玄武岩短纤维复合材料的研究
玄武岩纤维复合材料的特性与应用

玄武岩纤维复合材料的特性与应用
玄武岩纤维复合材料是一种由玄武岩纤维和基体材料组成的复合材料,具有以下几个特性:
1. 高强度:玄武岩纤维具有优异的力学性能,可以大大提高复合材料的强度。
相比于传统的金属材料,玄武岩纤维复合材料具有更高的抗拉强度和抗压强度。
3. 耐腐蚀性:由于玄武岩纤维具有良好的耐腐蚀性,玄武岩纤维复合材料可以在强酸、强碱、高温等恶劣环境中使用,具有很好的耐久性。
4. 耐磨性:玄武岩纤维复合材料具有很好的耐磨性能,可用于制作耐磨性要求较高的零部件,如磨损件、切削工具等。
5. 绝缘性:玄武岩纤维复合材料具有良好的绝缘性能,可以用于制作绝缘件和电子元器件的包装。
1. 航空航天领域:玄武岩纤维复合材料可以用于制作飞机机身结构、导弹壳体、航天器外壳等。
2. 汽车制造领域:玄武岩纤维复合材料可以用于汽车制造中的车身和底盘结构,可以提高汽车的安全性和节能性能。
3. 建筑领域:玄武岩纤维复合材料可以用于建筑材料中的隔热材料、防火材料和外墙装饰材料等。
4. 高速列车领域:玄武岩纤维复合材料可以用于高速列车的车体结构和内饰装饰,具有减轻重量、提高车辆稳定性和运行速度的优势。
5. 石油化工领域:玄武岩纤维复合材料可以用于石油化工设备中的耐腐蚀管道、储罐和化工设备等。
玄武岩纤维复合材料具有高强度、轻质化、耐腐蚀性、耐磨性和绝缘性等特性,广泛应用于航空航天、汽车制造、建筑、高速列车和石油化工等领域。
玄武岩纤维聚合物复合材料的研究进展_尚宝月

玄武岩纤维聚合物复合材料的研究进展_尚宝月玄武岩纤维聚合物复合材料是利用玄武岩纤维和聚合物来构成的一种新型材料。
它具有很多优异的性能,如高强度、高刚度、耐腐蚀性、耐高温性以及良好的阻燃性等,因此在航空航天、汽车制造、建筑等领域有着广泛的应用前景。
玄武岩纤维是一种天然的无机纤维,主要成分是硅酸盐矿物,具有优良的力学性能和化学稳定性。
聚合物可以提供材料的机械强度和形状稳定性。
因此,将玄武岩纤维与聚合物复合使用可以充分发挥两者的优势,实现性能的协同提升。
近年来,玄武岩纤维聚合物复合材料的研究取得了很大的进展。
首先,在复合材料的制备方法方面,研究人员采用了多种方法,如注塑、挤出、层叠和增韧等技术。
这些方法可以控制材料的成分和结构,进而调节复合材料的力学性能。
其次,在增强剂的选择方面,研究人员发现,适当的增强剂可以提高复合材料的强度和刚度。
常用的增强剂包括碳纤维、玻璃纤维和聚合物纤维等。
其中,碳纤维是一种常用的增强剂,具有高强度、低密度和优异的耐热性能,可以显著提高复合材料的力学性能。
此外,研究人员还对玄武岩纤维表面进行了改性处理,以增加与聚合物之间的相容性。
例如,通过改变玄武岩纤维表面的化学性质,可以增加其与聚合物之间的粘结力。
此外,还可以通过在玄武岩纤维表面引入功能化基团,提高其与聚合物之间的相容性。
最后,在应用方面,玄武岩纤维聚合物复合材料已经在航空航天、汽车制造和建筑等领域得到广泛应用。
例如,它可以用于制造复合材料结构件、隔热材料和防火材料等。
综上所述,玄武岩纤维聚合物复合材料的研究已经取得了很大的进展。
随着技术的进一步发展和应用需求的增加,相信玄武岩纤维聚合物复合材料将会在更多的领域得到广泛的应用。
连续玄武岩纤维及其复合材料的研究

