高一数学必修1集合与函数概念单元测试题.doc
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
高中数学必修一单元测试及答案

高中数学必修一单元测试及答案(总27页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章 集合与函数概念一、选择题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1} B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且A B A =,则m 的取值集合是( ). A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ). A .f (x )=1,g (x )=x 0 B .f (x )=x -1,g (x )=xx 2-1C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x1-x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称8.函数f (x )=11+x 2(x ∈R )的值域是( ). A .(0,1) B .(0,1]C .[0,1)D .[0,1](第4题)9.已知f(x)在R上是奇函数,f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( ).A.-2 B.2 C.-98 D.9810.定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是().A.①与④B.②与③C.①与③D.②与④二、填空题11.函数x=1的定义域是.-xy+12.若f(x)=ax+b(a>0),且f(f(x))=4x+1,则f(3)=.13.已知函数f(x)=ax+2a-1在区间[0,1]上的值恒正,则实数a的取值范围是.14.已知I={不大于15的正奇数},集合M∩N={5,15},(I M)∩(I N)={3,13},M ∩(I N)={1,7},则M=,N=.15.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∪B=A,则m的取值范围是_________.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且∅(A∩B),A∩C=∅,求a的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1 A . (1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .19.求函数f (x )=2x 2-2ax +3在区间[-1,1]上的最小值.∈20.已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.第二章 基本初等函数(Ⅰ)一、选择题1.对数式log 32-(2+3)的值是( ). A .-1B .0C .1D .不存在2.当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象是( ).A B C D3.如果0<a <1,那么下列不等式中正确的是( ). A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a >14.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34B .8C .18D .216.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥37.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R8.已知-1<a <0,则( ).A .(0.2)a<a⎪⎭⎫⎝⎛21<2aB .2a<a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a(第4题)9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1)B .(1,2)C .(0,2)D .[2,+∞) 二、填空题11.满足2-x >2x 的x 的取值范围是 .12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____. 15.函数y =)-(34log 5.0x 的定义域为 . 16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.18.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.19.求下列函数的定义域、值域、单调区间:(1)y=4x+2x+1+1;(2)y=2+3231x-x⎪⎭⎫⎝⎛.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.第三章 函数的应用一、选择题1.下列方程在(0,1)内存在实数解的是( ). A .x 2+x -3=0 B .x1+1=0C .21x +ln x =0D .x 2-lg x =02.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ).A .(-∞,-2]B .(-∞,-2)∪(2,+∞)C .(2,+∞)D .(-2,2)3. 若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ).A .{a |a >1}B .{a |a ≥2}C .{a |0<a <1}D .{a |1<a <2}4.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)f (2)f (4)<0,则下列命题正确的是( ).A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点5. 函数f (x )=⎩⎨⎧0>,ln +2-0,3-2+2x x x x x ≤的零点个数为( ).A .0B .1C .2D .36. 图中的图象所表示的函数的解析式为( ).A .y =23|x -1|(0≤x ≤2)B .y =23-23|x -1|(0≤x ≤2)C .y =23-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)7.当x ∈(2,4)时,下列关系正确的是( ). A .x 2<2xB .log 2 x <x 2C .log 2 x <x1D .2x<log 2 x8.某种动物繁殖数量y (只)与时间x (年)的关系为y =a log 2(x +1),设这种动物第1年有100只,则第7年它们繁殖到( ).A .300只B .400只C .500只D .600只9.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低( )元.A .2元B .2.5元C .1元D .1.5元10.某市的一家报刊摊点,从报社买进一种晚报的价格是每份是0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主每天从报社买进( )份晚报.A .250B .400C .300D .350二、填空题11.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是 .12.用100米扎篱笆墙的材料扎一个矩形羊圈,欲使羊的活动范围最大,则应取矩形长米,宽 米.13.在国内投寄平信,将每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重x (0<x ≤40)(克)的函数,其表达式为 .14.为了预防流感,某学校对教室用药熏消毒法进行消药量y (毫毒.已知药物释放过程中,室内每立方米空气中的含克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为at y -⎪⎭⎫⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.15.