最完整苏教版初中数学知识点总结(精华版)
苏教版初中数学知识点整理

初中数学知识点大全第一章 实数 一、重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个;实数无理数(无限不循环小数)有理数正分数 负分数 正整数0 负整数 (有限或无限循环性整数分数正无理数负无理数 0实数负数整数 分数 无理数有理数正数整数分数无理数有理数│a │ 2aa (a ≥0)(a 为一切实数) a(a≥0) -a(a<0)│a │=④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
苏教版初中数学知识点大全

苏教版初中数学知识点大全初中数学是一个逐步深入和拓展的知识体系,苏教版教材涵盖了丰富的内容。
以下是对苏教版初中数学知识点的详细梳理。
一、数与代数1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
数轴是规定了原点、正方向和单位长度的直线,有理数可以在数轴上表示出来。
相反数是绝对值相等,符号相反的两个数,例如 5和-5 互为相反数。
绝对值是一个数在数轴上所对应点到原点的距离。
有理数的加法、减法、乘法、除法运算都有特定的法则。
2、实数无理数是无限不循环小数,例如π和√2。
实数包括有理数和无理数。
平方根和立方根是数的开方运算。
3、代数式用运算符号把数和字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的加减运算实质就是合并同类项。
4、方程与不等式一元一次方程是只含有一个未知数,并且未知数的最高次数是 1 的整式方程。
解一元一次方程的一般步骤包括去分母、去括号、移项、合并同类项、系数化为 1 等。
二元一次方程组由两个二元一次方程组成,通过消元法(代入消元法或加减消元法)求解。
一元二次方程的一般形式是 ax²+ bx + c = 0(a ≠ 0),求解方法有配方法、公式法和因式分解法。
不等式的性质是解不等式的依据,不等式组的解集是各个不等式解集的公共部分。
5、函数函数是表示两个变量之间关系的一种数学表达式。
一次函数的一般形式是 y = kx + b(k、b 为常数,k ≠ 0),它的图象是一条直线。
反比例函数的一般形式是 y = k/x(k 为常数,k ≠ 0),图象是双曲线。
二次函数的一般形式是 y = ax²+ bx + c(a ≠ 0),图象是抛物线,其性质包括开口方向、对称轴、顶点坐标等。
二、图形与几何1、线与角直线没有端点,射线有一个端点,线段有两个端点。
初中数学苏教版知识点

初中数学苏教版知识点初中数学苏教版知识点 11.有理数:凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的`符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
7.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
10.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
苏教版初中数学知识点整理(适合打印)

苏教版初中数学知识点整理(适合打印)中数学知识点大全第一章 实数一、 重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法 ②性质: A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴: ①定义(“三要素”) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合实无理数(无限不有理正分负分正整0负整(有限或无限整分正无负无0 实负数 整数 分无理有理正数整数 分无理有理│a 2a a (a ≥(a 为一切数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 7.绝对值: ①定义(两种): 代数定义: 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算 运算法则(加、减、乘、除、乘方、开方) 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律) 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式 含有加、减、乘、除、乘方a(a -a(a│a 单项整分有理无理代数51运算的代数式叫做有理式。
苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。
以下是一个基本的数学知识点大全,供你参考:1. 四则运算及其性质- 加法- 减法- 乘法- 除法2. 整数- 整数的读写与比较- 整数的加减乘除- 整数的绝对值和相反数 - 整数的乘方和乘方根3. 分数- 分数的读写与比较- 分数的加减乘除- 分数的化简与约分- 分数的运算性质4. 小数- 小数的读写与比较- 小数的加减乘除- 小数与分数的相互转换- 小数的运算性质5. 负数- 负数的加减乘除- 负数的乘方和乘方根- 负数在实际问题中的应用6. 代数与方程- 代数式的化简- 简单方程的求解- 一元一次方程与二元一次方程的求解 - 一次方程组的解法7. 平面图形与空间图形- 直线和角的性质- 三角形、四边形、多边形的性质- 圆和圆的性质- 立体图形的名称和性质8. 空间几何- 直线和面的关系- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质- 同位角、内错角和同旁内角的性质9. 比例与相似- 比例的概念与性质- 比例的四则运算- 图形的相似性质与相似判定- 相似三角形的性质和应用10. 数据分析- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算11. 几何证明- 线段垂直的证明- 等腰三角形性质的证明- 相等角、相似三角形的证明- 过定点作直线的证明以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。
希望这些知识点对你有所帮助。
如果你对特定的知识点有问题,欢迎继续提问。
(完整版)苏教版初中数学知识点

