初一数学期中考试模拟试卷
北师版七年级数学上册 期中模拟考试卷01

2024-2025学年七年级数学上学期期中模拟卷(考试时间:100分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大第一章丰富的图形世界+第二章有理数及其运算+第三章整式及其加减。
5.难度系数:0.75。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早采用正负数表示相反意义的量的国家,如果将“向东走50米”记作“+50米”,那么“向西走80米”记作()A.﹣80米B.+80米C.+30米D.﹣30米2.有理数的相反数是()A.B.3C.﹣3D.﹣3.“力箭一号”(ZK﹣1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了()A.点动成线B.线动成面C.面动成体D.面面相交成线4.如果把202400这个数精确到千位,并且用科学记数法表示,正确的是()A.202×103B.2.02×105C.2.02×104D.2.024×1055.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.56.若a与2互为相反数,则|a+2|等于()A.2B.﹣2C.0D.﹣17.若单项式3ax2y n+1与﹣2ax m y4是同类项,则(m﹣n)2023的值是()A.0B.1C.﹣1D.20238.如图所示的A、B、C、D四个位置的某个正方形与实线部分的五个正方形组成的图形中不能拼成正方体的是位置()A.A处B.B处C.C处D.D处9.按下面的规律摆图形,第n个图形的周长是()厘米(每个小正方形的边长是1厘米).A.3n+4B.4n+2C.2n+4D.5n+210.观察一列单项式:x,﹣3x3,7x5,﹣15x7,31x9,⋯.则第n个单项式是()A.(﹣1)n+1(2n﹣1)x2n﹣1B.(﹣1)n(2n﹣1)x2n+1C.(﹣1)n+1(2n﹣1)x2n﹣1D.(﹣1)n(2n+1)x2n﹣1第二部分(非选择题共70分)二、填空题(本大题共6小题,每小题3分,满分18分)11.比较大小:﹣﹣.(用“>”“=”或“<”连接)12.已知正方体的一个平面展开图如图所示,则在原正方体上“云”字对面的字是.13.若3x m+1y3与﹣5x3y n是同类项,则﹣m n=.14.将一个棱长为6cm的正方体的一个角剪去一个棱长为3cm的小正方体,得到的几何体如图所示,则该几何体主视图的面积为cm2.15.已知a,b,c在数轴上的对应点如图所示,则|a+b|﹣|a﹣c|+|b﹣c|=.16.按如图所示程序计算,若最终输出的结果为110,则输入的正整数x是.三、解答题(本大题共7小题,满分52分.解答应写出文字说明,证明过程或演算步骤)17.(8分)计算:(1)(﹣7)×5﹣(﹣36)÷4;(2).18.(5分)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.19.(7分)先化简,再求值:(2x2y+xy2)﹣2(x2y﹣1)﹣4xy2﹣2,其中(x﹣2)2+|y+2|=0.20.(7分)如图是一个正方体的展开图,将其折叠成正方体后,其中各相对面上的数字之和均相等,求y ÷x的值.21.(7分)出租车司机小李某天下午的营运全是在东莞大道的路上,如果规定向南为正,向北为负,他这天下午的行车里程如下:+15,﹣6,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣17.(1)当小李将最后一名乘客送到目的地时,小李距下午出车地点的距离多少千米?此时,小李的位置是在出车地点的南面还是北面?(2)若出租车每100千米耗油5升,每升油需要8元,问小李这天下午的行程需要花费多少油钱?22.(8分)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示),若该客户按方案二购买,需付款元(用含x的代数式表示);(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?23.(10分)高速公路旁有三个物品代收点A、B、C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A、B、C的货全部运到货仓,代收点A每天有50吨货物,代收点B每天有10吨货物,代收点C每天有60吨货物,从A到C方向每吨每公里运费1.5元,从C到A方向每吨每公里运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?2024-2025学年七年级数学上学期期中模拟卷(考试时间:100分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
江苏淮安2024年七年级上学期数学期中模拟试题

淮安市2024-2025学年七年级数学期中模拟(附答案)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A . 是整式 B .是二次二项式C .多项式的三次项的系数为D .的项有3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2 B. 3 C. 4 D. 54. 下列是一元一次方程的是( )A. 230x −=B. 54x y +=C. 23x +D. 534x +=5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .726. 在解方程213123x x −−=− 时,去分母后正确的是( ) A. 3(2x ﹣1)=1﹣2(3﹣x ) B. 3(2x ﹣1)=1﹣(3﹣x )C. 3(2x ﹣1)=6﹣2(3﹣x )D. 2(2x ﹣1)=6﹣3(3﹣x ) 7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是( )A .8092B .16188C .12136D .161808. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是( )A. 3B. 9C. 7D. 1二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .11. 在数轴上距离原点2.5个单位长度的点表示的数是________.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____16. 已知,|a |=5,|b |=3,且a <b ,则a +b =______.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2)20. 解方程:(1)32(1)5x x −−=(2)2213123x x −+−=+ 21. 先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−.22. 算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少?24.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于;②请用两种不同的方法表示图②中阴影部分的面积:方法1:;方法2:;③观察图②,直接写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系:;(2)根据(1)题中的等量关系,解决如下问题:若m+n=6,mn=4,求(m﹣n)2的值.25. 如图,正方形ABCD和CEFG的边长分别为m、n,且B、C、E三点在一直线上试说明△AEG的面积只与n 的大小有关.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B 处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.淮安市2024-2025学年七年级数学期中模拟(附答案)参考答案一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组中,是同类项的是( )A .2x −与5yB .22a b −与2a bC .2xy −与26x yD .2m 与2n1.B2.(2023秋·湖南长沙·七年级校联考期中)下列说法中,不正确...的是( ) A .是整式 B .是二次二项式C .多项式的三次项的系数为 D .