已知f (x )=(x +1)·|x -1|,若关于x 的方程f (x )=x +m 有三个不同的实数解,则实数m 的取值范围 .16.设正△ABC 边长为2a ,点M 是边AB 上自左至右的一个动点,过点M 的直线l 垂直与AB ,设AM =x ,△ABC 内位于直线l 左侧的阴影面积为y ,y 表示成x 的函数表达式为 .(第14题)三、解答题17.某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?18.A市和B市分别有某种库存机器12台和6台,现决定支援C市10台机器,D市8台机器.已知从A市调运一台机器到C市的运费为400元,到D市的运费为800元;从B市调运一台机器到C市的运费为300元,到D市的运费为500元.(1)若要求总运费不超过9 000元,共有几种调运方案?(2)求出总运费最低的调运方案,最低运费是多少?19.某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(距2月1日的天数,单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t;(2)利用你选取的函数,求西红柿种植成本Q最低时的上市天数及最低种植成本.20.设计一幅宣传画,要求画面面积为4 840 cm2,画面的宽与高的比为λ(λ<1 ),画面的上、下各留8 cm空白,左、右各留5 cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?期末测试题考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2 C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元 B .6.00元 C .7.00元D .8.00元8.方程2x =2-x 的根所在区间是( ). A .(-1,0) B .(2,3) C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞) B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ).A .f (x )=x1 B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln (x +1)12.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ).A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)13.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .114.已知x 0是函数f (x )=2x +x-11的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则有( ).A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 16.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 17.函数y =2-log 2x 的定义域是 . 18.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.19.(8分)已知函数f(x)=lg(3+x)+lg(3-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由.20.(10分)已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.21.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少参考答案第一章集合与函数的概念一、选择题1.A解析:条件U A={2}决定了集合A={0,1},所以A的真子集有∅,{0},{1},故正确选项为A.∈2.D解析:在数轴上画出集合A,B的示意图,极易否定A,B .当a=2时,2B,故不满足条件A⊆B,所以,正确选项为D.3.C解析:据条件A∪B=A,得B⊆A,而A={-3,2},所以B只可能是集合∅,{-3},{2},所以,m的取值集合是C.4.B解析:阴影部分在集合N外,可否A,D,阴影部分在集合M内,可否C,所以,正确选项为B.5.B解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M P就是坐标平面上除去点(2,3)外的所有点组成的集合.由此U(M P)就是点(2,3)的集合,即U(M P)={(2,3)}.故正确选项为B.6.D解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C解析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定其它选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B解析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A 解析:利用条件f (x +4)=f (x )可得,f (7)=f (3+4)=f (3)=f (-1+4)=f (-1),再根据f (x )在R 上是奇函数得,f (7)=-f (1)=-2×12=-2,故正确选项为A .10.C 解析:由为奇函数图像关于原点对称,偶函数图象关于y 轴对称,函数f (x ),g (x )在区间[0,+∞)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C .二、填空题11.参考答案:{x | x ≥1}.解析:由x -1≥0且x ≥0,得函数定义域是{x |x ≥1}. 12.参考答案:319.解析:由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,所以a 2=4,ab +b =1(a >0),解得a =2,b =31,所以f (x )=2x +31,于是f (3)=319.13.参考答案:⎪⎭⎫⎝⎛ 21,.解析:a =0时不满足条件,所以a ≠0. (1)当a >0时,只需f (0)=2a -1>0; (2)当a <0时,只需f (1)=3a -1>0. 综上得实数a 的取值范围是⎪⎭⎫⎝⎛ 21,. 14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I ={1,3,5,7,9,11,13,15},M ∩N ={5,15},M ∩(I N )={1,7},得集合M ={1,5,7,15},再根据条件(I M )∩(I N )={3,13},得N ={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-2≤m +1<2m -1≤7,转化为不等式组⎪⎩⎪⎨⎧7 ≤1-21-2<1+2- ≥1+m m m m ,解得m 的取值范围是(2,4].16.参考答案:x (1-x 3). 解析:∵任取x ∈(-∞,0],有-x ∈[0,+∞), ∴ f (-x )=-x [1+(-x )3]=-x (1-x 3), ∵ f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3),即当x ∈(-∞,0]时,f (x )的表达式为f (x )=x (1-x 3).+∞ +∞三、解答题17.参考答案:∵B ={x |x 2-5x +6=0}={2,3}, C ={x |x 2+2x -8=0}={-4,2}, ∴由A ∩C =∅知,-4 ,2 A ; 由∅(A ∩B )知,3∈A .∴32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}=B ,与A ∩C =∅矛盾. 当a =-2时,经检验,符合题意. 18.参考答案:(1)∵ 2∈A ,∴a -11=2-11=-1∈A ; ∴a -11=1+11=21∈A ;∴a -11=21-11=2∈A .