《连续玄武岩纤维及其复合材料的研究》一、引言近年来,连续玄武岩纤维及其复合材料作为一种新型材料备受关注。
玄武岩作为一种具有优良物理化学性能的矿物,其连续纤维被广泛应用于复合材料领域。
本文将从深度和广度两个方面对连续玄武岩纤维及其复合材料进行综合评估,并探讨其在不同领域内的应用。
二、连续玄武岩纤维的优势1. 物理化学性能突出连续玄武岩纤维具有优良的物理化学性能,如高强度、高模量、耐高温、耐腐蚀等特点,使其在复合材料中具有独特的优势。
在工程结构中,连续玄武岩纤维复合材料能够有效提高材料的强度和韧性,改善其疲劳性能,在航空航天、汽车制造、建筑等领域具有广泛的应用前景。
2. 可持续性发展玄武岩属于地球资源中丰富的矿物之一,其开采成本低、资源丰富,具有可持续发展的潜力。
利用玄武岩制备连续纤维及其复合材料,不仅可以提高材料的使用寿命,还能够有效地减少资源的浪费,符合现代社会对于可持续发展的要求。
三、连续玄武岩纤维及其复合材料的应用领域1. 航空航天领域在航空航天领域,要求材料具有轻质、高强度、耐高温等特点,连续玄武岩纤维复合材料能够满足这些要求。
其在飞机机身、发动机零部件、导弹制造等方面有着广泛的应用前景。
2. 汽车制造领域汽车制造领域对材料轻质化、高强度、耐磨耐腐蚀等性能要求较高,连续玄武岩纤维复合材料可以满足这些需求。
应用于汽车车身、零部件等方面,可以降低汽车自重,提高燃油利用率,减少排放,对于节能减排具有重要意义。
3. 建筑领域在建筑领域,连续玄武岩纤维复合材料可以用于加固混凝土结构、制作装饰板材等,提高建筑材料的抗风、抗震、防火性能,增加建筑物的使用寿命,对于提高建筑物的安全性和耐久性起着重要作用。
四、个人观点及总结个人认为,连续玄武岩纤维及其复合材料的研究与应用,将对现代工程技术和材料科学发展产生重要的影响。
其在各个领域的广泛应用将带来更高效、更安全、更可持续的解决方案,对于推动工业进步和社会发展具有积极的意义。
玄武岩纤维复合材料的特性与应用

玄武岩纤维复合材料的特性与应用
玄武岩纤维复合材料是一种具有良好机械性能和热稳定性的复合材料。
它由玄武岩纤维和基体材料组成,可以在高温、高压和恶劣环境下工作,具有很高的耐磨性能和强度,因此在一些工业领域中有广泛的应用。
玄武岩纤维复合材料的优点:
1、机械强度高: 玄武岩纤维具有良好的强度和刚性,使得复合材料具有良好的机械强度;
2、耐磨性好: 玄武岩纤维对磨损有很好的耐受性,因此复合材料在摩擦和磨损环境下很耐用;
3、具有化学稳定性: 玄武岩纤维与多种化学基体相容性良好;
4、抗高温性能好: 玄武岩纤维可以耐受高温,复合材料可以在高温下工作;
5、密度小: 玄武岩纤维质量轻,复合材料密度相对较小,能够有效减轻负担。
玄武岩纤维复合材料的应用:
1、航空航天: 复合材料在航空航天领域中有广泛的应用,玄武岩纤维复合材料在这一领域中可以用于制造航空发动机部件、机身和翼面等;
2、汽车制造: 玄武岩纤维复合材料具有良好的机械强度和热稳定性,可以用于汽车零部件制造,例如轮辋、制动系统、前支撑和排气管等;
3、建筑领域: 玄武岩纤维复合材料可以用于建筑领域中的墙板、屋顶、地板、门、窗等材料制造;
4、船舶: 玄武岩纤维复合材料可以用于船舶制造领域中,用于生产船体、水族馆和游泳池等设施;
5、轨道交通领域: 玄武岩纤维复合材料可以应用于轨道交通领域,用于制造地铁、列车、桥梁和隧道结构等。
总之,玄武岩纤维复合材料具有很大的应用前景,可以在许多工业领域中发挥作用。
玄武岩纤维复合材料性能提升及其新型结构

玄武岩纤维复合材料性能提升及其新型结构一方面,玄武岩纤维的加入可以提高复合材料的强度和刚度。
玄武岩
纤维具有高强度和高模量的特点,其拉伸强度可达到1000MPa,而且具有
良好的抗蠕变性和疲劳性能。
将玄武岩纤维与基质材料结合,可以有效地
改善复合材料的强度和刚度,使其在结构工程中具有更好的载荷承受能力。
另一方面,玄武岩纤维的加入可以提高复合材料的耐腐蚀性能。
玄武
岩纤维具有较好的耐酸碱性能和耐磨性能,能够有效地抵抗一些腐蚀介质
的侵蚀。
将玄武岩纤维与基质材料结合,可以提高复合材料在腐蚀环境下
的稳定性和耐久性,延长其使用寿命。
此外,通过改变玄武岩纤维复合材料的结构,也可以进一步提升其性能。
例如,可以采用纳米复合技术,将纳米粒子引入复合材料中,增强界
面结合力,提高复合材料的力学性能。
同时,还可以将玄武岩纤维与其他
纤维材料进行混编,形成复合纤维增强材料,进一步提高复合材料的强度
和刚度。
此外,还可以采用多孔结构设计,使复合材料具有较好的吸能性
能和防护性能,提高其在冲击和挤压载荷下的安全性能。
总之,玄武岩纤维复合材料具有优异的性能,并且通过改变其结构可
以进一步提升其性能。
玄武岩纤维复合材料在航空航天、汽车制造、建筑
工程等领域具有广阔的应用前景,将为现代工程领域的发展做出重要贡献。
玄武岩纤维复合材料的特性与应用

