英国阿尔法Alphasense氢气传感器 H2-BF
H2S传感器应用电路

AAN 105-03DESIGNING A POTENTIOSTATIC CIRCUITIntroductionIn a three-electrode sensor, each electrode has a specific use:• The working electrode responds to the target gas, either oxidising or reducing the gas, creating a current flow that is proportional to the gas concentration. This current must be supplied to the sensor through the counter electrode.• The reference electrode is used by the potentiostatic circuit to maintain a fixed potential at the working electrode. The working electrode potential must be maintained at the same potential as the reference electrode potential for unbiased sensors, or with an offset for sensors that require biasing.• The counter electrode completes the circuit with the working electrode, reducing some chemical species (normally oxygen) if the working electrode is oxidising, or oxidising if the working electrode is reducing the target gas. The potential of the counter electrode is allowed to float, sometimes changing as the gas concentration increases. The potential on the counter electrode is not important, so long as the potentiostat circuit can provide sufficient voltage and current to maintain the working electrode at the same potential as the reference electrode. Figure 1 is a circuit diagram of a zero bias potentiostat circuit. Refer to this during the discussions below.Figure 1 Preferred potentiostat circuit for zero bias toxic gas sensors. ICs require +/-, not single ended power supply.© Alphasense Limited Page 1 of 5 February 2003A typical potentiostat circuit consists of three parts:1 Control circuit with bias voltage, if required2 Current measuring circuit3Shorting FET to connect the working electrode to the reference electrode when power is off Control CircuitThe control op amp (IC2 in figure 1) provides the current to the counter electrode to balance the current required by the working electrode.The inverting input into IC2 is connected to the reference electrode and must not draw any significant current from the reference electrode. An op amp with an input bias current of less than 5nA is recommended.When switching on the circuit, the depletion mode JFET (Q1 in Fig 1)goes to a high impedance state and IC2 provides the current to maintain the working electrode at the same potential as the reference electrode. Any offset due to the input offset voltage in IC2 will therefore cause a sudden shift in potential at switch-on. Toxic gas sensors have a large capacitance, so significant currents can flow for small potential shifts, so ensure that your op amp has a low offset voltage, certainly less than 1 mV and preferably less than 100µV; also check the op amp offset voltage at the maximum usage temperature.Typically, for an oxidisable gas (such as CO) with a platinum reference electrode, the counter electrode will be -300 to -400mV from the ground potential. However, if hydrogen ions rather than oxygen molecules are reduced, then the potential could be as large as -1.05V. Also, reducing gases (such as NO2 or Chlorine) force the counter electrode to oxidise water, evolving oxygen; in this case the potential relative to the reference electrode is between +600 and +800 mV, depending on the type of reference electrode. Therefore, you must allow IC2 enough voltage swing to drive the counter electrode to the required potential and with sufficient current demanded by the sensor. If the circuit is unable to do this, then extreme non-linearities will occur at higher concentrations. It is best to allow ±1.1V swing on IC2 (plus any imposed bias voltage). This means