因此,A 中至少还有两个元素:-1和21. (2)如果A 为单元素集合,则a =a-11,整理得a 2-a +1=0,该方程无实数解,故在实数范围内,A 不可能是单元素集.(3)证明: a ∈A ⇒a -11∈A ⇒ a1-1-11∈A ⇒1+-1-1a a ∈A ,即1-a 1∈A .19.参考答案: f (x )=222⎪⎭⎫ ⎝⎛a x -+3-22a .(1)当2a<-1,即a <-2时,f (x )的最小值为f (-1)=5+2a ;(2)当-1≤2a ≤1,即-2≤a ≤2时,f (x )的最小值为⎪⎭⎫⎝⎛2a f =3-22a ;(3)当2a >1,即a >2时,f (x )的最小值为f (1)=5-2a .∈A ∈综上可知,f (x )的最小值为⎪⎪⎪⎩⎪⎪⎪⎨⎧.> ,-,≤≤ ,-,<- ,+22522232252a a a a a a - 20.参考答案:(1)∵函数f (x )为R 上的奇函数,∴ f (0)=0,即a b2+-1+=0,解得b =1,a ≠-2, 从而有f (x )=ax x +21+2-+1.又由f (1)=-f (-1)知a4++12-=-a 1++121-,解得a =2.(2)先讨论函数f (x )=2+21+2-+1x x =-21+1+21x的增减性.任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=1+212x -1+211x =))((1+21+22-21221x x x x ,∵指数函数2x 为增函数,∴212-2x x <0,∴ f (x 2)<f (x 1), ∴函数f (x )=2+21+2-+1x x 是定义域R 上的减函数.由f (t 2-2t )+f (2t 2-k )<0得f (t 2-2t )<-f (2t 2-k ), ∴ f (t 2-2t )<f (-2t 2+k ),∴ t 2-2t >-2t 2+k (*). 由(*)式得k <3t 2-2t .又3t 2-2t =3(t -31)2-31≥-31,∴只需k <-31,即得k 的取值范围是⎪⎭⎫ ⎝⎛31- -∞,.第二章 初等函数一、选择题1.A 解析:log 32-(2+3)=log 32-(2-3)-1,故选A .2.A 解析:当a >1时,y =log a x 单调递增,y =a -x 单调递减,故选A .3.A 解析:取特殊值a =21,可立否选项B ,C ,D ,所以正确选项是A .4.B 解析:画出直线y =1与四个函数图象的交点,它们的横坐标的值,分别为a ,b ,c ,d 的值,由图形可得正确结果为B .5.D 解析:解法一:8=(2)6,∴ f (26)=log 22=21.解法二:f (x 6)=log 2 x ,∴ f (x )=log 26x =61log 2 x ,f (8)=61log 28=21.6.D 解析:由函数f (x )在⎪⎭⎫ ⎝⎛121 ,上是减函数,于是有21-a ≥1,解得a ≥3. 7.C 解析:函数f (x )=2-x-1=x ⎪⎭⎫ ⎝⎛21-1的图象是函数g (x )=x⎪⎭⎫ ⎝⎛21图象向下平移一个单位所得,据函数g (x )=x⎪⎭⎫⎝⎛21定义域和值域,不难得到函数f (x )定义域是R ,值域是(-1,+∞).8.B 解析:由-1<a <0,得0<2a <1,0.2a >1,a⎪⎭⎫⎝⎛21>1,知A ,D 不正确.当a =-21时,2121-⎪⎭⎫⎝⎛=501.<201.=2120-.,知C 不正确. ∴ 2a<a⎪⎭⎫⎝⎛21<0.2a .9.C 解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0<a <1 ①,又由f (x )在(-∞,1]上单减,∴ 3a -1<0,∴ a <31 ②,又由于由f (x )在R 上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.∴ 7a -1≥0,即a ≥71③.由①②③可得71≤a <31,故选C .10.B 解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且a ≠1,于是得函数的定义域x <a2.又函数的递减区间[0,1]必须在函数的定义域内,故有1<a2,从而0<a <2且a ≠1.若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.参考答案:f (3)<f (4). 解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4).13.参考答案:21. 解析:64log 2log 273=3lg 2lg ·64lg 27lg =63=21.14.参考答案:41. 解析:⎪⎭⎫ ⎝⎛91f =log 391=-2,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f =f (-2)=2-2=41. 15.参考答案:⎥⎦⎤ ⎝⎛143 ,. 解析:由题意,得 ⎪⎩⎪⎨⎧0 34log 0345.0≥)-(>-x x ⇔ ⎪⎩⎪⎨⎧13443 ≤->x x ∴ 所求函数的定义域为⎥⎦⎤⎝⎛143 ,. 16.参考答案:a =21. 解析:∵ f (x )为奇函数,∴ f (x )+f (-x )=2a -121+x -121+x -=2a -1212++x x =2a -1=0,∴ a =21.三、解答题17.参考答案:a =100,b =10. 解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100. 18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞);(2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求;②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.(2)定义域为R .令t =x 2-3x +2=223⎪⎭⎫ ⎝⎛x --41⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡,+∞41-t ∈. ∴ 值域为(0,43].∵ y =t⎪⎭⎫⎝⎛31在t ∈R 时为减函数,∴ y =2+3-231x x ⎪⎭⎫⎝⎛在 ⎝⎛-∞,⎪⎭⎫23上单调增函数,在 ⎝⎛23,+∞⎪⎪⎭⎫为单调减函数.20.参考答案:(1){x |-1<x <1}; (2)奇函数;(3)当0<a <1时,-1<x <0;当a >1时,0<x <1.解析:(1)f (x )-g (x )=log a (x +1)-log a (1-x ),若要式子有意义,则 即-1<x <1,所以定义域为{x |-1<x <1}.(2)设F (x )=f (x )-g (x ),其定义域为(-1,1),且F (-x )=f (-x )-g (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (1-x )]=-F (x ),所以f (x )-g (x )是奇函数.(3)f (x )-g (x )>0即log a (x +1)-log a (1-x )>0有log a (x +1)>log a (1-x ).当0<a <1时,上述不等式 解得-1<x <0;当a >1时,上述不等式 解得0<x <1.第三章 函数的应用 参考答案一、选择题1.C 解析:易知A ,B ,D 选项对应的函数在区间(0,1)内的函数值恒为负或恒为正,当x 是接近0的正数时,21x +ln x <0;当x 接近1时,21x +ln x >0. 所以选C .2.D 解析:因为函数f (x )是定义在R 上的偶函数且一个零点是2,则另一个零点为-2,又在(-∞,0]上是减函数,则f (x )<0的x 的取值范围是(-2,2).3.A 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0且a 1)有两个零点, 就是函数y =a x (a >0,且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合,当a >1时,因为函数x +1>0x +1>01-x >0x +1>01-x >0y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是{a |a >1}.4.D 解析:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图象与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点,正确选项为D . 