能量分散谱仪(EDS)
能谱仪EDS概述

富Mg相
Al-Mg合金 SEI (深蚀)
Al X射线像
Mg X射线像
20
TiB/Ti合金基复合材料
21
CA =(ZAF)
IA
I (SA )
9
• X射线检出角
X射线检测方向与试样表面之间的夹角。采用高检出角减 小了试样对X射线的吸收和试样表面粗糙所造成的影响。
10
试样要求
• 电子探针WDS分析需制备抛光的平试样,否则定量分析 误差较大,而EDS分析可采用如颗粒、断口及不能破坏的 零件等粗糙试样。虽然定量准确度较差,但许多情况下可 以满足要求。 • 细粉末压片或块。 • 为了获得样品的“平均”定量结果,可使电子束扫描几个 较大区域,并取不同区域的平均值。
非常低,Be窗口对Be到Ne之间元素的X射线吸收严重。
● 现在的窗口材料可接收Be。
2
电子与物质相互作用
3
4
各种信息的发射深度
5
K系激发:L3层向K层跃迁Kα1,M层向K层跃迁Kβ。
6
元素与特征X射线波长的关系
• 即EDS定性分析原理
√= K(Z-σ)
7
•
EDS定性速度快,但由于它能量分辨率低,谱峰往往 重叠,必须正确判断才能获得正确的结果。用WDS和
11
标样要求
• 在微米区域内成分均匀,成分准确; • 物理和化学性能稳定;在真空中电子束轰击下稳定; • 颗粒直径不小于0.2mm。
12
EDS分析方法
点分析
● 将电子束固定在试样感兴趣的点上,进行定性或 定量分析。可对材料晶界、夹杂、析出相、沉淀
物、及材料的组成(扫描多个较大区域)等分析。
13
14
电子探针
eds测试原理

eds测试原理EDS测试原理EDS(Energy-dispersive X-ray Spectroscopy)是一种常用的材料分析技术,通过测量材料中的X射线能谱来确定其中元素的成分和相对含量。
EDS测试原理基于X射线的特性和元素的能级结构,结合能谱分析技术,能够提供关于材料元素组成的详细信息。
EDS测试的原理可以分为四个主要步骤:激发、发射、分散和检测。
首先是激发步骤。
EDS测试通常使用扫描电子显微镜(SEM)作为激发源,通过瞬间加热或电离样品表面,激发样品中的元素。
当样品受到激发时,元素中的电子会跃迁到高能级,形成空位。
这些空位会被周围的电子填充,并释放出能量。
这些能量以X射线的形式散射出去。
接下来是发射步骤。
当样品中的元素被激发后,它们会发射出特定能量的X射线。
这些X射线的能量与元素的原子结构和能级有关,因此可以被用来识别元素。
然后是分散步骤。
发射的X射线经过样品后,会和样品中的原子相互作用,发生能量损失和散射。
这导致发射的X射线的能量发生变化,称为能谱。
能谱中的每个能量峰对应着一个特定的元素。
最后是检测步骤。
EDS测试使用能谱分析仪器来测量发射的X射线能谱。
这些仪器将能谱转换为电信号,并通过数学算法进行处理,以确定材料中的元素种类和相对含量。
EDS测试原理的关键在于能谱分析。
能谱分析仪器能够将发射的X 射线能谱转换为元素峰的强度和位置信息。
通过比对已知元素的能谱数据库,可以确定样品中存在的元素。
同时,通过能谱峰的强度,还可以估计元素的相对含量。
EDS测试在材料科学、地质学、生物学等领域得到广泛应用。
它可以用来确定材料的组成、分析样品的微区化学成分、研究材料的晶体结构等。
EDS测试的优点是非破坏性、快速和准确。
然而,由于样品表面的几何形状和表面粗糙度等因素,可能会影响测试结果的准确性,因此在进行EDS测试时需要注意样品的准备和处理。
总结一下,EDS测试原理基于X射线的能谱分析,通过测量材料中发射的X射线能谱,可以确定样品中元素的成分和相对含量。
EDS原理及应用 ppt课件