的项有 【答案】C【分析】分别根据整式和多项式的定义判断即可;单项式和多项式统称为整式;几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高的项的次数叫做多项式的次数;【详解】A 、是多项式,属于整式,原说法正确,故本选项不合题意; B 、是二次二项式,说法正确,故本选项不合题意;C 、多项式的三次项的系数为,原说法错误,故本选项符合题意;D 、的项有,说法正确故本选项不合题意;故选:C 【点睛】本题考查了整式和多项式,掌握相关定义是解答本题的关键.3. 下列6个数﹣33,227,π, 0, 0.1010010001,2019 中,有理数有( )个. A. 2B. 3C. 4D. 5 【答案】D【解析】【分析】根据有理数的概念:整数和分数统称为有理数,找出有理数即可.【详解】解:根据有理数的定义可知:﹣33,227,0, 0.1010010001,2019是有理数,共5个, 故选D.【点睛】本题考查了有理数的知识,解答本题的关键是掌握有理数的概念:整数和分数统称为有理数. 4. 下列是一元一次方程的是( ) A. 230x −= B. 54x y += C. 23x + D. 534x +=【答案】D【解析】【详解】A.230x−= ,不是整式方程,故错误;B. 54x y += ,含有两个未知数,故错误;C. 23x + ,不是等式,故错误;D. 534x +=,是一元一次方程,正确,故选D. 5.已知 a ,b ,c ,d 表示 4 个不同的正整数,满足 23490a b c d +++=,其中 1d >,则 a b c d +++ 的最大值是( )A .55B .64C .70D .72 5.C6. 在解方程213123x x −−=− 时,去分母后正确的是( )A. 3(2x﹣1)=1﹣2(3﹣x)B. 3(2x﹣1)=1﹣(3﹣x)C. 3(2x﹣1)=6﹣2(3﹣x)D. 2(2x﹣1)=6﹣3(3﹣x)【答案】C【解析】【分析】方程左右两边乘以6去分母得到结果,即可作出判断.【详解】解:在解方程213123x x−−=−时,去分母得:3(2x﹣1)=6﹣2(3﹣x),故选:C.【点睛】本题考查解一元一次方程的知识,解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.7. 如图,用规格相同的小棒摆成组图案,图案①需要4根小棒,图案②需要12根小棒,图案③需要20根小棒,…,按此规律摆下去,第2023个图案需要小棒数是()A.8092 B.16188 C.12136 D.161807.D8. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是()A. 3B. 9C. 7D. 1【答案】B【解析】【分析】观察不难发现,每4个数为一个循环组,个位数字依次循环,用2014÷3,根据商和余数的情况确定答案即可.【详解】解:个位数字分别为3、9、7、1依次循环,∵2014÷4=503余2,∴32014的个位数字与循环组的第2个数的个位数字相同,是9.故选B.【点睛】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.【答案】A【解析】【分析】本题考查了图形的变化类问题,仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.解题的关键是仔细的观察图形并正确的找到规律.【详解】第1个图形中黑色正方形的数量为11212+=+, 第2个图形中黑色正方形的数量为2322=+, 第3个图形中黑色正方形的数量为31532+=+, 第4个图形中黑色正方形的数量为4642=+, 第5个图形中黑色正方形的数量为51852+=+, …∴当n 为偶数时,第n 个图形中黑色正方形的数量为2n n +个; 当n 为奇数时第n 个图形中黑色正方形的数量为12n n ++个, ∴当101n 时,黑色正方形的个数为10111011522++=个. 故选:A . 二、填空题(本大题共10小题,每小题3分,共30分)9. 2022年12月16日,一场雾霾席卷华夏大地,大约有160万平方千米的范围被雾霾包裹,其中160万用科学记数法可以表示为_______________.【答案】1.6×106【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于160万有7位,所以可以确定n=7-1=6.【详解】160万=1600000=1.6×106,故答案为1.6×106.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.已知代数式23x x +的值为3,则代数式2937x x +−的值为 .10.211. 在数轴上距离原点2.5个单位长度的点表示的数是________.【答案】2.5或 2.5−【解析】【分析】分在原点左边与右边两种情况讨论求解.【详解】解:①该点在原点左边时,表示的数是−2.5;②该点在原点右边时,表示的数是2.5.故答案为2.5或 2.5−.【点睛】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.12. 如果向东走10米记作10+米,那么向西走15米可记作_____米.【答案】15−【解析】【分析】明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:∵向东走10米记作10+米,∴向西走15米记作15−米.故答案为:15−.【点睛】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.13. 已知x=4是关于x 的方程3x ﹣2a=9的解,则a 的值为______. 【答案】32【解析】【分析】把x =4代入方程计算,即可求出a 的值.【详解】解:把x =4代入3x ﹣2a=9得:12−2a =9,解得:a =32, 故答案为32. 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.按一定规律排列的单项式:2a ,33a −,109a ,1527a −,2681a ,…,第n 个单项式是____ .14.()121(1)3n n n a ++−−−(n 为正整数).15. 如图是一数值转换机的示意图,当x=-1时,则输出结果是_____【答案】7 3【解析】【分析】根据数值转换机的运算得出输出结果即可.【详解】根据数值转换机中的运算得:输出结果是22 (3)29233x x−−=,当x=-1时,原式=29(1)2733×−−=.故答案为7 3【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16. 已知,|a|=5,|b|=3,且a<b,则a+b=______.【答案】-8或 -2【解析】【分析】根据绝对值的性质求出a、b的值,再分情况相加即可得解.【详解】∵|a|=5,|b|=3,∴a=±5,b=±3,∵a<b,∴a=-5时,b=-3,a+b=-5+(-3)=-8,a=-5时,b=3,a+b=-5+3=-2,综上所述,a+b的值为-8或-2.故答案为-8或-2.【点睛】本题考查了有理数的减法,绝对值的性质,有理数的大小比较,难点在于确定出a、b的对应情况.17. 假期中6名老同学聚会,每两名同学握一次手,则握手的次数一共是______.【答案】15【解析】【分析】每两名同学握一次手,则每个同学参与了5次握手,但每一次握手算了2次,据此列式计算即可.【详解】解:有6名同学,因此每个人握手的次数和为5×6=30次,由于每一次握手算了2次,所以它们握手的总次数为30÷2=15次,故答案为15.【点睛】本题考查握手问题,握手要做到不重不漏,类似于求对角线的条数.本题需注意每一次握手对每个人来说重复算了一次,也类似于比赛类问题中的单循环赛制.18. 小明和小红两人做游戏,小明对小红说:“你任意想一个数,把这个数加上5,然后乘以2接着减去4,最后除以2,把得到的结果告诉我,我就知道你想的是什么数结果小红把按规则计算出结果为20告诉了小明.”如果你是小明,你应该告诉小红,她想的数是______.【答案】17【解析】【分析】设这个数为a ,根据小明的运算规律列出方程,求出a 即是小红想的数.【详解】解:设这个数为a ,则小明的运算规律为:[(a+5)×2-4]÷2,∵小红按规则计算出结果为20,∴[(a+5)×2-4]÷2=20,解得a=17,即小红想的数是17.故答案为17【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共66分)19. 计算:(1)()()3-242+÷− (2) 【详解】解:(1)原式()-8210=+−=−;(2)原式,20. 