玄武岩纤维复合材料的特性与应用1. 引言1.1 玄武岩纤维复合材料简介玄武岩纤维复合材料是一种以玄武岩纤维为增强材料,经过特定工艺制成的复合材料。
玄武岩是一种含有丰富硅、铝、镁、铁等矿物质的火山岩石,具有优异的物理化学性质。
玄武岩纤维具有优秀的耐高温、耐腐蚀、抗拉强度高等特点,是一种理想的增强材料。
玄武岩纤维复合材料通过将玄武岩纤维与树脂基体进行结合,形成高性能的复合材料,具有轻质高强、耐热耐腐蚀、阻燃隔热等优点。
在工程领域中,玄武岩纤维复合材料被广泛应用于建筑、航空航天、汽车制造等领域,为产品的性能提升和成本降低提供了新的解决方案。
通过进一步研究和开发,玄武岩纤维复合材料有望在更多领域展现其优势。
其独特的特性和广阔的应用前景使得玄武岩纤维复合材料成为材料科学领域的一颗新星,将推动材料科学领域的不断进步和发展。
2. 正文2.1 玄武岩纤维复合材料的特性1. 高强度:玄武岩纤维具有很高的抗拉强度和抗压强度,因此制成的复合材料具有非常好的强度和刚性,能够承受较大的载荷。
2. 耐热性:玄武岩纤维具有良好的耐高温性能,可以在高温环境下保持稳定的物理性能,适合用于高温工作环境的材料选择。
3. 耐腐蚀性:玄武岩纤维复合材料具有优异的耐腐蚀性能,能够抵抗化学腐蚀和水腐蚀,延长材料的使用寿命。
4. 轻质:玄武岩纤维复合材料相比金属材料更轻,可以减轻结构的重量,提高产品的性能和节能减排。
5. 良好的吸震性能:玄武岩纤维复合材料具有良好的吸震性能,在受到外力冲击时能够减缓能量传播,保护结构和设备的安全。
6. 易加工性:玄武岩纤维复合材料具有较好的加工性,可以根据需要进行织造、浸渍、成型等多种加工工艺,适用于复杂形状和结构的制造。
2.2 玄武岩纤维复合材料的应用领域玄武岩纤维复合材料的应用领域非常广泛,主要包括建筑、航空航天和汽车制造等领域。
在建筑领域,玄武岩纤维复合材料被广泛应用于墙体、地板、屋顶等结构件的强化和保护。
玄武岩纤维复合材料的特性与应用

玄武岩纤维复合材料的特性与应用
玄武岩纤维复合材料是一种新型的材料,其具有很多优良的特性和应用前景。
在本文中,我们将对玄武岩纤维复合材料的特性和应用进行详细介绍。
1.高强度和高模量
玄武岩纤维具有很高的强度和模量,因此玄武岩纤维复合材料也具有非常高的强度和
模量。
与普通的材料相比,玄武岩纤维复合材料具有更高的抗拉强度、剪切强度、弯曲强
度和压缩强度,能够承受更大的力量。
2.良好的耐腐蚀性
玄武岩纤维复合材料具有良好的耐腐蚀性,在酸碱性环境下也能够保持材料的稳定性
和性能。
4.较小的膨胀和收缩
5.易加工性
玄武岩纤维复合材料易于加工成各种形状和尺寸的制品,能够满足各种应用的需求。
1.航空航天领域
由于玄武岩纤维复合材料具有高强度和高模量的特性,因此被广泛应用于航空航天领
域中的机身、翼面、前缘板和襟翼等部位。
它们具有轻重比低、疲劳寿命长和防冲击性能
好等优点。
2.交通运输领域
玄武岩纤维复合材料还可用于制造汽车、火车、船舶等交通运输工具的车身、车门、
车顶、船体和桥梁等结构部件。
它们具有高强度、耐磨损等特点,能够提高运输工具的安
全性和稳定性。
3.建筑领域
玄武岩纤维复合材料还可用于建筑领域中的装饰板、防盗门、隔音材料、屋顶和立面
等建筑材料。
它们具有良好的抗水、抗火、防腐、耐久等特性,能够提高建筑物的使用寿
命和安全性。
4.能源领域
玄武岩纤维复合材料还可用于能源领域中的风力、水力、太阳能等设备的叶片、桨叶、龙骨等部分。
它们具有高强度、低噪音、耐腐蚀等特性,能够提高能源设备的效率和可靠性。
玄武岩纤维复合材料项目可行性研究报告模板可编辑