初中数学知识点1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r) 136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。
(完整版)苏教版初中数学知识点

初中数学知识点1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n—2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R—r﹤d﹤R+r(R﹥r) ④两圆内切 d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的内角都等于(n—2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n—2)180°/n=360°化为(n—2)(k—2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d—(R—r)外公切线长= d-(R+r)。
(完整版)苏教版初中数学知识点总结(适合打印)

初中数学知识点大全第一章 实数 一、重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)实数无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数正无理数负无理数实数负数整数 分数无理数有理数正数整数分数无理数有理数│a │ 2aa (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点大全第一章 实数 正整数0 负整数 正分数 负分数 一、重要概念整数( 有 限或无 分数限循 环性 有理数1.数的分类及概念 数系表:实数正无理数负无理数有理数无理数 (无限不循环小数 ) 整数 分数正数无理数实数整数 2.非负数: 正实数与零的统称。
(表为:x ≥ 0) 常见的非负数有:有理数分数负数2a无理数(a 为一切实数 ) │a │ a (a ≥0)性质:若干个非负数的和为 0,则每个非负担数均为 0。
3.倒数: ①定义及表示法②性质: A.a ≠1/a (a ≠±)1;B.1/a 中, a ≠0;C.0<a <1 时 1/a > 1;a > 1 时, 1/a <1;D. 积为 1。
4.相反数: ①定义及表示法②性质: A.a ≠0时, a ≠-a;B.a 与-a 在数轴上的位置 ;C.和为 0, 商为-1。
5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小 ;B. 明确体现绝对值意义 ;C. 建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数: 2n-1 偶数: 2n (n 为自然数) 7.绝对值:①定义(两种) : 代数定义:a(a ≥ 0) -a(a<0)│a │=几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│a │≥ 0符, 号 “││是”“非负数 ”的标志 ; ③数 a 的绝对值只有一个 ;二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法 [ 乘法 ] 交换律、结合律 ;[ 乘法对加法的分配律) 1运算顺序: A. 高级运算到5低级运算 ;B.括号时 ) 由“小”到“中”到“大” 。
(同级运算)从“左”到“右” (如 5÷ × 5) ;C.( 有第二章 代数式单项式 多项式整式有理式分代数式1. 代数式与有理式无理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代 数式。
整式和分式统称为有理式。
2. 整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3. 单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开 ; 根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为 对象。
划分代数式类别时,是从外形来看。
4. 系数与指数区别与联系:①从位置上看 ; ②从表示的意义上看5. 同类项及其合并条件:①字母相同 ; ②相同字母的指数相同合并依据:乘法分配律6. 根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
3 、 7 是根式,但不是无理式(是无理数) 。
注意:①从外形上判断 7. 算术平方根; ②区别: a [a ≥0—与“平方根”的区别 ⑴正数 a 的正的平方根( ⑵算术平方根与绝对值 ] ); 2a ① 联系:都是非负数,=│a │8. 同类二次根式、最简二次根式、分母有理化 : 把分母中的根号划去叫做分母有理化。
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式 ②被开方数中不含有开得尽方的因数或因式。
运算定律、性质、法则;1.分式的加、减b 、b 乘m 、除、乘方、开方法2.分式的性质a =bam (b ⑴基本性质: ⑵符号法则:m ≠b 0) aaa⑶繁分式:①定义 ; ②化简方法(两种) 3.整式运算法则(去括号、添括号法则)mnm nm n m na · a =a ; ② a a =a4.幂的运算性质:① ÷n ; a n a ba p( ) bp( ) b( )a(a m ) n(ab) nmna nna b nb③ = ; ④ = ;⑤ 技巧: 5.乘法法则:⑴单×单 ; ⑵单×多 ; ⑶多×多。
22222(a 3bb) a2ab b (a+b )(a-b )= ab6.乘法公式:(正、逆用) 22(aab b) = a 3(a ±b) 7.除法法则:⑴单÷单 ; ⑵多÷单。