5. C 解析:当x ≤0时,令x 2+2x -3=0解得x =-3;当x >0时,令-2+ln x =0,得x =100,所以已知函数有两个零点,选C . 还可以作出f (x )的图象,依图判断.6. B 解析:取特殊值x =1,由图象知y =f (1)=32,据此否定A ,D ,在取x =0, 由图象知y =f (0)=0,据此否C ,故正确选项是B.或者勾画选项B 的函数图象亦可判断.7.B 解析:当x ∈(2,4)时,x 2∈(4,16),2x ∈(4,16),log 2 x ∈(1,2),x1∈⎪⎭⎫⎝⎛2141 ,,显然C 、D 不正确,但对于选项A ,若x =3时,x 2=9>23=8,故A 也不正确,只有选项B 正确.(第4题)8.A 解析:由题意知100=a log2(1+1),得a=100,则当x=7时,y=100 log2(7+1)=100×3=300.9.D 解析:设每件降价0.1x元,则每件获利(4-0.1x)元,每天卖出商品件数为(1 000+100x).经济效益:y=(4-0.1x)(1 000+100x)=-10x2+300x+4 000=-10(x2-30x+225-225)+4 000=-10(x-15)2+6 250.x=15时,y max=6 250.每件单价降低1.5元,可获得最好的经济效益.10.B 解析:若设每天从报社买进x(250≤x≤400,x∈N)份,则每月共可销售(20x+10×250)份,每份可获利润0.10元,退回报社10(x-250)份,每份亏损0.15元,建立月纯利润函数f(x),再求f(x)的最大值,可得一个月的最大利润.设每天从报社买进x份报纸,每月获得的总利润为y元,则依题意,得y=0.10(20x+10×250)-0.15×10(x-250)=0.5x+625,x∈[250,400].∵函数y在[250,400]上单调递增,∴x=400时,y max=825(元).即摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元.二、填空题11.参考答案:(-∞,-1).解析:函数f(x)=x2+ax+a-1的两个零点一个大于2,一个小于2,即f(2)<0,可求实数a的取值范围是(-∞,-1).12.参考答案:长宽分别为25米.解析:设矩形长x 米,则宽为21(100-2x )=(50-x )米,所以矩形面积y =x (50-x )=-x 2+50 x =-(x -25)2+625,矩形长宽都为25米时,矩形羊圈面积最大.13.参考答案:f (x )=⎩⎨⎧)<( )<(40≤ 20 16020≤ 008x x解析:在信件不超过20克重时,付邮资80分,应视为自变量在0<x ≤20范围内,函数值是80分;在信件超过20克重而不超过40克重时,付邮资160分,应视为自变量在20<x ≤40范围内,函数值是160分,遂得分段函数.14.参考答案:(1) y =⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛- )>( )( 1.01611.0≤ ≤ 0101.0t t t t ; (2)0.6.解析:(1)据图象0≤t ≤0.1时,正比例函数y =k t 图象过点(0.1,1),所以,k =10,即y =10t ;当t >0.1时,y 与t 的函数y =at -⎪⎭⎫⎝⎛161(a 为常数)的图像过点(0.1,1),即得1=a-⎪⎭⎫ ⎝⎛1.0161,所以a =0.1,即y =1.0161-⎪⎭⎫⎝⎛t .(2)依题意得1.0161-⎪⎭⎫⎝⎛t ≤0.25,再由y =lg x 是增函数,得(t -0.1)lg161≤lg 41,∵ lg 41<0,即得t -0.1≥0.5,所以,t ≥0.6. 15.参考答案:-1<m <45.解析:由f (x )=(x +1)|x -1|=得函数y =f (x )的图象(如图).按题意,直线y =x +m 与曲线y =(x +1)|x -1|有三个不同的公共点,求直线y =x +m 在y 轴上的截距m 的取值范围.x 2-1,x ≥11-x 2,x <1(第15题)由 得x 2+x +m -1=0.Δ=1-4(m -1)=5-4m ,由Δ=0,得m =45,易得实数m 的取值范围是-1<m <45.16.参考答案:y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222解析:当直线l 平移过程中,分过AB 中点前、后两段建立y 与x 的函数表达式. (1)当0<x ≤a 时,y =21x ·3x =23 x 2; (2)当a <x ≤2a 时,y =21·2a ·3a -21(2a -x )·3(2a -x )=-23x 2+23ax -3a 2.所以,y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222三、解答题17.参考答案:每间客房日租金提高到40元.解析:设客房日租金每间提高2x 元,则每天客房出租数为300-10x , 由x >0,且300-10x >0,得0<x <30.设客房租金总收入y 元,y =(20+2x )(300-10x )=-20(x -10)2 +8 000(0<x <30),当x =10时,y max =8 000.即当每间客房日租金提高到20+10×2=40元时,客房租金总收入最高,为每天8 000元.18.参考答案:设从B 市调运x (0≤x ≤6)台到C 市,则总运费y =300x +500(6-x )+400(10-x )+800[8-(6-x )]=200x +8 600(0≤x ≤6). (1)若200x +8 600≤9 000,则x ≤2.y =1-x 2, y =x +m所以x =0,1,2,故共有三种调运方案.(2)由y =200x +8 600(0≤x ≤6)可知,当x =0时,总运费最低,最低费用是8 600元.19.参考答案:(1)根据表中数据,表述西红柿种植成本Q 与上市时间t 的变化关系的函数决不是单调函数,这与函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 均具有单调性不符,所以,在a ≠0的前提下,可选取二次函数Q =at 2+bt +c 进行描述.把表格提供的三对数据代入该解析式得到:150250500 62108110100 1215050500 2=++=++=++c b a c b a c b a 解得a =2001,b =-23,c =2425. 所以,西红柿种植成本Q 与上市时间t 的函数关系是Q =2001t 2-23t +2425.(2)当t =-2001223-⨯=150天时,西红柿种植成本Q 最低为 Q =2001×1502-23×150+2425=100(元/100 kg ).20.参考答案:高为88 cm ,宽为55 cm .解析:设画面高为x cm ,宽为λx cm ,λx 2=4 840,设纸张面积为S ,有S =(x +16)( λx +10)=λx 2+(16 λ+10)x +160,将λ=2840 4x 代入上式可得,S =10(x +x 48416⨯)+5 000=10(x -x88)2+6 760, 所以,x =x 88,即x =88 cm 时,宽为λx =55 cm ,所用纸张面积最小.期末测试 参考答案一、选择题1.B 解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5. A 6.B 7.C 8.D9.D 解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫ ⎝⎛21>1,得b <0,所以选D 项.10.C 解析:∵ 4x >0,∴0≤16- 4x <16,∴x 416-∈[0,4).11.A 解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确.12.A13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x -11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B .