1 第1课时 集合的概念
高中数学必修一必修1全章节ppt课件幻灯片

(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
第一课时集合的概念课件-高一上学期数学人教A版(2019)必修第一册

[问题] (1)奋战在抗疫前线的医疗工作者中涌现出了许多英雄人物,这些 英雄人物能否构成一个集合?
(2)疫情就是命令,人民子弟兵迅速奔赴一线,带着中国军人特有的精神 冲在最前面.参与武汉救援的所有中国军人能否构成一个集合?
知识点一 元素与集合 1.元素
2.集合
3.集合中元素的三个特征 (1)确定性:给定一个集合,任何一个对象是不是这个集合的元素必须是 确定的.其作用为判断一组对象能否组成集合; (2)互异性:对于给定的一个集合,它的任何两个元素都不相同,相同的 对象只能算一个元素; (3)无序性:集合中的元素没有先后顺序,只要一个集合的元素确定,则 这个集合也随之确定,与元素的排列顺序无关.
3.(变条件)已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值. 解:由a∈A可知, 当a=1时,此时a2=1,与集合元素的互异性矛盾, 所以a≠1. 当a=a2时,a=0或a=1(舍去). 综上可知,a=0.
根据集合中元素的特性求值的三个步骤
[跟踪训练]
1.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形
a+1< ( 3)2=5+
2
6>5,所以a2∉A,1a=
1 2+
3=(
2+
3- 2 3)( 3-
2)=
3-
2<5,所
以1a∈A.
(2)由题意可得:x为自然数,所以
6 3-x
可以为2,3,6,因此x的值为2,
1,0.因此A中元素有2,1,0.
[跟踪训练] 用∈,∉填空: 已知集合A中的元素x是被3除余2的整数,则有:17_______A,-5________A. 解析:由题意可设x=3k+2,k∈Z ,
令3k+2=17得,k=5∈Z .所以17∈A. 令3k+2=-5得,k=-73∉Z .所以-5∉A. 答案:∈ ∉
高中数学第1章集合与常用逻辑用语1.1集合的概念第1课时集合的含义人教A版必修第一册

1.(变条件)本例若去掉条件“a∈A”,其他条件不变,求实数a的取 值范围.
点、易混点)
自主预习 探新知
1.元素与集合的相关概念 (1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母 a,b,c,… 表示. (2)集合:一些元素组成的总体叫做集合(简称为集),常用大写拉丁 字母 A,B,C,… 表示. (3)集合相等:指构成两个集合的元素是一样 的. (4)集合中元素的特性:确定性 、互异性和无序性 .
元素与集合的关系
【例2】 (1)下列所给关系正确的个数是( )
①π∈R;② 2∉Q;③0∈N*;④|-5|∉N*.
A.1
B.2
C.3
D.4
(2)已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为
() A.2
B.2或4
C.4
D.0
(1)B (2)B [(1)①π是实数,所以π∈R正确; ② 2是无理数,所以 2∉Q正确;③0不是正整数,所以0∈N*错误; ④|-5|=5为正整数,所以|-5|∉N*错误.故选B. (2)集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,a=2∈A,6-a =4∈A, 所以a=2, 或者a=4∈A,6-a=2∈A, 所以a=4, 综上所述,a=2或4.故选B.]