8.因式分解:⑴定义 ; ⑵方法: A. 提公因式法 ;B. 根公式法。
公式法 ;C. 十字相乘法 ;D. 分组分解法 ;E. 求 aba b (a ≥ 0,b2a ; a 2 ( a ) a(a 0) ;ab ab (a ≥0,b ≥0);9.算术根的性质: > 0)( 正用、逆用 )= 10.1根式运算b 法则:ab ⑴加法法则1(合并同类二次根; ⑵乘、除法法则 ; ⑶分母有理化:aa a m a nb A. ;B.;C. 10 .na 11.科学记数法: (1≤a <10,n 是整数)第三章 一、 统计初步 重要概念1. 总体:考察对象的全体。
2. 个体:总体中每一个考察对象。
3. 样本:从总体中抽出的一部分个体。
4. 样本容量:样本中个体的数目。
5. 众数:一组数据中,出现次数最多的数据。
6. 中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数二、 计算方法1 n x ( x 1x 2x n )1. 样本平均数:⑴;'''x nx na, 则 x 'x n x 1, x 2,x1x 1a , x 2x 2 a ,x a (a —常数, ⑵若 , , 接近 较整的常数 a);x 1 f 1x 2 f 2nx k f kx ( f 1 f 2 f k n)⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均 数,样本容量越大,估计越准确。
1 [( x s 2 x) 2x) 2x) 2] ' 2 ( x ( x 1 2nn x 22.样本方差:⑴ ; 1n2'' 2 ' 2x n ) 2s[( x xnx ]' '' xnx na, 则12x 1x 1a , x2a ,⑵若 , (a —接近x n 2x n x 1 、 x 2 、 x 1 、x 2 、 的平均数的较“整”的常数) ; 若 、 、 较“小”较“整” ,则 1 [( x 2 nx ]2 2 ) s2x x 12n n;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非 常接近总体方差,通常用样本方差去估计总体方差。
s2s3.样本标准差: 第四章直线形一、 直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边” )4.两点间的距离(三个距离:点 - 点; 点- 线; 线- 线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.对顶角及性质9.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边” 10.平行线及判定与性质(互逆) (二者的区别与联系))11.常用定理:①同平行于一条直线的两条直线平行(传递性)条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题; ②同垂直于一条直线的两二、三角形分类:⑴按边分; ⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论; ②外角和; ③n 边形内角和; ④n 边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,等边等角小边小角大边大角3.三角形的主要线段讨论:①定义②××线的交点—三角形的×心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积7.重要辅助线8.证明方法⑴一般计算公式⑵性质:等底等高的三角形面积相等。
⑴中点配中点构成中位线; ⑵加倍中线; ⑶添加辅助平行线⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、 四边形 分类表:1.一般性质(角) ⑴内角和: 360° ⑵顺次连结各边中点得平行四边形。
⑶外角和: 360° 推论 1:顺次连结对角线相等的四边形各边中点得菱形。
推论 2:顺次连结对角线互相垂直的四边形各边中点得矩形。
2.特殊四边形⑴研究它们的一般方法 :⑵平行四边形、矩形、菱形、正方形 ; 梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形→菱形── ⑷对角线的纽带作用:3.对称图形 ⑴轴对称(定义及性质) ; ⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论 ③平行线间的距离处处相等。
1、2 ②三角形、梯形的中位线定理5.重要辅助线: ①常连结四边形的对角线 ; ②梯形中常“平移一腰”、“平移对角线”、“作高”、 “连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
第五章 一、 方程(组) 基本概念1.方程、方程的解(根)、方程组的解、解方 程(组) 一次方程二次方程高次方程整式方程 1.分类:有理方程方程分式方程无理方程二、 解方程的依据—等式性质1.a=b ←→ a+c=b+c 2 . a=b ←→ ac=bc (c ≠ 0) 三、 解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成 1→解。
②加减法2.元一次方程组的解法:⑴基本思想: “消元”⑵方法:①代入法四、 一元二次方程 20)2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤—推倒求根公式)2bb4ac(b 2x 4ac 0)1, 22a⑶公式法:⑷因式分解法(特征:左边 =0) 2b4ac3.根的判别式:bac ax 1 x 2, x 1 x 2 4.根与系数顶的关系: x2x 1 x 2 m, x 1 x 2 n ,则以 x 1 , x 2 为根的一元二次方程是: mx n 0 。