解方程: (1)32(1)5x x −−=(2)2213123x x −+−=+ 【详解】解:(1)去括号得:3225x x −+=,移项得:2523x x −−=−−,合并同类项得:75x −=−, 解得:57x =; (2)去分母得:()()18322216x x −−=++,去括号得:1836426x x −+++,移项得:3426618x x −−=+−−,合并同类项得:716x −=−, 解得:167x =. 21.先化简,后求值:()()22223x y xy x y xy x y +−−−,其中1x =,1y =−. 答案:22−x y+5xy ,-322.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个); 、 ;(2)如图2,如果、表示正,. 表示负,J 表示11点,Q 表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): .【答案】(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11).【解析】【分析】(1)利用24点游戏规则列出算式即可;(2)利用24点游戏规则列出算式即可.【详解】(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).故答案为(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11)23. 若规定一种运算,23a b a b ∗=−,(1)计算:5(3)∗−;(2) (3)(21)5x x −∗−=,则x 是多少? 【答案】(1)19 ;(2)12【解析】【分析】(1)直接根据23a b a b ∗=−,进行计算即可;(2)根据题中新运算列出方程,解方程即可得到x 的值.【详解】解:(1)∵23a b a b ∗=−,∴()5(3)253310919∗−=×−×−=+=; (2)由题意得:2(3)3(21)5x x −−−=, 去括号得:62635x x −−+=,移项合并得:84x −=−, 解得:12x =. 【点睛】本题主要考查了有理数的乘法运算及解一元一次方程,正确理解新运算是解题关键.24.如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于 ;②请用两种不同的方法表示图②中阴影部分的面积:方法1: ;方法2: ;③观察图②,直接写出三个代数式(m+n )2,(m ﹣n )2, mn 之间的等量关系: ;(2)根据(1)题中的等量关系,解决如下问题:若m+n =6,mn =4,求(m ﹣n )2的值.【答案】(1)①m n −;②()2m n −,()24m n mn +−,③()()224m n m n mn +−−=;(2)20. 【解析】【分析】(1)①结合图形可得出阴影部分正方形边长为m-n ;②可以直接利用小正方形的边长求面积,还可以用大正方形的面积减去四个小长方形的面积;③利用面积相等即可得出()()224m n m n mn +−−=;(2)结合(1)中得出的等量关系代入求解即可.【详解】解:(1)①观察图②中的阴影部分的正方形的边长为:m ﹣n .故答案为m ﹣n ;②两种不同的方法表示图②中阴影部分的面积:方法1:()2m n −;方法2: ()2m n +-4mn故答案为:()2m n − 、()2m n +-4mn ;③观察图②,三个代数式()2m n +,()2m n −,mn 之间的等量关系: ()2m n − =()2m n +-4mn故答案为:()2m n − =()2m n +-4mn ;(2)根据(1)题中的等量关系:把m+n =6,mn =4代入:()2m n − =()2m n +-4mn∴()2m n −=36-16=20.答:()2m n −的值为20.【点睛】本题考查的知识点是列代数式以及代数式的求值,解此题的关键是将阴影部分小正方形的面积用不同的代数式表示出来.25. 如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.【答案】见解析【解析】【详解】试题分析:列代数式计算△AEG的面积,或说明△AEG的面积即为△CEG的面积=n2(5分)所以△AEG的面积只与n的大小有关. (6分)试题解析:根据图形可得:S△AEG=S△CGE+S梯形ABCG-S△ABE,因为四边形ABCD和CEFG是正方形,所以△GCE、△ABE是直角三角形,所以△GCE的面积=•CG•CE=n2.而四边形ABCG是直角梯形,所以面积=(AB+CG)•BC=(m+n)•m;又因为△ABE的面积=BE•AB=(m+n)•m所以S△AEG=S△CGE+S梯形ABCG-S△ABE =n2.故△AEG的面积的值只与n的大小有关.考点:1.正方形的性质;2.列代数式;3.整式的加减.26. 如图在数轴上A点表示数a,B 点表示数b,数a,b满足|a+2|+|b-4|=0;(1)点 A 表示的数为 ;点 B 表示的数为 ;(2)若在原点O处放一挡板,小球甲从点 A 处以1个单位/秒的速度向左运动;同时另一小球乙从点 B处以-2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,小球甲到原点的距离= ;小球乙到原点的距离= ;当t=3时,小球甲到原点的距离= ;小球乙到原点的距离= ;②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲、乙两小球到原点的距离相等时经历的时间.解:(1)∵|a+2|+|b-4|=0,∴a=-2,b=4,∴点A 表示的数为-2,点 B 表示的数为4,故答案为:-2,4;(2)①当t=1时,∵小球甲从点A 处以1个单位/秒的速度向左运动,∴小球甲1秒钟向左运动1个单位,此时,小球甲到原点的距离=3,∵小球乙从点 B 处以2个单位/秒的速度也向左运动,∴小球乙1秒钟向左运动2个单位,此时,小球乙到原点的距离=4-2=2,故答案为:3,2;当t=3时,∵小球甲从点 A 处以1个单位/秒的速度向左运动,∴小球甲3秒钟向左运动3个单位,此时,小球甲到原点的距离=5,∵小球乙从点 B处以2个单位/秒的速度也向左运动,∴小球乙 2秒钟向左运动4个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2,故答案为5,2;②当( 时,得t+2=4-2t,解得当t>2时,得t+2=2t-4,解得t=6.故当秒或t=6秒时,甲、乙两小球到原点的距离相等.。
初一数学期中考试试卷

初一数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 3D. -22. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形3. 如果a和b是两个连续的自然数,且a < b,那么a和b的和是:A. 2aB. 2bC. a + bD. 2ab4. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 65. 以下哪个选项是不等式?A. 3x + 2 = 11B. 2x - 5 > 3C. 4x = 8D. 5x - 76. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么这个三角形的周长是:A. 16厘米B. 17厘米C. 18厘米D. 19厘米7. 以下哪个选项是二次根式?A. √4B. √(-4)C. √2xD. √x^28. 如果一个数的平方是36,那么这个数是:A. 6B. -6C. ±6D. 369. 以下哪个选项是单项式?A. 3x^2 + 2xB. 5x - 3C. 2xD. x^2 - 4x + 410. 以下哪个选项是多项式?A. 2xB. 3x^2 - 5x + 7C. x^2D. 5二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个数的立方是-8,那么这个数是______。
14. 一个数的平方根是2,那么这个数是______。
15. 一个等腰三角形的底角是45°,那么这个三角形的顶角是______。
16. 如果一个数的相反数是它本身,那么这个数是______。
17. 一个数的倒数是1/4,那么这个数是______。
18. 一个数的平方是25,那么这个数是______。
19. 如果一个数的绝对值是它本身,那么这个数是非负数,即这个数是______。
2024学年秋季学期初中数学七年级上册期中考试模拟试卷