that for a CO or H2S sensor the counter electrode wants to be typically -350 mV below the ground point, so IC2 needs a negative supply. If you are using a single ended low voltage power supply, pay particular attention to the available output swing on the op amp at the required current.Table 1 below shows the maximum generated steady state current for each type of sensor. At full scale no sensor generates more than 210µA, but allow at least 500µA for a general purpose circuit, although this can be decreased for specific, well tested sensor/ circuit combinations. Beware- when switching the circuit ON in the presence of an electroactive gas or when a new sensor is first connected, the sensor may give a surge current of several mA that may cause IC1 to clamp, depending on the current drive capacity of IC1; it is unlikely that IC1 can maintain the virtual earth on its inverting input with a high feedback resistor during such a high current transient. Always connect the sensor before powering the circuit.Circuit stability and noise reduction in the control circuit relies on R1, R2, C1 and C2; C2 may not be necessary for certain op amps. If eliminating C2, then C1 may be increased- between 10 and 100 nF. Suggested op amps are OP90 (single op amp) and OP 296 (dual op amp).© Alphasense Limited Page 2 of 5 February 2003Bias voltageNormally, Alphasense toxic gas sensors are operated in the zero bias mode; however, certain sensors, such as NO sensors, require a bias voltage: typically ±150 or 300mV for an NO sensor. Alternatively, sensor cross-sensitivity to certain gases can be enhanced by adding a bias voltage.BEWARE! performance can also be degraded if you bias incorrectly! Remember that biasing a normally unbiased sensor may damage the sensor and certainly voids the sensor warranty. Consult Alphasense for further advice.If you wish to inject a bias voltage then also ensure that your bias voltage is stable: changes of even a few mV can affect sensitivity to gases and rapid changes in the bias voltage by only a mV will generate transient effects for up to hours on the sensor output. A simple method of biasing the sensor is shown in figure 2 below. The 10K load resistor to ground can be removed to reduce the current on V bias.Biasing should be maintained when the instrument is switched off - this is normally accomplished by using a button cell battery that remains on at all times. In this case, the input offset of IC2 is not critical, but its drift with temperature etc. must be kept small.Current Measuring CircuitThe measuring circuit is a single stage op amp (IC1) in a transimpedance configuration; the sensor current is reflected across R4, generating an output voltage relative to the virtual earth. C3 reduces high frequency noise. It is sometimes desirable to use two opamp stages to give the required output; the first stage should use a low value for R4 to allow the circuit to oppose the sensor current in transient conditions, followed by a second voltage gain stage to give the required output. The input offset voltage of IC1 will add to the sensor bias voltage (as the working electrode will be offset from 0V) so the input offset should be kept low. Remember that the generated current can be either positive or negative: sensors that oxidise at the working electrode (e.g. CO) generate a © Alphasense Limited Page 3 of 5 February 2003current into IC2, while reducing working electrodes (e.g. Cl2 or NO2) sink a current. So for the second case, ensure that IC2 has adequate current sinking capability.The measuring circuit uses a combination