EDS原理及应用
定性分析原理
X射线的能量为E=hγ h为普朗克常数,γ为光子振动频率。 不同元素发出的特征X射线具有不同频率,即具有不同能量,只要 检测不同光子的能量(频率γ), 即可确定元素-定性分析.可分为定点, 线扫描,面扫描分析
EDS原理及应用
EDS特点
能快速、同时对各种试样的微区内Be-U的所有元素,元素定性、定量分析,几 分钟即可完成。
对试样与探测器的几何位置要求低,可以在低倍率下获得X射线扫描、面分布 结果。
能谱所需探针电流小:对电子束照射后易损伤的试样,例如生物试样、快离子 导体试样、玻璃等损伤小。
检测限一般为0.1%-0.5%,中等原子序数的无重叠峰主元素的定量相误差约 为2% EDS定量分析的相对误差(含量>20%wt)的元素,允许的相对误差<5%
(3 %wt<含量<20%wt的元素,允许的相对误差<10% (1 %wt<含量<3%wt的元素,允许的相对误差<30% (0.5%wt<含量<1%wt的元素,允许的相对误差<50% 能量分辨率低(130eV) 工作条件要求严格。Si(Li)探头必须始终保持在液氦冷却的低温状态,即使是在 不工作时也不能中断,否则晶体内Li的浓度分布状态就会因扩散而变化,导致探 头功能下降甚至完全被破坏。
EDS原理及应用
特征X射线能测原理
光子能量检测过程
X射线光子进入锂漂移硅Si(Li)探测器 后,在晶体内产生电子一空穴对。在 低温下,产生一个电子-空穴对平均 消耗能量为3.8ev。能量为E的X射线光 子产生的电子-空穴对为N=E/3.8 。
例如:MnKa能量E为5.895KeV,形成 的电子-空穴对为1550个。Cak: 3.7KeV,约产生1,000电子-空穴对。
EDS-X射线能量分散谱

能谱仪的缺点:
◊ 分辨率低,峰背比低:背散射电子或X射线所激 发产生的荧光X射线信号也被同时检测到,谱线 的重叠现象严重。
◊ 工作条件要求严格:Si(Li)探头必须始终保持在 液氦冷却的低温状态
EDS装置图
EDS装置图
样品要求
◊均质、无污染
◊有良好的导电和导热性能
◊试样尺寸大于X射线扩展范围 ◊样品在真空和电子束轰击下要稳定 ◊高准确分析, 试样分析面平、垂 直入射电子束
EDS 的分析方法
◊ 定性分析:X射线的能量为E=hγ, 不同元素发 出的特征X射线具有不同频率,即具有不同能量, 只要检测不同光子的能量, 即可确定元素-定性 分析。
利用x子的能量不同来进行元素分析的微区方法1968年fitzgerald等人提出矽探测器應用在xray光譜分析上1970年代结合到电子显微镜sem系統加上同時可具備xray能譜分析的edseds能谱仪通过锂漂移硅固态检测器sili检测器将所有波长能量的x射线光子几乎同时接收进来每一能量为e的x光子相应地引起其中为产生一对电子空穴对需要消耗的能量不同的x射线光子能量产生的电子空穴对数不同
EDS的优点
◊ 分析速度快能谱仪可以同时接受和检测所有不同 能量的X射线光子信号。 ◊ 灵敏度高,X射线收集立体角大。可在低入射电 子束流(10-11A)条件下工作,这有利于提高分析 的空间分辨率。
eds能谱的原理

eds能谱的原理
EDS能谱是一种常用的材料分析技术,其原理基于X射线能谱学。
当电子束撞击样品时,会激发出样品中的电子,这些电子会在样品中跃迁到高能级和低能级之间,从而产生特征X射线。
这些特征X射线的能量与样品中原子的种类和数量有关,因此可以通过测量X射线的能量分布来分析样品的成分。
EDS能谱的具体原理如下:
1. 电子束撞击样品:电子束通过电子显微镜或扫描电子显微镜聚焦后,照射到样品表面,激发出样品中的电子。
2. 产生特征X射线:激发出的电子在样品中跃迁到高能级和低能级之间,从而产生特征X射线。
3. X射线检测:X射线经过样品后会被探测器检测到,探测器会将X射线转换成电信号。
4. 能量分析:电信号经过放大和处理后,被送到电子能谱仪中进行能量分析。
能量分析是通过将电子束在电子能谱仪中加速,使其撞击到闪烁体上,产生闪烁光,闪烁光的强度与X射线的能量成正比。
5. 成分分析:通过对X射线能量分布的分析,可以确定样品中的元素种类和含量。
总之,EDS能谱是一种基于X射线能谱学原理的材料分析技术,通过测量样品中的X射线能量分布,可以确定样品
中的元素种类和含量。
EDS能谱检测