2024学年秋季学期初中数学七年级上册期中考试模拟试卷1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则﹣5m表示水位()A.下降5m B.升高3m C.升高5m D.下降3m2.12024的相反数是()A.−12024B.2024C.±2024D.−20243.下列化简不正确的是()A.−(−4.9)=+4.9B.−(+4.9)=−4.9C.−[+(−4.9)]=+4.9D.+[−(+4.9)]=+4.94.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,哈尔滨的气温是−4°C,则此刻两地的温差是()A.23℃B.19℃C.4℃D.15℃5.2024年春运期间,泸州市道路客运共投放客运班车2336辆,营业性运输累计发送旅客374万人次.将数据374万用科学记数法表示的是()A.3.74×105B.3.74×106C.0.374×107D.3.74×1076.代数式x2,st,1x+y,20%•x,√ab,√2ab,2a+b3中,多项式有()个A.0B.1C.2D.37.下列关于多项式5ab2−2a2bc−1的说法中,正确的是()A.它是三次三项式B.它是二次四项式C.它的最高次项是−2a2bc D.它的常数项是18.下列去括号正确的是()A.−3(x+y)=−3x+3y B.−(−a−b)=a+bC.a−2(b−c)=a−2b+c D.x−(3y+m)=x−3y+m9.下列运算正确的是()A.a3−a2=a B.−a+5a=4a C.a+a2=a3D.ab2+a2b=ab2 10.多项式1+2xy-3xy2的次数为()A.1B.2C.3D.511.一辆汽车以60 千米/时的速度行驶,从A城到B城需t小时,如果该车的速度每小时增加v千米,那么从A城到B城需要()A.60t v小时B.60tv+60小时C.vtv+60小时D.vt60小时12.比较大小:(1)−(−2)−|−2.5|,(2)−78−67.13.计算:−6÷(−5)×(−15)=.14.我国某次人口普查结果公布,全国总人口为1443497378人.把横线上的数改写成用“万”作单位,省略“万”后面的尾数是万.15.如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.写出一个与﹣2x2y是同类项的单项式为.17.有理数a、b、c在数轴上的位置如图所示,则|a|−3|a+b|+2|c−a|+4|b+c|可化简为.18.计算(134−78−712)÷(﹣78)+ 87÷(134−78−712)的结果为.19.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).20.计算:−14+30÷22×(−13)+12.21.先化简,再求值:x 2y ﹣2( 14 xy 2﹣3x 2y )+(﹣ 12 xy 2﹣x 2y ),其中|x ﹣ 32 |+(y+2)2=0.22. 先化简,再求值:已知a 2−1=0,求(5a 2+2a −1)−2(a +a 2)的值.23.74÷78−23×(−6) .24.先化简,再求值:3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =- 12 ,y =2.25.(1)计算2(3ab 2−a 2b )−3(2a 2b −ab 2);(2)先化简,再求值:8a2−2[3a−(4a−1)+4a2],其中a=−2.26.如图所示,学校有一块宽20m,长40m的空闲长方形场地,中间有两条横纵相交且宽度相等的小道,为了美化校园环境,生物部的同学准备在场地上种植一些植被,若小道的宽为xm.(1)用含有x的代数式表示种植植被的面积;(2)当x=2时,计算种植植被的面积.。
江苏苏州2024-2025学年上学期七年级数学期中模拟卷1一4章 (解析版)

苏州市2024-2025学年上学期初一数学期中模拟卷(考试时间:90分钟 试卷满分:100分)一、选择题,本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填涂在答题卷相应位置上......... 1. 2的相反数是( )A. 2B. 12C. 2−D. 4−【答案】C【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2的相反数是-2,故选C .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 下列计算正确的是( )A. 326=B. 2416−=−C. 880−−=D. 523−−=− 【答案】B【解析】【分析】根据有理数的加法法则和减法法则与乘方法则进行计算即可.【详解】解:A. 328=,故错误;B. 2416−=−,故正确;C. 88-16−−=,故错误;D. 527−−=−,故错误.故选B.【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键. 3. 单项式32−23x y z 的系数和次数分别为( ) A. ﹣3,5 B. 32−,5 C. ﹣3,6 D. 32−,6 【答案】D【解析】【分析】根据单项式系数和次数的定义计算即可. 【详解】∵32−23x y z 的系数和次数分别为32−,6, 故选D .【点睛】本题考查了单项式的概念,熟练掌握单项式的系数即单项式中的数字因数,单项式的次数即单项式中所有字母的指数和是解题的关键.4. 化简()221x x −−++的结果为( )A. 221x x −++B. 221x x −+C. 221x x −−D. 221x x −−+ 【答案】C【解析】【分析】根据去括号法则“如果括号外因数是负数,去括号后原括号内各项的符号与原来符号相反”化简,选择答案即可.【详解】解: 222121x x x x ,故选:C .【点睛】本题主要考查了整式的化简,熟记去括号法则是解题的关键.5. 下列说法中正确的是( )A. 2不是单项式B. 2abc −的系数是12−C. 单项式23r 的次数是3D. 多项式25612a ab −+的次数是4 【答案】B【解析】【分析】本题考查单项式与多项式定义,涉及单项式识别、单项式系数、次数及多项式次数等知识,熟记单项式及多项式定义,逐项验证是解决问题的关键.【详解】解:A 、2是单项式,该选项错误,不符合题意;B 、2abc −的系数是12−,该选项正确,符合题意; C 、单项式23r 的次数是2,该选项错误,不符合题意;D 、多项式25612a ab −+的次数是25a 或6ab 的次数,是2,该选项错误,不符合题意;故选:B .的6. 已知有理数a b 、,则a b b a b a a b +−−+、、在数轴上表示的点在原点右侧的个数为( ) A. 0个B. 1个C. 2个D. 无法确定 【答案】B【解析】 【分析】本题考查了有理数符号的判断,需分类讨论,当a b 、同号时,当a b 、异号且0a b +>时,当a b 、异号且0a b +<时,分别判断即可.【详解】解:当a b 、同号时,a b a b a b +--+、是负数,b a是正数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +>时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +<时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,综上所述,在数轴上表示的点在原点右侧的个数为1个.故选:B .7. 某临江的县城为进一步提升旅游业质量和档次,满足游客消费需求,开通了甲、乙两地沿江旅游航线,已知游艇在江中来往航行于甲、乙两地之间,顺流航行全程需2小时,逆流航行全程需3小时(实际船速=静水船±水速).已知水流速度为每小时3km ,求该县甲、乙两地的距离,若设该县甲、乙两地的距离为km x ,则所列方程为( ) A. 323x x += B. 923xx =+ C. 3323x x −=+ D. 3323x x +=− 【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元一次方程,明确题意,准确得到等量关系是解题的关键.设甲、乙两地的距离为km x ,根据题意,列出方程,即可求解.【详解】解:设甲、乙两地的距离为km x , 根据题意得:3323x x −=+. 故选:C .8. 已知方程()||110k k x −+=是关于x 的一元一次方程,则方程的解等于( ) A. 1B. 0C. 1−D. 12 【答案】D【解析】【分析】本题考查的是解一元一次方程和一元一次方程的定义,掌握一元一次方程的定义与求解是解题的关键.根据一元一次方程的定义,即含有1个未知数,且未知数的最高次数是1的整式方程是一元一次方程,据此求出k 的值,然后再求解方程即可.【详解】解:根据一元一次方程的定义可知,||1k =且10k −≠,解得:1k =−,原方程为:210x −+=, 解得:12x =, 故选:D9. 