第一章 集合与常用逻辑用语
1.1 集合的概念 第1课时 集合的含义
学习目标
核心素养
1.通过实例了解集合的含义.(难点) 1.通过集合概念的学习,逐步
集合的概念

第一章集合与函数概念1.1 集合第一课时集合的含义与表示一、元素与集合1.定义:(1)元素:一般地,把所研究的____统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:一些元素组成的总体,简称为__,常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是____的.*对集合相关概念的理解(1)集合的含义:集合是数学中不加定义的原始概念,我们只对它进行描述性说明,其本质是某些确定元素组成的总体.(2)元素:集合中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、所触摸到的、所能想到的各种各样的事物或一些抽象符号等,都可以看作集合的元素(3)整体:集合是一个整体,已暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成集合,那么这个集合就是这些对象的全体,而并非个别对象.3.集合中元素的特性:______、______和_______.确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.说明:(1)根据集合中元素的确定性可知,对任何元素a和集合A,在a∈A和a∉A两种情况中有且只有一种成立.(2)符号“∈”和“∉”只是表示元素与集合之间的关系.4.元素与集合之间的关系(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)如果a不是集合A的元素,就说a不属于集合A,记作a A【跟踪】(1)在一个集合中可以找到两个相同的元素.( )(2)漂亮的花组成集合.( )(3)本班所有的姓氏组成集合.( )(4)由3个不同的元素进行排序可以构成6个不同的集合.( )二、常用的数集及其记法非负整数集(即自然数集)记作:N正整数集:N*或 N+整数集Z有理数集Q实数集R例1:1.下列说法中正确的序号是 .①高一(四)班学习成绩较好的同学组成一个集合;②中国海洋大学2013级大一新生组成一个集合;③参加2012年伦敦奥运会的所有国家组成一个集合;④未来世界的高科技产品组成一个集合.2.判断下列说法是否正确,并说明理由.(1)1,0.5,31,52组成的集合含有四个元素.(2)方程x2+2x+1=0的解集中有两个元素.(3)组成单词china的字母组成一个集合.【变式训练】1.下列对象能组成集合的是( )A.充分小的负数全体B.爱好音乐的一些人C.某班本学期视力较差的同学D.某校某班某一天所有课程2.指出下列集合中的元素:(1)young中的字母组成的集合.(2)book中的字母组成的集合. 例2.元素与集合的关系1.下列所给关系中正确的个数是( )①π∈R;②∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.42.设直线y=2x+3上的点集为P,点(2,7)与点集P的关系为(2,7)_________P(填“∈”或“∉”).【变式训练】A中的元素集合A是由形如m∈Z,n∈Z)例3.集合中元素互异性的简单应用1.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( )A.2B.3C.0或3D.0,2,3均可2.设由2,4,6构成的集合为A,若实数a满足a∈A时,6-a∈A,则a=_____________.【变式训练】1.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( )A.1B.-2C.6D.22.已知集合A中含有两个元素a和a2,若1∈A,则实数a的值为( )A.1B.-1C.1或-1D.以上都不对3.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为( )A.0B.1C.-1D.1或-1课堂练习:1.下列各组对象中不能组成集合的是( )A.某科教文化股份有限公司的全体员工B.文化书店的所有书刊C.2013年考入清华大学的全体学生D.美国NBA的篮球明星2.设集合A只含一个元素a,则下列表示正确的是( )A.{a}≠AB.a∉AC.a∈AD.a=A3.若以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合为M,则M中元素的个数为( )A.1B.2C.3D.44.设A表示“中国所有省会城市”组成的集合,则:深圳_____A,广州_____A (填“∈”或“∉”).5.由实数x,-x所组成的集合中元素最多有 ________个.6.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.第2课时集合的表示集合的常用表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内。
集合的含义课件-高一数学人教A版(2019)必修第一册

9.问题8说明集合中的元素具有什么性质?
互异性.一个给定集合的元素是互不相同的,即集合中的元素
是不重复出现的,这就是集合的互异性.
10.由实数1、2、3组成的集合记为M,由实数3、1、2组成的集
合记为N,这两个集合中的元素相同吗?这说明集合中的元素具
有什么性质?由此类比实数相等,你发现集合有什么结论?
(5)由既在R中又在N*中的数组成的集合中一定包含数0( × )
(6)不在N中的数不能使方程4x=8成立( √ )
六、归纳小结
知识方面
你收获到
了什么?
