函数的表示法: , ,
。
(5)两个函数相同必须是它们的 和 分别完全相同
(6)映射的定义:设A、B是两个非空集合,如果按照某个对应关系f ,对
于A中的
, 在集合B中都有 的元素 f (x) 与之对应, 那么就
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿 到以后的数学学习中.
4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数 学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方 面的训练 .
3x
f(2)4p25 p2 63
设 x1x21 则 x 1 x 2 0 ,x 1 x 2 1
f(x1)f(x2)2 3(x1x 21 1x2x 22 1)23(x1
x2)
x1x2 1 x1x2
0
f(x1)f(x2)
即 函 数 f ( x ) 在 ( , 1 ) 上 是 增 函 数 .
问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高中数学必修一全册优秀课件

1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
7
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
8
2、两个集合相等
9
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
10
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
如何用数学的语言描述这些对象??
7
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
思考:1、比较这三个集合: A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
8
2、两个集合相等
9
练习题
1、直线y=x上的点集如何表示?
x+y=2
2、方程组
的解集如何表示?
x-y=1
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
10
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
如何用数学的语言描述这些对象??
人教版高中数学必修1《集合间的基本关系》高一上册PPT课件(第1.1.1课时)

高中数学必修一必修一精品课件
高中数学必修一精品系列课 件
3. 空 集
(1)定 义 : 不 含 任 任何 何 元 素 的 集 合 叫 做 空 集 , 记 为 ∅. ∅
(2)规 定 : 空 空 集 集 是 任 何 集 合 的 子 集 .
思 考2: {0}与 ∅相 同 吗 ? [提 示 ]不 同 . {0}表 示 一 个 集 合 , 且 集 合 中 有 且 仅 有 一 个 元 素0; 而 ∅表 示 空 集 , 其 不 含 有 任 何 元 素 , 故 {0}≠ ∅.
学习目标:
1.理解集合之间的包含与相等的含义.(重点) 2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)
高中数学必修一必修一精品课件
PART 02
自主预习·探新知
S E L F S T U D YA N D E X P L O R I G N E W K N O W L E D G E
高中数学必修一必修一精品课件
高中数学必修一精品系列课 件
3.已知集合M={菱形},N={正方形},则有( )
A.M⊆N
B.M∈N
C.N⊆M
D.M=N
C [正 方 形 是 特 殊 的 菱 形 , 故N⊆M.]
4. 集 合 {0,1}的 子 集 有 ________个 . 4 [集 合 {0,1}的 子 集 有 ∅, {0}, {1}, {0,1}, 共4个 . ]
高中数学必修一必修一精品课件
高中数学必ቤተ መጻሕፍቲ ባይዱ一精品系列课 件
思考 1:(1)任何两个集合之间是否有包含关系? (2)符号“∈”与“⊆”有何不同?
[提示] (1)不一定.如集合 A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.
高中数学必修一精品系列课 件
3. 空 集
(1)定 义 : 不 含 任 任何 何 元 素 的 集 合 叫 做 空 集 , 记 为 ∅. ∅
(2)规 定 : 空 空 集 集 是 任 何 集 合 的 子 集 .
思 考2: {0}与 ∅相 同 吗 ? [提 示 ]不 同 . {0}表 示 一 个 集 合 , 且 集 合 中 有 且 仅 有 一 个 元 素0; 而 ∅表 示 空 集 , 其 不 含 有 任 何 元 素 , 故 {0}≠ ∅.
学习目标:
1.理解集合之间的包含与相等的含义.(重点) 2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)
高中数学必修一必修一精品课件
PART 02
自主预习·探新知
S E L F S T U D YA N D E X P L O R I G N E W K N O W L E D G E
高中数学必修一必修一精品课件
高中数学必修一精品系列课 件
3.已知集合M={菱形},N={正方形},则有( )
A.M⊆N
B.M∈N
C.N⊆M
D.M=N
C [正 方 形 是 特 殊 的 菱 形 , 故N⊆M.]
4. 集 合 {0,1}的 子 集 有 ________个 . 4 [集 合 {0,1}的 子 集 有 ∅, {0}, {1}, {0,1}, 共4个 . ]
高中数学必修一必修一精品课件
高中数学必ቤተ መጻሕፍቲ ባይዱ一精品系列课 件
思考 1:(1)任何两个集合之间是否有包含关系? (2)符号“∈”与“⊆”有何不同?
[提示] (1)不一定.如集合 A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.
高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时课件