对于有理数a 、b ,定义一种新运算“※”,规定:a ※b =|a|﹣|b|﹣|a ﹣b|,则2※(﹣3)等于( )A. ﹣2B. ﹣6C. 0D. 2 【答案】B【解析】【分析】根据a ※b=|a|-|b|-|a-b|,可以求得所求式子的值.【详解】解:∵a ※b=|a|-|b|-|a-b|,∴2※(-3)=|2|-|-3|-|2-(-3)|=2-3-|2+3|=2-3-5=-6,故选:B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10. 已知一列数123a a a ,,,…,具体如下规律:2112n n n n n a a a a a ++=+=,(n 是正整数).若11a =,则61a 的值为( )A. 9B. 10C. 11D. 12【答案】A【解析】【分析】根据数列中的各项关系求出61a 和1a 的关系即可.【详解】∵2112n n n n n a a a a a ++=+=,(n 是正整数), ∴613031a a a =+151516a a a =++1582a a +()7842a a a =++74222a a a =++()344122a a a a =+++()1222122a a a a a =++++()1111122a a a a a =++++111232a a a =×++19a =∵11a =,∴619a =,故选:A .【点睛】此题考查了数字的变化规律,根据数列中的各项关系得到61a 和1a 的关系是解题的关键.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卷相应位置上......... 11. 单项式23ax −的系数和次数依次是________.【答案】-3,3【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:单项式23ax −的系数和次数依次是-3,3,故答案:-3,3.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数是解题关键.12. 比较大小:()8−+______9−−; 23−______3(4−填“>”、“<”、或“=”符号). 【答案】 ①. > ②. >【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小.①首先化简,然后比较大小即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出答案. 【详解】解:()88−+=− ①,99−=−,89−>−, ()89∴−+>−;2283312−== ②,3394412−==,891212 , 2334∴−>−. 故答案为:>;>.【点睛】本题主要考查了有理数大小比较,熟练掌握有理数比较大小的方法是解题关键.13. 台湾省自古以来就是中国领土不可分割的一部分,祖国统一是两岸人民的共同心愿.据统计,2022年台湾省常住人口总数约为23410000人,数据23410000用科学记数法可表示为______.【答案】72.34110×【解析】【分析】根据绝对值大于1的数表示为科学记数法的形式为10n a ×,n 为整数位数减去1,据此求解即可.【详解】723410000 2.34110=×,故答案为:72.34110×.【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示方法是解题关键. 14. 若x 与3互为相反数,则6x +的值为______.【答案】3【解析】为【分析】根据相反数的定义可得3x =−,再代入所求式子计算即可.【详解】解:x 与3互为相反数,3x ∴=−,6363x ∴+=−+=.故答案为:3.【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.15. 按如图所示的程序计算,当输入x 的值为3−时,输出的值为_____.【答案】63【解析】【分析】本题主要与程序流程图有关的有理数计算,先输入3−,计算出结果,如果大于10则输出,如果小于10,则把计算的结果作为新的数输入,如此往复,直至计算的结果大于10进行输出即可.【详解】解:当输入3−时,计算的结果为()23191810−−=−=<,当输入8时,计算的结果为()2816416310−=−=>,∴输出结果为63,故答案为:63. 16. 已知23x y +=,则124x y −−=______. 【答案】5−【解析】【分析】本题考查了已知式子的值求代数式的值,先整理()124122x y x y −−=−+,再代入23x y +=,即可计算进行作答.【详解】解:∵23x y +=. ∴()1241221235x y x y −−=−+=−×=−,故答案为:5−.17. 关于x ,y 的代数式2232axy x xy bx y −+++中不含二次项,则()2023a b +=______.【答案】1【解析】【分析】将原式进行合并同类项,由题意可知,所有二次项的系数为0,则可确定a 、b 的值,再代入()2023a b +求值即可,本题考查了合并同类项,解题的关键是:充分理解多项式系数的定义.【详解】将代数式2232axy x xy bx y −+++合并同类项得: ()()223a xy b x y ++−+,由题意得二次项系数为0,则:20a +=,30b −=, 解得:2a =−,3b =,代入()2023a b +得:()202320233112=+=−,故答案为:1.18. 已知x ,a ,b 为互不相等的三个有理数,且a b >,若式子x a x b −+−的最小值为3,则2020a b +−的值为______.【答案】2023【解析】 【分析】本题考查绝对值,有理数的减法,由数轴上x a x b −+−表示的几何意义,求出a b −的值,即可得到答案. 【详解】解:∵x a x b −+−的最小值为3,且a b >,∴3a b −=,∴2020a b +−20203+2023=,∴2020a b +−的值为2023.故答案为:2023.三、解答题:本大题共8小题,共64分.19. 计算:(1)()11324234 +−×−; (2)()()2213442−×+−÷−. 【答案】(1)2−(2)172【解析】【分析】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,然后算加法即可.【小问1详解】 解:()11324234 +−×− 113(24)(24)(24)234×−+×−−×− 12(8)18=−+−+2;=−【小问2详解】 解:()()2213442−×+−÷− 1916(4)2=−×+÷− 9(4)2=−+− 17.2=− 20. 解方程:(1)2(1)25(2)x x −=−+;(2)5172124x x ++−=. 【答案】(1)67x =− (2)43x =【解析】 【分析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【小问1详解】解: 2(1)25(2)x x −=−+,∴222510x x −=−−,∴252102x x +=−+,∴76x =−, ∴67x =−; 【小问2详解】 解:5172124x x ++−=, ∴2(51)(72)4x x +−+=, ∴102724x x +−−=,∴107422x x −=−+,∴34x =, ∴43x =. 21. 先化简再求值:(3a 2b -2ab 2)-2(ab 2-3a 2b ),其中12,2a b == 【答案】2294a b ab −,16【解析】 【分析】先去括号,再合并同类项,然后将12,2a b ==代入,即可求解. 【详解】解:原式=22223226a b ab ab a b −−+=2294a b ab −当2a =,12b =时, 原式=2211924222××−××()=16. 【点睛】本题主要考查了整式加减混合运算中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.22. 已知()2120a b −++=,c 和d 互为倒数,e 和f 互为相反数,求()35332a cd e b f +−+−值. 【答案】4−的【解析】【分析】先根据非负数性质求解1a =,2b =−,再根据倒数,相反数的含义求解1cd =,0e f +=,再把原代数式变形,再代入求值即可.【详解】解:∵ ()2120a b −++=,∴10a −=,20b +=, 解得:1a =,2b =−,∵c 和d 互为倒数,e 和f 互为相反数, ∴1cd =,0e f +=, ∴()35332a cd e b f +−+−()3653a b cd e f =++−+31250=−+−4=−.