of the (load resistor (R load) plus internal sensor resistance) and the (internal sensor capacitance) to establish an RC circuit; the selection of R load is a compromise between fastest response time (low resistance R load) and best noise (high resistance R load): this RC circuit affects both the rms noise and the response time: the response time increases linearly with increasing R load resistance, while noise decreases rapidly with increasing R load resistance. If you need highest resolution, then forfeit fast response time. Likewise, if fast response time is critical, then reduce the resolution of your display or sample the signal faster and average over several readings in software to eliminate jitter. Due to the low impedance nature of the circuit, it is better to use an opamp with low noise current (usually at the expense of noise voltage)to get the best overall noise performance.As sensor current flows through R load, there will be a small change to the sensor bias potential. This has the effect of increasing the sensor settling time as the sensor will require a short time to re-stabilise when gas is applied, but this transient will normally not be seen except at high gas concentrations and high R load resistance.Refer to Table 1 below to calculate the required gain for your measuring circuit. If your detector/ instrument does not use the full scale of the sensor, then simply multiply the Sensitivity by your Range to determine the maximum current from the sensor. Since the sensitivity is the typical value, allow 20% more than the typical full scale output into your A/D converter.Sensor FullScale(ppm)Sensitivity(nA/ppm)(typical)Full Scaleoutput(µA)Full Scaleoutput(V)Calibrationpoint(ppm)CO-BF, CO-B1, CO-BX1,000100100 1.00 400 CO-AF1,00070700.70400 CO-AX2,00065130 1.30400 CO-AE 10,00030300 3.00 2,000 CO-DF1,00040740.74400 H2S-AH 501,200600.60 20 H2S-BH502,000850.8520 H2S-A1 100750750.75 20 H2S-B1200370740.7420 H2S-BE2,00090180 1.80 400 H2S-AE2,000105210 2.10400 H2S-D1100140140.1420 SO2-AF20500100.10 20 SO2-BF100350350.3520 SO2-AE2,00070140 1.40400 NO2-A1 20-3508-0.08 10 NO2-B120-75022-0.2210 NO2-AE200-35070-0.75100 NO-A1,-B1250400100 1.0050 NO-AE1,000100100 1.00400 Cl2-A120-3708-0.0710 CL2-B120-900220.2210 Table 1. List of output parameters and calibration point for Alphasense toxic gas sensors.© Alphasense Limited Page 4 of 5 February 2003Shorting FETIt is normal practice to add a shorting FET for unbiased sensors so that the reference and working electrodes are shorted together (with a residual resistance of a few tens of ohms) when power is removed from the circuit. This ensures that the working electrode is maintained at the same potential as the reference electrode when the circuit is switched off. The shorting FET is normally open circuit as long as power is applied. This “zero bias” state ensures that when you switch the circuit back on, the sensor is ready immediately. If you do not use a shorting FET and leave the sensor open circuit when the circuit is off, the toxic gas sensor will take a few hours to stabilise when next switched on.If you are supplying a bias voltage through IC2, then when you switch off the circuit, the sensor will be zero biased and hence when you reapply a bias voltage it will take a significant time (up to several hours) for the sensor to re-establish equilibrium. It is recommended that, for biased circuits, the bias voltage be maintained on at all times and the shorting FET not used. This will not affect the operating life of the sensor.The JFET (Q1) should be a p-type FET. Recommended FET