获取知识的思想方法方面
体验和感悟
七、布置作业
1. 分层作业;
2.教材P5练习1、2,习题1.1复习巩固第1题。
谢谢您的倾听!
集合M和N相同.这说明集合中的元素具有无序性,即集合中的
元素是没有顺序的.可以发现:如果两个集合中的元素完全相
同,那么这两个集合是相等的.
三、概念形成
1.元素与集合的概念
(1)一般地,把研究对象统称为元素,表示:a,b,c,d,…
(2)把一些元素组成的总体叫做集合,表示:A,B,C,D,…
2.元素与集合的关系
(4)与0接近的全体实数;
×
(5)到线段的两个端点距离相等的所有点。 √
4.常用数集及其记法:
集
非负整数
正整数
合 (自然数集)
集
记
法
N
N*或N+
整数集
有理数
集
实数集
Z
Q
R
常用数集的表示方法:
正整数集:N+或N﹡
自然数集: N
整数集: Z
有理数集: Q
实数集: R
人教版数学必修一 第一章 1.1.1 集合的含义与表示

问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性
高三数学第一轮复习《第1课时 集合的概念及其基本运算》课件
探究提高 在解决两个数集关系问题时,避免出错的 一个有效手段即是合理运用数轴帮助分析与求解,另 外,在解含有参数的不等式(或方程)时,要对参数 进行讨论.分类时要遵循“不重不漏”的分类原则, 然后对每一类情况都要给出问题的解答. 分类讨论的一般步骤:①确定标准;②恰当分类; ③逐类讨论;④归纳结论.
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
4 则 a
1 a
1 2
2
,
a a
8 1.
2
1 2
a
0;
当a>0时,若B A,如图,
则4 a
1 a
2
1
2
,
a a
2 .0
2
a
2.
综上知,当B
A时,
1 2
a
2
(3)当且仅当A、B两个集合互相包含时,A=B.
由(1)、(2)知,a=2.
( B)
A.a<1 B.a≤1 C.a<2 D.a≤2
解析 由图象得a≤1,故选B.
明年目标
工作详情
题型一 集合的基本概念
【例1】 集合A={0,2,a},B={1,a2},
若A∪B={0,1,2,4,16},则a的值为 ( )
A.0
B.1
C.2
D.4
思维启迪 根据集合元素特性,列出关于a的方程
则A∩( UB)等于 A.{x|0≤x<1}
(B) B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
解析 ∵B={x|x>1},
∴ UB={x|x≤1}. 又A={x|x>0},
∴A∩( UB)={x|0<x≤1}。
1.1集合的概念(人教A版2019 必修第一册)
[答 案]
D
[解 析]
∵3-1=2>
,∴3∉A. 又-3-1=-4<
3
)
,∴-3∈
A.
3
(四)集合的表示
【思考4】
(1) 地球上的四大洋组成的集合如何表示?
(2) 方程(x+1)(x+2)=0的所有根组成的集合,又如何表示呢?
(3) 通过思考以上问题大家能总结归纳出列举法的特点吗?
列举法:
把集合的所有元素一 一列举出来,
思考:a,b与集合A分别有什么关系?
元素与集合的关系:
如果a是集合A中的元素,就说a 属于 集合A,记作 a A ;
如果a不是集合A中的元素,就说a 不属于 集合A,记作 a A .