二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0).17.参考答案:[4,+∞).18.参考答案:(-8,+∞).三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3, ∴ 函数f (x )的定义域为(-3,3).(2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称,且f (-x )=lg (3-x )+lg (3+x )=f (x ),∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a 因为a >2,所以,y 1=(a +2)x +2(x ≥-1)是增函数,且y 1≥f (-1)=-a ;另外,y 2=(a -2)x -2(x <-1)也是增函数,且y 2<f (-1)=-a .所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为50000 3600 3-=12,所以这时租出了100-12=88辆车. (2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050.当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。
高一数学人教版必修一第一章《集合与函数概念》单元测试题(含答案)

三、解答题 :每小题 12 分,共 60 分
16、设 A { x Z || x | 6} , B 1,2,3 , C
3,4,5,6 ,求:
(题目有错漏,需修改,要么改为① A { x Z x 6} ,要么改为② C { 3,4,5} )
( 1) A (B C ) ;( 2) A C A (B C )
的元素 ( 1,2) 对应的 B 中的元素为(
A)
(A ) ( 3,1)
( B) (1,3)
( C) ( 1, 3)
(D ) (3,1)
5、下列各组函数 f ( x)与 g (x) 的图象相同的是( D )
(A ) f ( x) x, g( x) ( x ) 2
(B ) f ( x) x2 , g(x) (x 1) 2
第一章 《集合与函数概念》单元测试题
姓名:
班别:
学号:
一、选择题:每小题 4 分,共 40 分
1、在“①高一数学课本中的难题;②所有的正三角形;
2
③方程 x 2 0 的实数解”中,能够
表示成集合的是 ( A )
(A )② ( C )②③
( B)③ ( D)①②③
2、若 A x | 0 x 2 , B x |1 x 2 ,则 A B ( D )
元?
解: 设每天从报社买进 x 份,每月所获的利润为 f( x),则
① 当每天购入少于或等于 250 份的报纸的时候,全部都卖光了,则
f( x) =( 1-0.9) *30*x
故 f ( x)在 x
x 0 的值域为
,2
综上得, f ( x)的值域为 2,
,2
19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份
人教版高中数学必修一《集合与函数概念》单元习题课及同步测评(含答案)

高一数学《集合与函数概念》单元习题课一、集合概念1. 已知全集R =U ,设函数()12lg -=x y 的定义域为集合M ,集合{}2≥=x x N ,则)(N C M U 等于.A ]221[, .B )221[, .C ]221(, .D )221(,2. 定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.已知集合{1,2},{2,3}A B ==,则集合A B ⊗的所有元素之和为________.二、函数概念 1.函数概念(1)下列各组中的两个函数是同一函数的为 ①1)5)(1(+-+=x x x y ,5-=x y ②x y =,33x y =③x y =,2x y = ④()()21log 2--=x x y ,()1log 2-=x y +()2log 2-x.A ①② .B ③④ .C ② .D ②③2.函数定义域(1)函数22()log (43)f x x x =-+的定义域为___________________(2) 函数1()f x x=的定义域为 . (3)函数)13lg(13)(2++-=x xx x f 的定义域是(A)),31(+∞- (B) )1,31(- (C))31,31(- (D) [)1,0 3.函数值域 (1) (2)(4) 函数()2x f x =在定义域A 上的值域为[]14,,则函数()()2log 2f x x =+在定义域A 上的值域为 .(5)若函数x x y 22-=的定义域为[]m ,1-,值域为[]31,-,则实数m 的取值范围是 . 4.函数解析式(1)已知1(1)232f x x -=+,()6f m =,则m 等于( )A .14 B .32-C .32 D .14-(2)三、函数性质 1.函数的单调性2.函数的最值(3)若函数2lg(1)y x =+的定义域为[a ,b ],值域为[0,1],则a + b 的最大值为( )A .3B .6C .9D .103.函数的奇偶性(1)已知4)(57-+=bx ax x f ,其中b a ,为常数,若4)3(=-f ,则)3(f 的值等于.A 8- .B 10- .C 12- .D 4-(2)设函数)(x f 为定义在R 上的偶函数,当0>x 时,x x f ln )(=,则0)(>x f 的解集为( ) A 、),1(+∞ B 、),1()1,0(+∞ C 、),1()0,1(+∞- D 、),1()1,(+∞--∞4.综合问题(1)已知2()3g x x =--,()22f x ax bx c =-+()0a ≠,()()f x g x +为R 上的奇函数.①求a ,c 的值;②若[]12x ∈-,时,()f x 的最小值为1,求()f x 解析式.(2)已知函数12(),12xxf x x R -=∈+. ①判断并证明函数()f x 的奇偶性;②求函数()f x 的值域.(3)设函数11()221xf x =-+, (Ⅰ)证明函数()f x 是奇函数;(Ⅱ)证明函数()f x 在(,)-∞+∞内是增函数; (Ⅲ)求函数()f x 在[1,2]上的值域。
高一上学期数学《集合与函数概念》单元检测卷(B)含答案解析

第一章 集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .sin 30,tan 45,cos 60︒︒︒2. 设集合M 是由不小于23的数组成的集合,a =11,则下列关系中正确的是( )A .a ∈M B .a ∉MC .a =MD .a ≠M3.下列图形中,不能确定y 是x 的函数的是( )4..A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -106.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-568.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .09.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .510.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2]D .(-∞,0)11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-xx ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.第一章集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生︒︒︒D.sin30,tan45,cos60【答案】:C【解析】:A,B,D中研究的对象不确定,因此不能构成集合.2. 设集合M是由不小于23的数组成的集合,a=11,则下列关系中正确的是( )A.a∈M B.a∉M C.a=M D.a≠M【答案】:B【解析】:判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.