types include surface mount or TO-92 packages as per Table 2 below.Manufacturer Product Code TypeSiliconix SST177Surface MountSiliconix J175TO-92Siliconix J176TO-92Siliconix J177TO-92Fairchild J175TO-92Table 2. Recommended p-FETs for short circuiting reference and working electrodes when the potentiostat circuit is off.Noise, RFI/EMI ScreeningIdeally, the measuring and controlling op amps in a potentiostat are fitted directly underneath the sensor to keep the shortest leads because of the low impedance and low sensor currents. Alphasense Application Note AAN 103 gives further advice on reducing noise and improving RFI/EMI screening.Sensor CalibrationNote that toxic gas sensor sensitivities are variable,typically ±15%. So you must calibrate in software to correct for sensor-to-sensor sensitivity variations. Alphasense maintains a database of the sensitivity of every sensor tested at Alphasense, but remember that sensitivity will drift downwards with time, typically 0.5% to 2% per month, depending on the sensor type, relative humidity and gas concentration/ temperature conditions. See Application Note AAN 108 for more information.It is also normal to correct for temperature dependence of the sensitivity; zero current is not normally temperature corrected, but for measurements requiring high accuracy at low concentrations, contact Alphasense for advice.© Alphasense Limited Page 5 of 5 February 2003。
氢气H2浓度检测探头

氢气H2浓度检测探头氢气H2浓度检测探头氢气H2浓度检测探头产品描述:氢气H2浓度检测探头适用于各种环境和特殊环境中的氢气H2氢气H2气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
氢气H2浓度检测探头产品特性:进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
检测气体:空气中的氢气H2气体检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,10 0%LEL可选。
分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm 以上);0.1LEL.工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)响应时间:≦10S输出信号:电流信号输出4-20MA报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)相对湿度:≦90%RH工作电压:DC12~30V传感器寿命:3年防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:Exd II CT6连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.防护等级:IP65.外形尺寸:183X143X107mm.重量:1.5Kg.氢气H2浓度检测探头简单介绍:氢气H2浓度检测探头●自动温度补偿,零点,满量程漂移补偿●防高浓度气体冲击的自动保护功能●全软件校准功能,用户也可自行校准,用3个按键实现,操作简单●二线制4-20mA输出氢气H2浓度检测探头应用场所医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。
氢气浓度传感器原理 fis

氢气浓度传感器原理 fis氢气浓度传感器原理氢气浓度传感器是一种可以测量氢气浓度的传感器,其原理主要是利用了氢气与其它气体之间的反应来检测氢气的浓度。
传感器主要由以下几个部分组成:1.感应元件:感应元件是氢气浓度传感器中最为关键的部分。
它是一个金属合金制成的感应层,可以在接触氢气时发生化学反应,通过感应层反应后的电流信号来测量氢气的浓度。
此外,感应元件还可以直接检出氢气分子内部的构造和相关信息。
2.芯片:芯片是氢气浓度传感器中的传感器芯片,主要用于测算感应元件发生反应后的电流信号,并将这些信号转换为具体的氢气浓度数值。
3.电路:电路是指氢气浓度传感器中的传输电路,主要用于传输芯片测算出的氢气浓度数值。
以上三个部分的紧密组合,构成了氢气浓度传感器。
氢气浓度传感器的工作原理如下:当氢气接触感应元件时,由于氢气与感应元件之间的反应,会产生电流信号。
这个电流信号经过宽带放大后,可以在芯片中被检测到,并通过内部布局和计算,被转换成实际的氢气浓度值。
最后传输电路将这个处理好的氢气浓度值传输到数据记录系统以供分析和处理。
值得注意的是,氢气浓度传感器只能测量氢气气体的浓度,而不能测量其它气体。
因此,为了提高氢气浓度传感器的可靠性,需要对其进行定期维护和校验。
通过定期维护和校验,可以及时发现氢气浓度传感器中的任何问题,并及时处理,以确保其在工作时的准确性、稳定性和长期性。
总之,氢气浓度传感器的原理是基于感应元件和芯片之间的电信号转换,通过测量氢气与感应元件间的反应信号来检测氢气浓度。
在使用过程中需要进行定期维护和校验,以确保其在工作时的准确性、稳定性和长期性。
氢气浓度传感器原理

氢气浓度传感器原理
氢气浓度传感器的原理
氢气浓度传感器是一种能够检测氢气浓度的传感器,也被称为氢气探
测器。
它通常用于工业领域,以检测氢气泄漏或生产过程中的氢气浓
度变化。
氢气浓度传感器的原理基于化学反应。
传感器内部通常包含敏感元件
和电路板两部分组成。
敏感元件通常由氧气和银涂层的二氧化钼或三
氧化钨材料构成。
当氢气进入传感器时,它与氧气反应生成水,从而
使银涂层的颜色发生变化。
传感器内的电路板会对银涂层的颜色变化
进行监测并将其转化为电信号输出。
根据传感器的不同类型,检测结果会以数字信号或模拟信号形式输出。
数字信号输出通常是通过RS485或MODBUS等协议。
而模拟信号输出可以是电压、电流或频率形式,需要进一步处理才能得到实际的氢
气浓度值。
氢气浓度传感器的工作原理比较简单,但是它的响应时间和精度会受
到多种因素的影响。
例如,传感器的响应速度取决于敏感元件的厚度
和活性氧的反应速率。
传感器的精度则需要考虑银涂层的均一性和传
感器周围环境的影响因素(如温度和湿度)。
总的来说,氢气浓度传感器是一种可靠且重要的检测氢气浓度的传感器。
在使用时,需要选择适当的传感器类型并注意其应用环境,以确保传感器的准确性和稳定性。
globalsensor 4S-H2S氢化氢传感器说明书