(三)元素与集合的关系
元素与集合关系:
唯一性
a是不是集合A中的元素,只有属于与不属于两种关系
符号 与 具有方向性,左边是元素,右边是集合
使用前提
推理法
对于某些不便直接表示的集合
首先明确已知集合的元素具有什么特征,然后
判断方法
判断该元素是否满足集合中元素所具有的特征
即可
(三)元素与集合的关系
巩固练习1
已知集合A中的元素x满足x-1<
3,则下列各式正确的是(
A.3∈A且-3∉A
B.3∈A且-3∈A
C.3∉A且-3∉A
D.3∉A且-3∈A
R
正确
选项C,0不是正整数,所以0∈N*错误
选项D,|-5|=5为正整数,所以|-5|∉N*错误
D. 5 N *
(三)元素与集合的关系
【类题通法】 判断元素与集合关系的两种方法
直接法
使用前提
高中数学《集合的概念》教案11 新人教B版必修1
第一课时集合-集合的概念教学目的:〔1〕使学生初步理解集合的概念,知道常用数集的概念及记法〔2〕使学生初步了解“属于〞关系的意义〔3〕使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时罗华的手稿1831年1月伽罗华在教具:多媒体个结论,他写成论文提交给法国科、实物投影仪内容分析:1.集合是中学数已证明的一个结果可以说明伽罗华学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初议科学院否定它1832年5月30日中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解忙写成后,委托他的朋友薛伐里叶集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对造福人类1832年5月31日离开了逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识,他死后14年,法国数学家X维问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是于X维尔主编的《数学杂志》上本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集〞这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔〔德国数学家〕〔见附录〕;4.“物以类聚〞,“人以群分〞;5.教材中例子〔P4〕二、讲解新课:阅读教材第一部分,问题如下:〔1〕有那些概念?是如何定义的?〔2〕有那些符号?是如何表示的?〔3〕集合中元素的特性是什么?〔一〕集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念〔1〕集合:某些指定的对象集在一起就形成一个集合〔简称集〕〔2〕元素:集合中每个对象叫做这个集合的元素〔3〕元素对于集合的隶属关系〔4〕集合中元素的特性确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可在时称属于,即a 是集合A 的元素,就说a 属于A ,记作a ∈A 集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……“∈〞的开口方向,不能把a ∈A 颠倒过来写不在时称,不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉互异性:集合中的元素没有重复无序性:集合中的元素没有一定的顺序〔通常用正常的顺序写出〕2、集合的表示方法:〔1〕列举法:在大括号内将集合中的元素一个个列举出来,元素之间用逗号隔开,具体又分以下三种情况:①元素个数少且有限时,全部列举;如{1,2,3}②元素个数多且有限时,可以列举部分,中间用省略号表示,列举几个元素,取决于能否普遍看出其规律,称中间省略列举。
新教材高中数学第一章预备知识1集合1-1集合的概念与表示第1课时集合的概念课件北师大版必修第一册
2.(多选题)下列关系正确的是( BD )
A.0∈N+
B.(√2 − √7)∉Q
C.0∉Q
D.8∈Z
3.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边
形一定不是(
)
A.梯形 B.平行四边形
C.矩形 D.菱形
答案 C
解析 因为集合中的元素具有互异性,所以a≠b,即四边形对角线不相等,故选
可能只含有一个元素.
本节要点归纳
1.知识清单:
(1)元素与集合的概念、元素与集合的关系;
(2)集合中元素的三个特性及应用;
(3)常用数集的表示.
2.方归纳:分类讨论.
3.常见误区:忽视集合中元素的互异性.
学以致用•随堂检测全达标
1.(2022湖北襄阳月考)判断下列各组对象可以组成集合的是(
)
(1)1
N+;
(2)-3
N;
1
(3)3
Q;
(4)√3
1
(5)-2
(6)π
Q;
R;
R+.
答案 (1)∈ (2)∉
(3)∈ (4)∉ (5)∈
(6)∈
重难探究•能力素养全提升
探究点一 集合的概念
【例1】 给出下列各组对象:
①我们班比较高的同学;②无限接近于0的数的全体;③比较小的正整数的
全体;④平面上到点O的距离等于1的点的全体;⑤正三角形的全体;⑥ √的
第一章
第1课时 集合的概念
课标要求
1.通过实例,了解集合的含义.
2.掌握集合中元素的三个特征.
3.理解元素与集合的“属于”关系.
4.记住常用数集及其记法.