∵11<23,∴a∉M.3.下列图形中,不能确定y是x的函数的是( )【答案】:D【解析】:任作一条垂直于x轴的直线x=a,移动直线,根据函数的定义可知此直线与函数图象至多有一个交点.结合选项可知D不满足要求,因此不表示函数关系.4..A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10【答案:】A【解析】:法一 设t =x -1,则x =t +1,∵f (x -1)=x 2+4x -5,∴f (t )=(t +1)2+4(t +1)-5=t 2+6t ,f (x )的表达式是f (x )=x 2+6x ;法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x ;∴f (x )的表达式是f (x )=x 2+6x .故选A .6.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M【答案】:D【解析】:由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-56【答案】:A【解析】:f(14)=2×14-1=-12,f(76)=f(76-1)+1=f(16)+1=2×16-1+1=13,∴f(14)+f(76)=-16,故选A.8.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .0【答案】:C【解析】:由题意a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2,综上知a =±2.9.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .5【答案】:C【解析】:A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.10.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2] D .(-∞,0)【答案】:C【解析】:若f (x )是R 上的增函数,则应满足21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得-3≤a ≤-2.11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2 D .f (x )=-2x【答案】:C【解析】: 若f (x )=|x |,则f (2018x )=|2018x |=2018|x |=2018f (x );若f (x )=x -|x |,则f (2018x )=2018x -|2018x |=2018(x -|x |)=2018f (x );若f (x )=x +2,则f (2018x )=2018x +2,而2018f (x )=2018x +2018×2,故f (x )=x +2不满足f (2018x )=2018f (x );若f (x )=-2x ,则f (2018x )=-2×2018x =2018×(-2x )=2018f (x ).故选C.12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21【答案】:D【解析】:由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B }所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去), 3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B中的所有元素数字之和为21.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-x x ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).【答案】:⑤【解析】: ①f (x )与g (x )的定义域不同,不是同一函数;②f (x )与g (x )的解析式不同,不是同一函数;③f (x )=|x +3|,与g (x )的解析式不同,不是同一函数;④f (x )与g (x )的定义域不同,不是同一函数;⑤f (x )与g (x )的定义域、值域、对应关系皆相同,故是同一函数.14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.【答案】:-26【解析】:法一 由f (x )=x 5+ax 3+bx -8,得f (x )+8=x 5+ax 3+bx .令G (x )=x 5+ax 3+bx =f (x )+8,∵G (-x )=(-x )5+a (-x )3+b (-x )=-(x 5+ax 3+bx )=-G (x ),∴G (x )是奇函数,∴G (-3)=-G (3),即f (-3)+8=-f (3)-8.又f (-3)=10,∴f (3)=-f (-3)-16=-10-16=-26.法二 由已知条件,得5353(3)(3)(3)(3)8,(3)3338f a b f a b ⎧-=-+-+--⎨=+⋅+⋅-⎩①②①+②得f (3)+f (-3)=-16,又f (-3)=10,∴f (3)=-26.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.【答案】:2【解析】:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组2331y x x y x ⎧=-+⎨=⎩,解得1313x y ⎧=⎪⎪⎨⎪=⎪⎩,或11x y =⎧⎨=⎩故A ∩B =()11,,1,133⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,所以A ∩B 中含有2个元素.法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.【答案】:-92【解析】:因为函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集所以不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以01212a b b a ⎧⎪<⎪+=-⎨⎪⎪⨯=⎩,解得323a b ⎧=-⎪⎨⎪=-⎩所以a +b =-32-3=-92.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解:全集U ={x|x≥2或x≤1},∴A∩B =A ={x|x<1或x>3};A ∪B =B ={x|x≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2};(∁U A)∪(∁U B)=∁U (A∩B)={x|2≤x≤3或x =1}.18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,易知2<a <a +1<4,解得2<a <3.故实数a 的取值范围是(2,3).19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.解:∵f(x)为偶函数,∴f(1-m)<f(m)可化为f(|1-m|)<f(|m|),又f(x)在[0,2]上是减函数,∴|1-m|>|m|,两边平方,得m<12,又f(x)定义域为[-2,2],∴{-2≤1-m ≤2,-2≤m ≤2,,解之得-1≤m≤2,综上得m ∈[-1,12).20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.解:因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得2224(1)4(1)02(1)410a a a a ⎧∆=+-->⎪-+=-⎨⎪-=⎩解得a =1;②当B ≠∅且B A ≠⊂时,B ={0}或B ={-4},且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,所以2121a a ->-⎧⎨-≤⎩,解得:1<a ≤3故实数a 的取值范围是(1,3].22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.解:(1)f(x)在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,f(x 1)-f(x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1).∵x 1-x 2<0,(x 1+1)(x 2+1)>0,∴f(x 1)<f(x 2).∴函数f(x)在[1,+∞)上是增函数. (2)由(1)知函数f(x)在[1,4]上是增函数,∴最大值为f(4)=2×4+14+1=95,最小值为f(1)=2×1+11+1=32.高中11。