Z:原子序数修正因子。(电子束散射与Z有关)
A:吸收修正因子。(试样对X射线的吸收) F:荧光修正因子。(特征X射线产生二次荧光)
半定量分析
无标样定量分析
无标样定量分析是X射线显微分析的一种快 速定量方法。强度比K=IS/IStd。
表达式中IStd是标样强度,它是由纯物理计 算,或用标样数据库给定的,适应于不同 的实验条件。其计算精度不如有标样定量 分析。
EDS原理及应用
12091024 吴保华
EDS
EDS可以与EPMA,SEM,TEM等组 合,其中SEM-EDS组合是应用最 广的显微分析仪器,EDS的发展, 几乎成为SEM的表配。是微区成 份分析的主要手段之一。
能谱仪:EDS (Energy Dispersive Spectrometer)
能谱的特点
Na
Cl
Ag
Thank you !
EDS检测(未镀膜)
cps/eV 4.5 4.0 3.5 3.0 Cl 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 keV 4 5 6 C Ca O Cl Ca
El AN
unn. C norm. C Atom. C Error (1 Sigma) K fact. Z corr. A corr. F corr. [wt.%] [wt.%] [at.%] [wt.%] ------------------------------------------------------------------------------------C 6 K-series 63.77 66.81 81.86 7.68 1.515 0.441 1.000 1.000 Cl 17 K-series 23.11 24.21 10.05 0.80 0.086 2.794 1.000 1.007 O 8 K-series 8.29 8.68 7.98 1.25 0.119 0.731 1.000 1.00 Ca 20 K-series 0.29 0.30 0.11 0.04 0.001 2.722 1.000 1.017 -------------------------------------------------------------------------------------
eds能谱分析仪

EDS能谱分析仪1. 简介EDS能谱分析仪(Energy Dispersive X-ray Spectroscopy)是一种常用于材料科学和研究领域的分析仪器。
它用于确定材料的元素组成和分析样品的化学成分。
EDS能谱分析仪基于X 射线的能量特性进行测量和分析。
2. 工作原理EDS能谱分析仪的工作原理基于样品中发生的X射线和能谱仪之间的相互作用。
当样品被激发时,其原子与外部能量源发生相互作用,产生一系列X射线。
这些X射线具有特定的能量值,对应于不同元素的特征峰。
EDS能谱分析仪通过将能量分散的X射线引导至能谱仪中的能量敏感探测器,从而测量和记录X射线的能量谱。
能谱仪会将能量谱转换为计数率谱,这样就可以定量分析样品中元素的含量。
3. 主要组成部分EDS能谱分析仪主要由以下几个组成部分组成:3.1 X射线发生器X射线发生器用于产生高能量的X射线。
它通常由X射线管、高压电源和辐射窗口组成。
X射线管通过电子束轰击X 射线靶材来产生X射线。
3.2 样品室样品室是放置待分析样品的空间。
它通常具有真空环境,以避免气体对X射线的吸收和散射。
样品室还包括样品台,用于支持和定位待分析的样品。
3.3 X射线与样品的相互作用区域该区域包括X射线与待分析样品之间的交互部分。
它通常包括一个X射线窗口和一套滤光器,以过滤和选择特定能量范围的X射线。
3.4 能谱仪能谱仪是EDS能谱分析仪的关键组成部分,用于测量和记录X射线的能量谱。
它通常由一个能量敏感探测器、放大器和多道分析器组成。
能量敏感探测器将能量分散的X射线转换为电信号,并将其发送给放大器进行放大。
多道分析器将能量信号转换为计数率谱,以进行后续的数据分析和处理。
3.5 数据处理和分析软件EDS能谱分析仪通常配备专业的数据处理和分析软件。
这些软件可以对能量谱进行处理、分析和解释,并生成元素含量和化学组成等报告。
4. 应用领域EDS能谱分析仪在材料科学和研究领域有广泛的应用。
EDS theory new 能量分散光谱仪原理