内
容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 集合的概念 第1课时 集合的概念
考点 学习目标 核心素养 集合的概念 了解集合与元素的概念 数学抽象
元素与集合的关系 理解元素与集合的关系,掌握数学中一些常见的集合及其记法 数学抽象、逻辑推理
集合中元素的特征及应用 理解集合中元素的特征,并能利用它们进行解题 数学运算、数学抽象
问题导学 预习教材P2-P3,并思考以下问题: 1.集合和元素的概念是什么? 2.如何用字母表示集合和元素? 3.元素和集合之间有哪两种关系? 4.常见的数集有哪些?分别用什么符号表示?
1.元素与集合的概念 (1)元素:一般地,我们把研究对象统称为元素.元素通常用小写拉丁字母a,b,c,…表示. (2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写拉丁字母A,B,C,…表示. (3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的. (4)元素的特性:确定性、无序性、互异性. ■名师点拨 在解决集合问题时,首先要明确集合中的元素是什么,集合中的元素可以是点,也可以是一些人或一些物. 2.元素与集合的关系 关系 语言描述 记法 读法
属于 a是集合 A中的元素 a∈A a属于集合A
不属于 a不是集合 A中的元素 a∉A a不属于集合A ■名师点拨 对元素和集合之间关系的两点说明 (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果. (2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的. 3.常用的数集及其记法 常用的数集 自然数集 正整数集 整数集 有理数集 实数集 记法 N N*或N+ Z Q R
4.集合的分类
集合有限集(含有有限个元素的集合)无限集(含有无限个元素的集合)
判断正误(正确的打“√”,错误的打“×”) (1)集合中的元素一定是数.( ) (2)高一四班的全体同学组成一个集合.( ) (3)由1,2,3构成的集合与由3,2,1构成的集合是同一个集合. ( ) (4)一个集合中可以找到两个相同的元素.( ) (5)集合N中的最小元素为0.( ) (6)若a∈Q,则一定有a∈R.( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√ 由“title”中的字母构成的集合中元素的个数为( ) A.2 B.3 C.4 D.5 解析:选C.由“title”中的字母构成的集合中元素为t,i,l,e,共4个.
下列关系①0.21∈Q;②105∉N*;③-4∈N*;④4∈N.其中正确的个数是( ) A.0 B.1 C.2 D.3 解析:选C.①是正确的,②中105=2∈N*,③中-4=-2∉N*,④4=2∈N是正确的,故①④正确. 已知集合M有两个元素3和a+1,且4∈M,则实数a=________. 解析:由题意知a+1=4,即a=3. 答案:3
集合的概念 2019年9月,我们踏入了心仪的高中校园,找到了自己的班级.则下列对象中能构成一个集合的是哪些?并说明你的理由. (1)你所在班级中的全体同学; (2)班级中比较高的同学; (3)班级中身高超过178 cm的同学; (4)班级中比较胖的同学; (5)班级中体重超过75 kg的同学; (6)学习成绩比较好的同学 【解】 (1)班级中的全体同学是确定的,所以可以构成一个集合. (2)因为“比较高”无法衡量,所以对象不确定,所以不能构成一个集合. (3)因为“身高超过178 cm”是确定的,所以可以构成一个集合. (4)“比较胖”无法衡量,所以对象不确定,所以不能构成一个集合. (5)“体重超过75 kg”是确定的,所以可以构成一个集合. (6)“学习成绩比较好”无法衡量,所以对象不确定,所以不能构成一个集合.