【点睛】本题考查的是倒数,相反数的含义,绝对值,偶次方的非负性的应用,求解代数式的值,掌握“代入法求解代数式的值”是解本题的关键.23. 高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):17+,9−,10+,15−,3−,11+,6−,8−,(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.1升/千米,则这次养护共耗油多少升?(3)养护过程中,最远处离出发点有多远?【答案】(1)养护小组最后到达的地方在出发点的西方,距出发点3千米(2)这次养护小组的汽车共耗油7.9升(3)最远处离出发点有18千米【解析】【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果.(2)利用绝对值性质以及有理数加法法则求出即可;(3)分别求出每次养护距离出发点的距离,进而作出比较.【小问1详解】解:1791015311683−+−−+−−=−(千米), 所以养护小组最后到达的地方在出发点的西方,距出发点3千米;的的【小问2详解】 解:17910153116879+−++−+−++−+−=(千米), 790.17.9×=(升); 所以这次养护小组的汽车共耗油7.9升;【小问3详解】解:第一次:17,第二次:1798−=;第三次:81018+=;第四次:18153−=;第五次:330−=;第六次:01111+=;第七次:1165−=;第八次:583−=−;所以养护过程中,最远处离出发点有18千米.【点睛】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.24. 学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b −米.(1)求护栏的总长度;(2)若3010a b =,,每米护栏造价80元,求建此停车场所需的费用.【答案】(1)()411a b +米(2)建此停车场所需的费用为18400元.【解析】【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【小问1详解】解:由题意可得宽为:()()23234a b a b a b a b a b +−−=+−+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b =+++()411a b +米;【小问2详解】解:由(1)得:当3010a b =,时,原式4301110230=×+×=(米), ∵每米护栏造价80元,∴2308018400×=(元), 答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.25. 已知数轴上两点A ,B 对应的数分别为1−,3,点P 为数轴上一动点,其对应的数为x .(1)若点P 为AB 的中点,则点P 对应的数是 .(2)数轴的原点右侧有点P ,使点P 到点A ,点B 的距离之和为8.请你求出x 的值.(3)现在点A ,点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,直接写出点P 对应的数.【答案】(1)1 (2)x 的值是5(3)点P 对应的数是3−或27−【解析】【分析】本题考查数轴上点表示的数及两点间距离,解题的关键是掌握点运动后表示的数与运动前表示的数的关系.(1)根据点P 为AB 的中点列方程即可解得答案;(2)分两种情况,当P 在线段AB 上时,由()()1348PA PB x x +=−−+−=≠ ,知这种情况不存在;当P 在B 右侧时,()()138x x −−+−=,求解即可; (3)设运动的时间是t 秒,表示出运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −,根据点A 与点B 之间的距离为3个单位长度得:()()1230.53t t −+−+=,解出t 的值,即可得到答案.【小问1详解】解:∵A ,B 对应的数分别为1−,3,点P 为AB 的中点,∴()31x x −=−−,解得1x =,∴点P 对应的数是1;【小问2详解】解:当P 在线段AB 上时,()()1348PA PB x x +=−−+−=≠ , ∴这种情况不存在;当P 在B 右侧时,()()138x x −−+−=, 解得5x =,答:x 的值是5;【小问3详解】解:设运动的时间是t 秒,则运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −, 根据题意得:()()1230.53t t −+−+=, 解得23t =或143t =, 当23t =时,P 表示的数是2161633t −=−×=−, 当143t =时,P 表示的数是141616273t −=−×=−, 答:点P 对应的数是3−或27−.26. 观察下列新的定义心运算:(2)(10)12 ++=+☆;(2)(10)12 −−=+☆;(4)(6)10++=+☆;(8)(2)10−−=+☆;(2)(10)12−+=−☆;(2)(10)12+−=−☆;(4)(6)10−+=−☆;(8)(2)10 +−=−☆. 0(12)12−=+☆;0(12)12+=+☆;(8)08+=+☆;(8)08−=+☆;(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆运算时,异号两数运算结果取 号,并把 ;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于 ;(2)计算:()()902 −−=☆☆ ; (3)若()3314a a ×−=☆,试判断a 的值能否为0?若不能,求出a 符合条件所有可能的值. 【答案】(1)负,绝对值相加,这个数的绝对值(2)11−(3)a 的值不能为0,a 的值为8或10−【解析】【分析】本题考查了新定义,根据所给算式总结出运算法则是解答本题的关键. (1)观察所给算式总结即可;(2)根据新定义运算即可;(3)先判断a 不等于0,再根据新定义转化为一元一次方程求解即可.【小问1详解】两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值. 故答案为:负,绝对值相加,这个数的绝对值【小问2详解】()()()929211−+=−+=−☆. 故答案为:11−;【小问3详解】当0a =时,∵()3313318a ×−=×−=☆,40a =,∴()3314a a ×−≠☆.∴a 的值不能为0.当0a >时,∵()3314a a ×−=☆,∴()3314a a ×−=+, ∴8a =;当0a <时, ∵()3314a a ×−=☆, ∴()3314a a ×−−−= , ∴10a =−. ∴a 的值为8或10−.。
七年级数学上册期中模拟卷人教版2024

七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上册1.1-3.2。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
24秋沪教七年级数学期中模拟卷(参考答案)

2024-2025学年七年级数学上学期期中模拟卷参考答案一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)123456B ACD C C二、填空题(本大题共12小题,每小题2分,共24分)7.25/0.48.3y4−2xy+6x2y−5x3y2−4x49.710.18 11.45/0.812.(x2+4)(x+2)(x−2)13.12x2−2y214.3b2−2ab 15.1716.±3217.−118.16三、简答题(每题5分,共30分.)19.(5分)【详解】解:(x2)3+(x3)2+(−x2)3+(−x3)2=x6+x6−x6+x6=2x6..................................5分20.(5分)【详解】解:原式=4x2−4x+1−2(x2+4x−12)=4x2−4x+1−2x2−8x+24=2x2−12x+25...................................5分21.(5分)【详解】解:原式=[2a−(b−3c)][2a+(b−3c)]=(2a)2−(b−3c)2=4a2−(b2−6bc+9c2)=4a2−b2+6bc-9c2..................................5分22.(5分)【详解】解:4x3y2−3x2y2−12x2y5÷−12xy=−8x2y+6xy+xy4...................................5分23.