最大S/C电流基本性能灵敏度700±150nA/ppm 量程0~100ppm 基线漂移<±2ppm 响应时间(T90)<20s(典型值15s)恢复时间(T10)<20s(典型值15s)线性度线性可重复性<±2%使用环境工作温度范围-40℃~+55℃工作气压范围800~1200mbar 工作湿度范围15%RH~90%RH寿命质保输出漂移<15%每年使用寿命>24个月(空气中)质保12个月(发货日起)推荐储存温度0~20℃(密闭容器)电性分辨率<0.1ppm 推荐负载电阻10Ω本安特性2000ppm最大电流0.2mA 最大O/C电压 1.3V <1.0A下图显示了不同温度下传感器的灵敏度变化情况(误差1%)。
下表显示的交叉敏感度数据是从大量的试验获得,数值可能随着传感器的生产批次及测试环境的不同而变化,因此,为了获得更准确的数据,请使用相应的气体校准仪器。
如果用交叉敏感气体进行校准,则不保证其标定和测量的准确性。
我们努力保证本文档的准确性,同时为了产品的持续优化升级,我们保留更改的权利,如有变更恕不另行通知。
对于超出本文档所规定条件而使用传感器的,我们不承担保修,不承担因此造成的任何损失。
本文档规格参数是在环境条件:温度20℃、相对湿度50%RH、一个标准大气压下测得,超出范围的数据不做保证。
受不同批次影响,测试参数略有差异,因此本数据手册仅供参考。
4S-H2S -40-30-20-1001020304050平均值82%85%87%90%94%96%100%103%104%106%+95%置信区间 107%106%104%100%97%95%92%89%87%84%-95%置信区间104%102%101%100%95%92%89%85%83%81%4S-H 测试气体浓度(PPM)气体2S 反应值(PPM)050NH305000CO2<2100CO 020CL20100C2H4<0.550NO 05NO2020SO2。
氢气传感器

03 氢气传感器的研究进展及技术挑战
氢气传感器的研究进展及技术创新
氢气传感器的研究进展
• 新型材料的研发:提高传感器的灵敏度和稳定性 • 制备工艺的优化:降低传感器成本,提高生产效率 • 集成化技术的应用:实现传感器的小型化和智能化
氢气传感器的技术创新
• 微纳制造技术:利用微纳制造技术制备高精度、高灵敏度的传感器 • 人工智能算法:结合人工智能算法,提高传感器数据处理能力 • 无线通信技术:实现传感器的无线数据传输,提高应用便捷性
氢气传感器在新能源领域的应用案例
新能源领域简介
• 包括太阳能、风能、氢能等清洁能源领域 • 具有可持续发展的前景
氢气传感器在新能源领域的应用
• 氢气储存与运输:监测氢气储存和运输过程中的氢气浓度,确保安全 • 发电设备监控:监测新能源发电设备中的氢气浓度,优化设备运行 • 安全防护:检测新能源设备中的氢气泄漏,预防安全事故
氢气传感器的工作方式
• 电化学传感器:通过氢气与电极之间的化学反应产生电流信号 • 光学传感器:利用氢气与特定光敏材料之间的吸收或发射光谱变化 • 热导传感器:通过测量氢气与传感器材料之间的热导率变化来检测氢气浓度
氢气传感器的分类及特点
氢气传感器的分类
• 按检测原理分:电化学传感器、光学传感器、热导传感 器等 • 按响应速度分:快速响应传感器、慢速响应传感器 • 按测量范围分:高浓度传感器、低浓度传感器
DOCS SMART CREATE
氢气传感器研究与应用
CREATE TOGETHER
DOCS
01 氢气传感器的原理及分类
氢气传感器的原理及工作方式
氢气传感器的原理
• 通过检测氢气浓度变化来识别氢气的存在 • 利用氢气与特定材料之间的化学反应或物理吸附作用 • 产生可测量的信号变化,如电阻、电压或电流等
H2氢气浓度传感器

H2氢气浓度传感器H2氢气浓度传感器特点:★整机体积小,重量轻★高精度,高分辨率,响应迅速快.★上、下限报警值可任意设定,自带零点和目标点校准功能,内置温度补偿,维护方便.★数据恢复功能,免去误操作引起的后顾之忧.★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新.H2氢气浓度传感器技术参数:★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年;★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好;★全量程范围温度数字自动跟踪补偿,保证测量准确性;★半导体纳米工艺超低功耗32位微处量器;★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;★防高浓度气体冲击的自动保护功能H2氢气浓度传感器结构图:H2氢气浓度传感器接线示意图:H2氢气气体传感器参数工作电压DC5V±1%/DC24±1%波特率9600测量气体H2氢气气体检测原理电化学采样精度±2%F.S响应时间<30S重复性±1%F.S工作湿度10-95%RH,(无冷凝)工作温度-30~50℃长期漂移≤±1%(F.S/年)存储温度-40~70℃预热时间30S工作电流≤50mA工作气压86kpa-106kpa安装方式7脚拔插式质保期1年输出接口7pIN外壳材质铝合金使用寿命2年外型尺寸(引脚除外)33.5X31 21.5X31测量范围详见选型表输出信号TTL(标配)0.4-2.0VDC(常规)/4-20mA 数字信号格式数据位:8;停止位:1;校验位:无;传感器PIN脚定义图:传感器应用场所:医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、设备检测等。
氢 气 传 感 器

氢气传感器氢是一种清洁可再生能源载体,能够为汽车提供动力,而唯一排放物是水,氢燃料电池被确认为新能源车的优选方案。
但是,氢气和空气混合时却极易燃,因而需要特别有效的传感器进行监控。
探查氢气非常具有挑战性。
此类气体不可见、无味,但是易挥发,极易燃,空气中只需含有4%的氢气就能产生氢氧气体,有时也称为氢氧混合气(knallgas),最小的火花都能将此类气体点燃。
为了保证未来氢燃料汽车以及相关基础设施的安全,必须探测空气中微小含量的氢气,而且氢气传感器的响应速度必须足够快速,以便在起火发生之前探测到泄露的氢气。
鉴于氢气在食品卫生、能源动力、军事国防等领域的广泛使用以及不安全性,在使用氢气时必须对其浓度进行检测。
国内外已经进行了大量关于氢气传感器的研究,目前氢气传感器主要有电化学型、电学型、光学型三大类。
一、电化学型氢气传感器电化学型氢气传感器是将化学信号转变为电信号从而实现氢气浓度检测的氢气传感器。
电化学型传感器由两个电极组成,采用一个电极作为传感元件,另一个电极作为参考电极,当氢气与传感电极发生电化学反应时,电极上的电荷传输或电气性质会发生改变,传感器通过检测相应物理量的变化实现氢气浓度检测的目的。
电化学型氢气传感器又可分为两类:电流型与电势型。
1)电流型氢气传感器电流型传感器的正常工作温度范围为-20℃至80℃。
通过比较不同的催化电极的制备方法(溅射镀膜法、化学镀膜法、铂黑模压法等)和相应传感器的性能,得出溅射镀膜法制备的铂催化电极的活性最高,性能稳定,可以在0至104ppm 的范围内实现氢气浓度的快速检测,传感器响应时间为30s,灵敏度为4μA /100ppm。
温度、压强和湿度变化都对测量结果影响较大。
2)电势型氢气传感器电势型传感器是通过测量传感电极和参考电极之间的电势差来测量氢气浓度的,其应用范围比较广泛,可以检测常温或高温下气体、水溶液、溶态金属中的氢气含量。
从传感器本身来看,电势型氢气传感器与自身的体积和结构几乎不相关,因此适合微型化生产是其一大优势;从测量信号来看,电流型氢气传感器的响应与氢气浓度成线性关系,电势型氢气传感器与氢气浓度成对数关系,因此,电流型氢气传感器在氢气浓度较低时具有更高的灵敏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
250
Technical Specification
% sensitivity (referenced to 20oC)
200
Figure 2 shows temperature dependence of sensitivity to 400ppm Hydrogen. Temperaure correction of sensitivity using software is necessary for accurate measurements.