Theory of Energy Dispersive Spectrometer
Theory of Energy Dispersive Spectrometer
Theory of Energy Dispersive Spectrometer
Theory of Energy Dispersive Spectrometer
Sample
Cold Finger Hand Crank Scale
Pointer
Theory of Energy Dispersive Spectrometer
Theory of Energy Dispersive Spectrometer
Specimen need to be placed in proper position
產生機構 1. 電子或 光激發原子內層電子 電子或X-光激發原子內層電子 2. 外層電子填補空缺 3. 釋放出能量 4. 此能量激發出高階能階電子作為試片 元素分析之依 據
Theory of Energy Dispersive Spectrometer
e
N M L K Cu-K a line 8.046kev
Si(Li) Crystal Resistor Field Effect Heater windows Transistor(FET) Collimator LN2 level sensor Filter cap
Liquid Nitrogen Dewar Objective Lens
Microscope Chamber Pre-amplifier
Theory of Energy Dispersive Spectrometer
The
End
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 目前最常用的是Si(Li)X 射线能谱仪,其关键 部件是Si(Li)检测器, 即锂漂移硅固态检测 器,它实际上是一个 以Li为施主杂质的n-i-p 型二极管。
• 以Si(Li)检测器为探头的能谱仪实际上是一整套复杂的电子学装置。 Si(Li)X射线能谱仪
Si(Li)能谱仪的优点:
• (1)分析速度快能谱仪可以同时接受和检测所有不同能量的X射线 光子信号,故可在几分钟内分析和确定样品中含有的所有元素, 带铍窗口的探测器可探测的元素范围为11Na~92U,20世纪80年 代推向市场的新型窗口材料可使能谱仪能够分析Be以上的轻元 素,探测元素的范围为4Be~92U。 • (2)灵敏度高X射线收集立体角大。由于能谱仪中Si(Li)探头可以放 在离发射源很近的地方(10㎝左右),无需经过晶体衍射,信号 强度几乎没有损失,所以灵敏度高(可达104cps/nA,入射电子 束单位强度所产生的X射线计数率)。此外,能谱仪可在低入射 电子束流(10-11A)条件下工作,这有利于提高分析的空间分辨率。 • (3)谱线重复性好。由于能谱仪没有运动部件,稳定性好,且没 有聚焦要求,所以谱线峰值位置的重复性好且不存在失焦问题, 适合于比较粗糙表面的分析工作。
能量分散谱仪
EDS
能谱仪
• 能谱仪全称为能量分散谱仪(EDS). • 能谱仪的结构及工作原理: • 能谱仪是利用X 光量子的能量不同来进行元素分析的方 法,对于某一种元素的X 光量子从主量子数为n1的层上 跃迁到主量子数为n2的层上时有特定的能量ΔE=En1- En2。X 光量子的数目是作为测量样品中某元素的相对 百分含量用,即不同的X 光量子在多道分析器的不同道 址出现,而脉冲数-脉冲高度曲线在荧光屏或打印机上 显示出来,这就是X光量子的能谱曲线。 • 所谓能谱仪实际上是一些电子仪器,主要单元是半导体 探测器(一般称探头)和多道脉冲高度分析器,用以将 X光量子按能量展谱。
能谱仪的缺点:
• (1)能量分辨率低,峰背比低。由于能谱仪的探头直 接对着样品,所以由背散射电子或X射线所激发产 生的荧光X射线信号也被同时检测到,从而使得Si(Li) 检测器检测到的特征谱线在强度提高的同时,背底 也相应提高,谱线的重叠现象严重。故仪器分辨不 同能量特征X射线的能力变差。能谱仪的能量分辨 率(130eV)比波谱仪的能量分辨率(5eV)低。 • (2)工作条件要求严格。Si(Li)探头必须始终保持在液 氦冷却的低温状态,即使是在不工作时也不能中断, 否则晶体内Li的浓度分布状态就会因扩散而变化, 导致探头功能下降甚至完全被破坏。
• 探测器是能谱仪中最关键的部件,它决定了该谱仪分析元素的范 围和精度。 • 目前大多使用的是锂漂移硅Si(Li)探测器。 • Si(Li)探测器可以看作是一个特殊的半导体二极管,把接收的X 射线光子变成电脉冲信号。它有一个厚度约为3mm的中性区I, 这样X 光量子在I 区能够全部被吸收,将能量转化为电子-空穴 对,在p-n 结内电场的作用下放电产生电脉冲。这就是半导体 的p-n结在未接收X射线时,在加1000V左右电压情况下,在一 定时间内不漏电(无电流通过p-n结,不产生电脉冲)。尽管 硅或锗的纯度非常高,但其中还有微量杂质使其电阻降低,在 外加电场作用下会漏电,为此在半导体的中性区I中渗入离子半 径很小的锂以抵消这些杂质的导电。由于锂在室温下很容易扩 散,因此这种探测器不仅在液氮温度下使用,并且要一直放置 在液氮中保存,这往往给操作者带来很大的负担,特别是半导 体实验室。
Байду номын сангаас谢!