集合中的元素是 互异的!
课堂探究
探究点2:集合中元素的性质.
(3)高一(4)班的全体同学组成一个集合,调 整座位后,这个集合有没有变化?
集合中的元素是 无序的!
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
在现代数学中,集合是一种简洁、高雅的数学语言,“一 切数学成果可建立在集合论基础上”这一发现使数学家们为 之陶醉.那么,我们怎样理解数学中的“集合”?
回顾旧知
在小学和初中,我们已经接触过一些集合: (1)自然数的集合; (2)有理数的集合;
(3)不等式 x 7 3的解的集合;
(4)到一个定点的距离等于定长的点的集合; (5)到一条线段的两个端点距离相等的点的集合 .................
数集的扩充过程
N*
或 N
正整数 集
N
自然数 集
Z
整数集
实数集
R
有理数 集
Q
练习1.下列指定的对象,能构成一个集合
的是
()
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级很帅的男生
⑥所有无理数 ⑦大于2的整数
⑧全体正三角形
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
课堂探究
探究点2:集合中元素的性质.
(3)高一(4)班的全体同学组成一个集合,调 整座位后,这个集合有没有变化?
集合中的元素是 无序的!
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
在现代数学中,集合是一种简洁、高雅的数学语言,“一 切数学成果可建立在集合论基础上”这一发现使数学家们为 之陶醉.那么,我们怎样理解数学中的“集合”?
回顾旧知
在小学和初中,我们已经接触过一些集合: (1)自然数的集合; (2)有理数的集合;
(3)不等式 x 7 3的解的集合;
(4)到一个定点的距离等于定长的点的集合; (5)到一条线段的两个端点距离相等的点的集合 .................
数集的扩充过程
N*
或 N
正整数 集
N
自然数 集
Z
整数集
实数集
R
有理数 集
Q
练习1.下列指定的对象,能构成一个集合
的是
()
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级很帅的男生
⑥所有无理数 ⑦大于2的整数
⑧全体正三角形
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方 形”组成的集合等等.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3
当
a≠0
时,方程
ax2-3x+2=0
为一元二次方程,则
a 9
0, 8a
解得
0.
a≠0
且
a≤
9 8
.
综上所得 a 的取值范围是{a|a≤ 9 }. 8
-7-
例1.下列各组对象不能组成集合的是( ) A.大于6的所有整数 B.高中数学的所有难题 C.被3除余2的所有整数 D.函数y= 1 图像上所有的点
x
答案:B
-8-
例2.用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
-9-
例3.试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
解:(1)设方程 x2-2=0 的实根为 x,它满足条件 x2-2=0,因此,用描述法表示为 A={x∈R|x2-2=0}.
方程 x2-2=0 的两个实数根为 2 , 2 ,因此,用列举法表示为
-6-
问题4: (1)请列举出“小于5的所有自然数组成的集合A”. (2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等 式的解集?
列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合, 这种表示集合的方法叫做列举法;
描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范 围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所 含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简 写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可 以表示为{x|x是直角三角形},也可以写成{直角三角形}.
1.1.1集合的含义与表示
-2-
问题1:下面这5个实例的共同特征是什么? (1)1~20以内的所有质数; (2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
. (5)北京大学2014年9月入学的全体学生
共同特征:都是有某些对象组成的全体
-3-
1.集合的含义: 一般地,指定的某些对象的全体称为集合(简称
-13-
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
答案: (1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示 为{-3,-2,-1,0,1,2,3}. (2){x|x=3n,n∈Z}. (3)∵x=|x|,∴x≥0. ∵x∈Z且x<5, {x|x=|x|,x∈Z且x<5}还可以表示为 {0,1,2,3,4}. (4){-2}. (5){(1,5),(2,4),(3,3),(4,2),(5,1)}.
-14-
请同学们想一想 (1)本节课我们学习过哪些知识内容? (2)你认为学习集合有什么意义? (3)选择集合的表示法时应注意些什么?
[作业精选,巩固提高] 1.课本P11习题1.1A组4. 2.元素、集合间有何种关系?如何用符号表示?
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
为集),集合中的每个对象叫做这个集合的元素. 问题2:集合应当如何表示呢?元素与集合是什么样 的关系?
-4-
2.集合的表示:
方法一(字母表示法):大写的英文字母表示集合, 集合常用大写字 母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示. 国际标准化组 织(ISO)制定了常用数集的记法: 自 然 数 集 ( 包 含 零 ):N, 正 整 数 集 :N*(N+), 整 数 集 :Z, 有 理 数 集 :Q, 实 数 集:R.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3
当
a≠0
时,方程
ax2-3x+2=0
为一元二次方程,则
a 9
0, 8a
解得
0.
a≠0
且
a≤
9 8
.
综上所得 a 的取值范围是{a|a≤ 9 }. 8
-7-
例1.下列各组对象不能组成集合的是( ) A.大于6的所有整数 B.高中数学的所有难题 C.被3除余2的所有整数 D.函数y= 1 图像上所有的点
x
答案:B
-8-
例2.用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
-9-
例3.试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
解:(1)设方程 x2-2=0 的实根为 x,它满足条件 x2-2=0,因此,用描述法表示为 A={x∈R|x2-2=0}.
方程 x2-2=0 的两个实数根为 2 , 2 ,因此,用列举法表示为
-6-
问题4: (1)请列举出“小于5的所有自然数组成的集合A”. (2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等 式的解集?
列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合, 这种表示集合的方法叫做列举法;
描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范 围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所 含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简 写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可 以表示为{x|x是直角三角形},也可以写成{直角三角形}.
1.1.1集合的含义与表示
-2-
问题1:下面这5个实例的共同特征是什么? (1)1~20以内的所有质数; (2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
. (5)北京大学2014年9月入学的全体学生
共同特征:都是有某些对象组成的全体
-3-
1.集合的含义: 一般地,指定的某些对象的全体称为集合(简称
-13-
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
答案: (1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示 为{-3,-2,-1,0,1,2,3}. (2){x|x=3n,n∈Z}. (3)∵x=|x|,∴x≥0. ∵x∈Z且x<5, {x|x=|x|,x∈Z且x<5}还可以表示为 {0,1,2,3,4}. (4){-2}. (5){(1,5),(2,4),(3,3),(4,2),(5,1)}.
-14-
请同学们想一想 (1)本节课我们学习过哪些知识内容? (2)你认为学习集合有什么意义? (3)选择集合的表示法时应注意些什么?
[作业精选,巩固提高] 1.课本P11习题1.1A组4. 2.元素、集合间有何种关系?如何用符号表示?
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
为集),集合中的每个对象叫做这个集合的元素. 问题2:集合应当如何表示呢?元素与集合是什么样 的关系?
-4-
2.集合的表示:
方法一(字母表示法):大写的英文字母表示集合, 集合常用大写字 母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示. 国际标准化组 织(ISO)制定了常用数集的记法: 自 然 数 集 ( 包 含 零 ):N, 正 整 数 集 :N*(N+), 整 数 集 :Z, 有 理 数 集 :Q, 实 数 集:R.