en Sensor og dr H2-BF Hy ogen drog Hydr
Figure 1 H2-BF Schematic Diagram
Technical Specification
All dimensions in millimetres (± 0.15mm)
Top View PERFORMANCE Sensitivity Response time Zero current Resolution Range Linearity Overgas limit Zero drift Sensitivity drift Operating life
Bottom View
Side View 12 to 25 < 100 ±10 2 10,000 -200 to -500 20,000 < 20 nd > 24
nA/ppm in 1000ppm H2 t90 (s) from zero to 1000ppm H2 ppm equivalent in zero air RMS noise (ppm equivalent) ppm H2 limit of performance warranty ppm error at full scale, linear at zero and 4000ppm H2 maximum ppm for stable response to gas pulse ppm equivalent change/year in lab air % change/year in lab air, monthly test months until 80% original signal (24 month warranted)
% (output @ -20°C/output @ 20°C) @ 10000 ppm H2 % (output @ 50°C/output @ 20°C) @ 10000 ppm H2 ppm equivalent change from 20°C ppm equivalent change from 20°C H2S NO2 Cl2 NO SO2 CO H2 S C2 H 4 NH3 CO2
深圳市深国安电子科技有限公司
地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com
ta ormance Da erf H2-BF P Data erformance Perf
10 to 30 180 to 220 0 to 20 0 to -10 250,000 <1 nd nd <1 <2 <2 nd nd < 0.1 -30 to 50 80 to 120 15 to 90 6 10 to 47 13
ppm·hrs % measured gas @ 10ppm % measured gas @ 10ppm % measured gas @ 50ppm % measured gas @ 20ppm % measured gas @ 1000ppm % measured gas @ 400ppm % measured gas @ 400ppm % measured gas @ 400ppm % measured gas @ 5%
At the end of the product’s life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.
150
100
50
0 -30 -20 -10 0 10 20
o
30
40
50
Temperature( C)
Figure 3 Zero Temperature Dependence
25
Zero current, normalised to 20oC (eq. ppm)
20 15 10 5 0 -30 -20 -10 0 10 -5 -10 -15 -20 -25
LIFETIME
ENVIRONMENTAL Sensitivity @ -20°C Sensitivity @ 50°C Zero @ -20°C Zero @ 50°C CROSS SENSITIVITY Filter capacity NO2 sensitivity Cl2 sensitivity NO sensitivity SO2 sensitivity CO sensitivity H2S sensitivity C2H4 sensitivity NH3 sensitivity CO2 sensitivity
KEY Temperature range SPECIFICATIONS Pressure range Humidity range Storage period Load resistor Weight
°C kPa % rh months @ 3 to 20°C (stored in sealed pot) Ω (recommended) g
4000
0 ppm
3000
With good sensor response as low as 5 ppm Hydrogen, this sensor can be used for leak detection and process control.
Output (nA)
2000
1000
0 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
-1000
Time (s)
深圳市深国安电子科技有限公司
地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com
Temperature(oC)
Figure 3 shows the variation of zero currrent with temperature, referenced to 20oC.
20
rity to 1000ppm
5000
0 ppm 100 ppm 80 ppm 50 ppm 20 ppm 10 ppm 5 ppm