(5分)【详解】解:原式=−3ab a2b2−2ab+1=−3ab(ab−1)2..................................5分24.(5分)【详解】解:原式=m2+16n2−9mn2−mn2,=m2+16n2−9mn+mn m2+16n2−9mn−mn,=m2−8mn+16n2m2−10mn+16n2,=m−4n2m−2n m−8n...................................5分四、解答题(第25、26、27题每题8分,第28题10分,共34分.解答应写出文字说明,证明过程或演算步骤)25.(8分)【详解】(1)解:根据题意,A−B=12x2−6x+7,即A−5x2+3x−4=12x2−6x+7,∴A=12x2−6x+7+5x2+3x−4=17x2−3x+3;..................................4分(2)结合(1),可得A+B=17x2−3x+3+5x2+3x−4=22x2−1...................................8分26.(8分)【详解】解:原式=4xy2−3xy2+2x2y−xy2+2x2y=4x2y,..................................6分当x=−1,y=12时,原式=4×−12×12=2..................................4分27.(8分)【详解】(1)∵a+b=5,ab=32,∴a2−ab+b2=(a+b)2−3ab=52−3×32=412...................................4分(2)∵a+b=5,ab=32,∴a−b2=a+b2−4ab=52−4×32=19...................................8分28.(10分)【详解】(1)解:图中阴影部分的面积为S□ABCD+S□BEFG−S△ADE−S△CDG−S△EFG=m2+n2−12m m+n−12m m−n−12n2=m2+n2−12m2−12mn−12m2+12mn−12n2=12n2.答:图中阴影部分的面积为12n2...................................3分(2)解:如图,连接DG、CF,∵正方形ABCD和正方形BEFG的面积之差为12,∴m2−n2=12,则四边形DGFC==m2−n22=6,答:四边形DGFC的面积是6...................................6分(3)解:∵四边形DE18,=18=18,解得m+n=6或m+n=−6<0(不符合题意,舍去),又∵m2−n2=12,∴m+n m−n=6m−n=12,∴m−n=2,联立m+n=6m−n=2,解得m=4n=2...................................10分。
2024—2025学年人教版七年级上册期中模拟考试数学试卷

2024—2025学年人教版七年级上册期中模拟考试数学试卷一、单选题1.2024-的相反数是()A .2024B .2024-C .12024D .12024-2.中国空间站位于距离地面约400km 的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A .100+℃B .100-℃C .50+℃D .50-℃3.在0,2,﹣2,23这四个数中,最大的数是()A .2B .0C .﹣2D .234.(湖州中考)某花店的玫瑰每枝4元,兰花每枝8元,小丽买了a 枝玫瑰,b 枝兰花,一共花了()A .12a 元B .12b 元C .(4a +8b)元D .12(a +b)元5.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到10℃左右,夜晚的最低气温为1-℃左右,则白天最高气温与夜晚最低气温的温差是()A .9-℃B .11-℃C .9℃D .11℃6.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为0.12-毫米,第三个为0.15-毫米,第四个为0.16毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是()A .0a b +>B .0a b ⋅>C .a b >D .b a b+>8.下列说法正确..的是()A .单项式227xy 的系数是2B .单项式227xy 的次数是2C .232x y x y -是四次多项式D .232x y x y -有两项,分别是232x y x y和9.如图,做一个试管架,在cm a 长的木条上钻4个圆孔,每个孔直径为4cm ,则x =()A .8cm 5a +B .16cm 5a -C .4cm 5a -D .8cm 5a -10.当1x =时,代数式551ax bx +-的值等于1000,那么当1x =-时,代数式551ax bx +-的值().A .1002B .1002-C .1001D .1001-二、填空题11.比较大小:-45-911.12.近似数42.37010⨯,精确到位.13.若关于a ,b 的代数式23x a b -与9y a b 是同类项,则y x 的值是.14.若x 为有理数,则式子22023x -+的最小值为.15.若有理数m ,n 满足220190m n -+-=,则m n +=.16.用黑白两种正六边形地面瓷砖按如图所示规律拼成若干图案,则第n 个图案中有白色地面瓷砖块.三、解答题17.计算(1)()528522514⎛⎫-+÷-⨯- ⎪⎝⎭;(2)()()221113232⎫⎛⎡⎤---+⨯-- ⎪⎣⎦⎝⎭.18.已知234A x x =-,222B x x y =+-(1)当2x =-时,试求出A 的值;(2)当12x =,13y =时,请求出3A B -的值.19.粮库3天内发生粮食进出库的吨数如下(“+”表示进库,“-”表示出库):26+32-15-34+38-20-(1)经过这三天,粮库里的粮食是增多了还是减少了?增多或减少了多少吨?(2)经过这3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存粮有多少吨?(3)如果进库出库的装卸费都是每吨10元,那么这3天要付出多少装卸费?20.已知:2A ab a =-,2B ab a b =-++.(1)计算:52A B -;(2)若52A B -的值与字母b 的取值无关,求a 的值.21.如图,用三种大小不等的正方形①②③和一个缺角的正方形拼成一个长方形ABCD (不重叠且没有缝隙),若BF a =,GH a =,1GK a =+.(1)求正方形②和正方形③的边长(用含a 的代数式表示);(2)求长方形ABCD 的周长(用含a 的代数式表示),并求出当3a =时,长方形ABCD 的周长.22.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.23.已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当52m n ==,时,大长方形的面积为__________;(2)请用含m ,n 的代数式表示下面的问题:大长方形的长:__________;阴影A 的面积:__________;阴影B 的周长__________;(3)请说明阴影A 与阴影B 的周长的和与m 的取值无关.24.我们把按一定规律排列的一列数,称为数列,若对于一个数列中依次排列的相邻的三个数m 、n 、p ,总满足2p m n =-,则称这个数列为理想数列.(1)若数列2,1-,a ,4-,b ,…,是理想数列,则a =,b =;(2)若数列x ,3x ,4,…,是理想数列,求代数式22233x x -+的值.(3)若数列…,m ,n ,p ,q …,是理想数列,且122p q -=,求代数式()()2223492022n n m m n -++-+的值.25.如图,数轴上有A 、B 、C 、D 四个点,分别对应a ,b ,c ,d 四个数,其中10a =-,8b =-,()214c -与20d -互为相反数,(1)求c ,d 的值;(2)若线段AB 以每秒3个单位的速度,向右匀速运动,当t =时,点A 与点C 重合,当t =时,点B 与点D 重合;(3)若线段AB 以每秒3个单位的速度向右匀速运动的同时,线段CD 以每秒2个单位的速度向左匀速运动,则线段AB 从开始运动到完全通过CD 所需时间多少秒?(4)在(3)的条件下,当点B 运动到点D 的右侧时,是否存在时间t ,使点B 与点C 的距离是点A 与点D 的距离的4倍?若存在,请求出t 值,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学期中考试模拟试卷(一)
班级 姓名 学号
一、填空题(本大题共有14小题,23空,每空2分,共46分.)