高一数学必修一集合与函数的概念单元测试题附答案解析

高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学必修1《集合与函数概念》测试卷(含答案)

高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
(完整版)高一数学必修一第一章集合与函数测试卷.docx

高一数学必修一第一章集合与函数测试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用描述法表示一元二次方程的全体,应是()A .{ x | ax 2+bx +c =0, a , b , c ∈ R }B .{ x | ax 2+bx +c =0, a , b , c ∈ R ,且 a ≠ 0}C .{ 2+ + =0| a , , ∈ R }axbx cb cD .{ ax 2+bx +c =0|a , b , c ∈ R ,且 a ≠ 0}2.已知 x | x 21 0A1, 0 ,1 集合 A 的子集个数是()A . 3B . 4C . 6D .83.函数 f ( x)x 1, x1,1,2 的值域是()A 0 ,2, 3By3C{ 0,2,3}D [0,3]4. 函数 f ( x)x 2 2(a 1)x 2 在区间,4 上是递减的, 则实数 a 的取值范围为()A a 3B a 3 Ca 5Da 55.设集合 A 只含一个元素 a ,则下列各式正确的是 ( )A . 0∈AB . a AC . a ∈AD .a = A6.图中阴影部分所表示的集合是()A.B ∩[ C U (A ∪ C)]B.(A ∪B) ∪ (B ∪C)C.(A ∪C)∩ (C B)D.[ C (A ∩ C)]∪ BUU7.设集合 P={立方后等于自身的数},那么集合 P 的真子集个数是( )A . 3B . 4C . 7D . 8 8、下列四组函数中表示同一函数的是()A 、 f (x)=| x |与 g(x)=x 2B 、 y=x 0 与 y=1C 、 y=x+1 与 y= x21D、 y=x - 1 与 y= x 22x 1x 19.已知 A 、B 两地相距 150 千米,某人开汽车以60 千米 / 小时的速度从 A 地到达 B 地,在 B地停留 1 小时后再以 50 千米 / 小时的速度返回 A 地,把汽车离开 A 地的距离 x 表示为时间 t (小时)的函数表达式是()A . x =60tB. x =60t +50t60t, (0 t 2.5)60t,(0 t2.5)D. x =150,(2.5 t 3.5)C . x =50t,(t3.5)150150 50(t 3.5), (3.5 t 6.5)10.已知 ()=1-4x,f [ (x )]= 1 x 20), 则 f ( 1) 等于()g xg2(x2xA . 20B . 35C . 65D . 30x 2( x 1)11.已知 f ( x)x 2 ( 1x 2) ,若 f (x)3 ,则 x 的值是()2x( x 2)A .1B . 或3C . ,3或 3 D . 3121 212.下列四个命题( 1) f(x)=x 21 x 在 [1,2] 上有意义 ;( 2)函数是其定义域到值域的映射 ;( 3)函数 y=2x(xN ) 的图象是一直线;( 4)函数 y= x 2 , x 0的图象是抛物线,其中正确的命题个数是()x 2 , xA . 0B . 1C . 2D . 313、已知函数 g( x2) 2x 3 ,则 g( 3 )( )A 、 9B、 7C、5 D、 314.设函数 f ( x) 2x 3, g( x 2) f ( x) ,则 g( x) 的表达式是()A . 2x 1B . 2x 1C . 2x 3D . 2x 715.已知集合 M {4,7,8},且 M 中至多有一个偶数 , 则这样的集合共有( )(A)3 个(B) 4个(C) 5个(D) 6个16. 已知 S { x / x 2n,n Z} , T { x / x4k 1,k Z} , 则()(A)S T(B) TS(C)S ≠ T(D)S=T17. 函数yx 2 4x 3, x [0,3] 的值域为( )(A)[0,3](B)[-1,0] (C)[-1,3] (D)[0,2]18.下述函数中,在(,0] 内为增函数的是()A y = x 2 -2By =3Cy = 1 2xDy( x 2)2x19. 在区间 (0 ,+∞ ) 上不是增函数的函数是( )A . y =2x + 1B . y =3x 2 +1C. y =2D. y =2x 2+ x + 120.设函数 f ( x ) 是(-xa, + )上的减函数,又若 R ,则()A . f ( a )> f (2 a )B . f ( a 2 )< f(a)C . f (22a a )< f ( a ).( a +1)< f( a )+D f二、填空题:请把答案填在题中横线上.1. 已知全集 U2,3, 2 a 1, A 2,3 ,若 C U A 1,则实数 a 的值是a 2.函数 y =( x - 1) 2 的减区间是 ____.3.设集合 A={ x 3 x 2 },B={x 2k 1 x2k 1}, 且 AB ,则 k 的取值范围是4. 已知集合 A{ x | ax 2 3x2 0} . 若 A 中至多有一个元素,则a 的取值范围是5.若函数2.f ( x )=2 x +x +3,求 f ( x ) 的递减区间是6.已知 x [0,1], 则函数 y = x 2 1 x 的值域是.7. 函数 yx 2 ax3(0a2)在 [ 1,1] 上的最大值是,最小值是.三.求下列函数的定义域:( 1 ) y =x + 13x 41x + 2( 2 ) y( 3 ) y =2x 16-5x - x(4) y = 2x - 1 + (5 x - 4) 0 ( 5) y =1 + - x + x +4x - 1 x + 3四.求下列函数的解析式:(1)已知 f (x) x 22x,求 f (2x 1) ; (2)已知 f ( x1) x 2 x ,求 f (x) ;(3)若 f ( x 1) 2x 2 1,求 f ( x)(4)已知 f (x1) x 22 x 1,求 f ( x)(5)已知 f (x) 是一次函数满足 f ( f ( x)) 4x 6 ,求 f (x)五.求值域(1)求函数 y x 2 4x 6, x (1,5) 的值域(2) y x 4x 4 的值域x,( x2)(3)求函数 f (x)2的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D. M= {x I x<-l, 或一 1<兀<(), 或 x>()=, N= {ylyHO}
6. 已知 A 、B 两地相距 150 千米,某人开汽车以 60 千米 / 小时的速度从 A 地到达 B 地, B 地停留 1 小时后再以 50 T 米/ 小时的速度返冋 A 地,把汽车离开 A 地的距离 x 表示 为时
C. { ax2+bx+c=O la, b, cGR} D. { ax2-^-bx+c=O I d, b, cWR,且 aHO}
2. 图中阴影部分所表示的集合是 (
)
A.BA [Cu(AUC)]
B.(AUB) U(BUC)
3. 设集合 P 二{ 立方后等于白身的数 }, 那么集合 P 的真子集个数是
16. (12 分) 集合 A={(x,y)*2 + inx — y + 2 = 0 } ,集合 B={(x,y) 卜一 y+ 1 = 0,且 05 兀 52}, 又 AC/H0, 求实数 m 的取值范围 .