判断一组对象能否构成集合的方法 一般地,确认一组对象a1,a2,a3,…,an(a1,a2,…,an均不相同)能否构成集合的过程为: 1.(2019·临川检测)考察下列每组对象,能组成一个集合的是( ) ①一中高一年级聪明的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的正整数;④3的近似值. A.①② B.③④ C.②③ D.①③ 解析:选C.①“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;②“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;③“不小于3的正整数”的标准确定,能构成集合;④“3的近似值”的标准不确定,不能构成集合. 2.中国男子篮球职业联赛(China Basketball Association),简称中职篮(CBA),是由中国篮球协会所主办的跨年度主客场制篮球联赛,是中国最高等级的篮球联赛.下列对象能构成一个集合的是哪些?并说明你的理由. (1)2018~2019赛季,CBA的所有队伍; (2)CBA中比较著名的队员; (3)CBA中得分前五位的球员; (4)CBA中比较高的球员. 解:(1)CBA的所有队伍是确定的,所以可以构成一个集合. (2)“比较著名”没有衡量的标准,对象不确定,所以不能构成一个集合. (3)“得分前五位”是确定的,所以可以构成一个集合. (4)“比较高”没有衡量的标准,对象不确定,所以不能构成一个集合.
元素与集合的关系 (1)下列关系中,正确的有( )
①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q. A.1个 B.2个 C.3个 D.4个 (2)满足“a∈A且4-a∈A,a∈N且4-a∈N”,有且只有2个元素的集合A的个数是( ) A.0 B.1 C.2 D.3
【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数. 因此,①②③正确,④错误. (2)因为a∈A且4-a∈A, a∈N且4-a∈N, 若a=0,则4-a=4, 此时A满足要求; 若a=1,则4-a=3, 此时A满足要求; 若a=2,则4-a=2, 此时A含1个元素不满足要求. 故有且只有2个元素的集合A有2个,故选C. 【答案】 (1)C (2)C
判断元素和集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.
1.用适当的符号填空: 已知集合A中的元素x是被3除余2的整数,则有: 17________A;-5________A. 解析:由题意可设x=3k+2,k∈Z, 令3k+2=17得,k=5∈Z . 所以17∈A.令3k+2=-5得, k=-73∉Z.所以-5∉A. 答案:∈ ∉ 2.已知集合A中元素满足2x+a>0,a∈R.若1∉A,2∈A,则实数a的取值范围为________. 解析:因为1∉A,2∈A,
所以2×1+a≤0,2×2+a>0, 即-4答案:-4
集合中元素的特征及应用 已知集合A中含有两个元素a和a2,若1∈A,则实数a的值为________. 【解析】 若1∈A,则a=1或a2=1, 即a=±1. 当a=1时,集合A中有重复元素, 所以a≠1; 当a=-1时,集合A含有两个元素1,-1,符合元素的互异性,所以a=-1. 【答案】 -1
1.(变条件)若去掉本例中的条件“1∈A”,则实数a的取值范围是什么? 解:因为集合A中含有两个元素a和a2, 所以a≠a2, 即a≠0且a≠1. 2.(变条件)若将本例中的“1∈A”改为“2∈A”,则a为何值? 解:因为2∈A, 所以a=2或a2=2, 即a=2或a=±2. 3.(变条件)若由a和a2构成的集合只有一个元素,则a为何值? 解:因为由a和a2构成的集合只有一个元素,所以a=a2,即a=0或a=1.
由集合中元素的特性求解字母取值(范围)的步骤
1.若集合M中的三个元素是△ABC的三边长,则△ABC一定不是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 解析:选D.由集合中元素的互异性可知,集合中的任何两个元素都不相同,故选D. 2.若集合A中有三个元素x,x+1,1,集合B中也有三个元素x,x+x2,x2,且A=B,求实数x的值. 解:因为A=B,
所以x+1=x2,1=x2+x或x+1=x2+x,1=x2. 解得x=±1.经检验,x=1不适合集合元素的互异性,而x=-1适合, 所以x=-1.
1.下列各组对象可以组成集合的是( ) A.数学必修1课本中所有的难题 B.小于8的所有素数 C.直角坐标平面内第一象限的一些点 D.所有小的正数 解析:选B.A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.D中“小”没有明确的标准,所以不能构成集合. 2.下列结论中,不正确的是( )