1.2的相反数为 ; —5的倒数为 . 2.-3的绝对值是 ; 绝对值等于7的数是 . 3.把下列各数填在相应的集合内:
100、—0. 82、2130-、3.14、-2、0、-2008、.51.3-、 7
3
.
正分数集合:{ …} 整数集合:{ …} 负有理数集合:{ …} 非负数集合;{ …}
4.我国首次载人飞船按一定的轨道绕着地球飞行,一圈的路程约为42000千米,用科学记数法表示:飞船飞行一圈的路程为_____________________千米.
5.在某地,人们发现蟋蟀叫的次数与温度有某种关系.用蟋蟀1分钟叫的次数n 除以7,然后再加上3,就可以近似的得到该地当时的温度(℃).用代数式表示该地当时的温度为___________℃;当蟋蟀1分钟叫的次数为100时,该地当时的温度约为________℃(精确到个位).
6.若230x y -++=,则2008
()x y +=_______________.
7.比较大小:① -3 -4; ② ()4-- 5--. 8.若单项式
n
y x 23
2与32y x m -的和仍为单项式,则m n 的值为 . 9.多项式2423751x y xy xy y -+--是__________________次多项式,按字母y 的降幂排
列是_____________________________.
10. 请你写出单项式23a b 的一个同类项是____________________. 11.已知3x y +=,则922x y --的值为_________________.
12.小说《达芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数
按从小到大的顺序排列为:1、1、2、3、5、8…,则这列数的第8个数是 . 13.有一种“二十四点”游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将
这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24. 例如对1、2、3、4,可作运算:(1+2+3)×4=24.(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3、4、-6、10. 运用上述规则写出两种不同方法的运算式,使其结果等于24,运算式如下:(1) ;(2) .
-
-5 14.依法纳税是公民应尽的义务.《个人所得税法》规定:每月总收入减去1600元后的余
额为应纳税所得额,应纳税所得额不超过500元的按5%纳税;超过500元但不超过2000元的部分按l0%纳税,…… 若职工小王某月税前总收入为2000元,则该月他应纳税___________________元.
二、选择题(本大题共有6小题,每小题3分,共18分.)
15.如果向东走2km 记作+2km ,那么-3km 表示 ( )
A .向东走3km
B .向南走3km
C .向西走3km
D .向北走3km 16.将)2()7()3(6-+--+-中的减法改成加法并写成省略加号的和应是 ( )
A .2736-+--
B .2736---
C .2736-+-
D .2736--+ 17.如果0>+b a 、0>ab ,那么 ( )
A . a >0,b >0
B .a <0,b <0
C .a >0,b <0
D .a <0,b >0
18.请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时间长
应为 ( )
A.
18
B.
12
C.
14
D.
34
19.右表是5个城市的国际标准
时间(单位:时),那么北京
时间2007年6月17日上午9时应是 ( ) A .汉城时间2007年6月17日上午8时 B .纽约时间2007年6月17日晚上22时 C .多伦多时间2007年6月16日晚上20时 D .伦敦时间2007年6月17日凌晨1时
20.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母~A F 共16个
例如:十进制中的261610=+,可用十六进制表示为1A ;在十六进制中,1E D B += 等.由上可知,在十六进制中,2F ⨯= ( ) A.30
B.1E
C.1E
D.2F
三、解答题(本大题共有6小题,共36分.) 21.(本小题满分3分)
① 请你在数轴上表示下列有理数: ()21
, 2.5,0,2,42
-----.
② 将上列各数用“<”号连接起来:___________________________________.
22.计算:(本题共4小题,每小题3分,满分12分)
(1)-24+3-16-5 (2)0-()25.0324333221+-⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛++
(3)()()()1685124+-⨯-+-⨯ (4)⎪⎭
⎫
⎝⎛-
-⨯1514311843
23.(本题共2小题,每小题2分,满分4分) 当3,1x y ==-时,求下列代数式的值:
(1)2
2
2x xy y ++ (2)2
2
x y -
24.(本小题满分6分)
有这样一道题:“计算)3()2()232(3
2
3
3
2
3
2
2
3
y y x x y xy x xy y x x -+-++----的值,其中
1,21-==
y x ” .甲同学把“21=x ”错抄成“2
1
-=x ”,但他计算的结果也是正确的,试 说明理由,并求出这个结果.
25.(本小题满分5分)
已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.
(1)求2※4的值;
(2)求(1※4)※(-2)的值;
(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;
(4)探索a※(b+c)与a※b+a※c的关系,并用等号或不等号把它们表达出来. 26.(本小题满分6分)
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)根据上面算式的规律,请计算:1+3+5+……+99=;
(3)通过猜想写出与第n个点阵相对应的等式.
……
……
①1=12;②1+3=22;③1+3+5=32;④;⑤;
初一数学参考答案
一、填空题(本大题共有14小题,23空,每空2分,共46分.) 1.-2;1-5
2.3,7± 3.①3
3.14,
7
②100,2,0,2008-- ③10.82,30,2,2008, 3.152----- ④3100,3.14,0,7
4.44.210⨯ 5.
37
n
+;17 6.1 7.>、> 8. 9
9.5、4
3
2
2
571xy y xy x y --++- 10. 232a b (答案不唯一) 11.3 12.21
13.3×()[]6104-++;()()64103---⨯等 14.20
二、选择题(本大题共有6小题,每小题3分,共18分.) 15.C 16.C 17.A 18.C 19.D 20.B 三、解答题(本大题共有6小题,共36分.) 21.(本小题满分3分)21
20 2.5(4)2
-<-
<<-<-- 22.(本题共4小题,每小题3分,满分12分)-42、-17.5、8、4.3 23.(本题共2小题,每小题2分,满分4分)4;8 24.(本小题满分6分)3
2y -,与x 的取值无关, 2.
25.(本小题满分5分)
(1)9; (2)-9; (3)□※○=○※□; (4)a ※(b +c )+1=a ※b +a ※c . 26.(本小题满分6分)(1)④1+3+5+7=42;⑤1+3+5+7+9=52. (2)1+3+5+……+99=2500 (3)1+3+5+…+(2n -1)=n 2。