17. (12 分) 已知砂
2 xe ( 一 8,1) 心 1,+8) '求两的值
18. (12 分) 如图,用长为 1 的铁丝弯成卜 - 部为矩形,上部为半圆形的框 架,
A. 3
B. 4
C. 7
4. 设 P 二{ 质数 } , Q= { 偶数 }, 贝 1JPPQ等于
A. C.(AUC ) n( CuB)
B. 2
C. {2}
D. [Cu(ACC)] UB
D. 8 D. N
1 f(x)= 』x_2 + J1 —兀启意义 ;
2 函数是其定义域到值域的映射; 3 函数 y=2x(xwN) 的图象是一直线 ;
A. f(a)>f(2a)
C ? f(aha)<f(a)
二、填空题:请把答案填在题屮横线上
B ? /(a2)</ (a) D. .f(/+l)g) ( 每小题 6 分,共 24 分).
Байду номын сангаас
(
)
(
)
11. 设集合 A={ ^| -3 < x < 2 },B={x|2Z: -1 < % < 2Z: +1), 且 ARB,则实数 R 的取值范围
是 ________ .
12. 函数 / W 的定义域为则 F (x)
的定义域是 ___________.
13. 若函数 /U)=(K ? 2)/+(K ? l)x+3 是偶函数,则心 ) 的递减区间是 ______________ ? 14. 已知疋 [0,1], 则函数尸厶 + 2-Jl-x 的值域是 ______________________.
5. 设函数 y= ------- 的定义域为 M, 值域为 N,那么 1+-
A. M= {x I 兀工 0} , N= {y I yHO} B. M= {x I x<Oj=Lx^-l, 或 x>0} ,N={y I y<0, 或 0Vy<l, 或 y>l}
C. M= {x I xH()} , N= {y I) ?R}
新课标数学必修 1 第一章集合与函数概念测试题
一、选择题:在每小题给出的四个选项中,只冇一项是符合题冃要求的,请把止确答案的代
号
填在题后的括号内 ( 每小题 5 分,共 50 分) 。
1. 用描述法表示一元二次方程的全体,应是
A. {x I aj3+bx+c=O f a, b, c?R} B. (x I flx 1 2 3+/?x+c=0, a, b, c^R, 一 FL QHO}
若半圆半径为兀,求此框架围成的面积 y 与兀的函数式 并写出它的定义
C
域.
19. (14 分) 已知 /(x) 是 R 上的偶函数, 且在 (0,+ X)上单调递增, 并且 /(x)<0 对一
切 xw R
成立,试判断 - 一 在(-00,0)上的单调性,并证明你的结论 . 20. (14 分) 指出函数 /(x) = x + - 在(- oo,-l],[-1,0 ) 上的单调性 , 并证明之
一、 DACCB DCBA D
参考答案 ( 5)
二、
11. {刈一 1 5 k 5 二} ;
12. [a,-G]; 13. [0, +°°];
14.
— 1,-^3 ] ;
三、 15.解: CuA= {xl ? lW? xW3}; CuB 二{xl ? 53? 1 或 1 WxW3 };
(CuA)Q(CuB) 二{xllW%W3 }; (CLA)U(CuB)= {xl ? 5WxW3 }=U; CU(A0B)=U ;
间 t ( 小时 ) 的函数表达式是
A. x=60/
B. x=60/+50/
60r,(0<z <2.5) C. x=
15()-50z,(r>3.5)
6()Z,(0<r<2.5)
D.
150,(2.5 <r<3.5)
150 — 50(f — 3.5),(3.5 vf 56.5)
7. 已知 g(x)=l ? 2x 恥)]= — x2 兀( 心 0),则/( 斗) 等于 厂
A- 1
B. 3
C. 15
D. 3()
8. 函数 y=71-X 2 + 1+X
A. 奇函数 B? 偶函数 下列四
个命题 x
C. 既是奇函数又是偶函数
D.非奇非偶数
(4)函数 y=f
>0 ■ 的图象是抛物线 , 其屮正确的命题个数是 x<0
A. 1
B. 2
C. 3
D. 4
10.设函数 f(x) 是( 一 00 , + °° ) 上的减函数, 又若 aWR,贝 IJ
三、解答题:解答应写出文字说明、证明过程或演算步骤 ( 共 76 分).
15. (12 分) 已知 , 全集 U={jd-5WxW3},
A=/xl-5Wxv-1}, B={xl-1 Wxvl}, 求 CuA,
CuB, (CuA)G(CuB), (CuA)U(CuB),
Cu(AAB), Cu(AUB), 并指出具屮相关的集合 .
CU(AUB)= { XI10W3}.
相等集合冇 (CuA) Q (CuB)= Cu(A U B) ; (CtiA) U (C VB)= Cu(A A B).
16. 解:由 ACBH0 知方程组加兀一歹 + 20 在 osxs2内有解,消去 y, [兀 - y +1 = 0
得 x2+(/??-1)^=0 在 0 Wx W 2 内有解, A = (m — l) 2 — 4 n 0 即加 X 3 或〃? 5-1.