玄武岩纤维复合材料项目可行性研究报告模板可编辑可行性研究报告模板一、项目背景介绍玄武岩纤维复合材料项目的背景和意义,阐明市场需求和行业前景。
二、项目简介1.项目概述:介绍项目的名称、目标和规模。
2.技术原理:介绍玄武岩纤维复合材料的制备原理和优势。
3.技术应用:介绍玄武岩纤维复合材料的广泛应用领域。
三、市场需求分析1.行业现状:分析玄武岩纤维复合材料行业的发展现状。
2.市场容量:调查相关市场的需求容量和增长趋势。
3.市场竞争:分析竞争对手的情况和市场份额。
四、技术可行性分析1.技术优势:介绍玄武岩纤维复合材料的技术优势和特点。
2.制备工艺:详细介绍制备玄武岩纤维复合材料的工艺流程和设备要求。
3.资源条件:评估项目所需的原材料和技术条件的可获得性和成本。
4.技术风险:分析制备过程中可能遇到的技术问题和解决方案。
五、经济可行性分析1.投资预算:列出项目所需的设备、材料和人力资源的成本。
2.收入预测:根据市场需求估计项目的销售收入。
3.成本分析:列出项目运营过程中的各项成本,并进行详细分析。
4.盈亏平衡点分析:计算项目需要达到的销售额以实现盈亏平衡。
六、风险评估1.市场风险:分析市场竞争和需求变化对项目的影响。
2.技术风险:评估技术实施和生产过程中可能出现的问题。
3.政策风险:分析政府政策和法规变化对项目的影响。
七、可行性结论综合前述分析,给出玄武岩纤维复合材料项目的可行性结论,并提出后续建议。
引用相关文献、报告和统计数据。
以上是一个玄武岩纤维复合材料项目可行性研究报告模板,根据具体情况可以对报告内容进行调整和精细化,确保报告的完整和准确性。
对于每一部分的内容,可以根据项目实际情况适当增加细节和数据,以使报告更加具体和有说服力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:介绍了玄武岩纤维的研究方法以及国内外发展历程和现状,玄武岩纤维性能和应用领域,表明玄武岩纤维用于防火隔热材料,过滤材料,增强复合材料,电子技术等具有明显的优势以及对未来发展的展望。
关键词:玄武岩纤维;防火隔热;过滤环保;增强复合;高技术纤维。
一、概述:玄武岩纤维是以天然的火山喷出岩作为原料,将其破碎后加入熔窑中,在1450℃~1500℃熔融后,通过铂铑合金拉丝漏板制成的连续纤维。
以玄武岩纤维为增强体可制成各种性能优异的复合材料,可广泛应用于消防、环保、航空航天、军工、车船制造、工程塑料、建筑等军工和民用领域,故玄武岩纤维被誉为21世纪的新材料。
近年来,国内似乎又形成了一股“玄武岩纤维热”,其“热”主要体现在两个方面,一方面有关玄武岩纤维方面的文章大量涌现,有的文章甚至把玄武岩纤维捧得似乎无所不能,另一方面国内有好几家企业上马玄武岩纤维生产线项目,人们对玄武岩纤维项目更是热情有加,似乎哪里有玄武岩资源,就有上马玄武岩纤维项目的最大优势。
据了解目前至少已建成了两家玄武岩纤维生产厂,还有一些地方也在准备抓紧建造玄武岩纤维生产线。
从建成的生产线厂家来看,目前在市场的开拓方面也是不容太乐观。
有些厂家为了降低成本,提高成纤率,在玄武岩原料中,掺入一些助熔剂,如萤石,碎玻璃等,这些助熔剂如果没有经过科学论证,将劣化玄武岩纤维原有的性能,并且也不再是严格意义上的玄武岩纤维了。
二.玄武岩纤维的性能1.新型环保性材料玄武岩纤维具有非人工合成的纯天然性,加之生产过程无害,且产品寿命长,是一种低成本﹑高性能﹑洁净程度理想的新型绿色主动环保材料。
由于玄武岩熔化过程中没有硼和其他碱金属氧化物排出,使玄武岩纤维制造过程的池炉排放烟尘中无有害物质析出,不向大气排放有害气体,无工业垃圾及有毒物质污染环境。
玄武岩纤维在很大程度上可代替玻璃纤维,被广泛用于航天航空、石油化工、汽车、建筑等多领域,因而,玄武岩纤维被誉为21世纪“火山岩变丝”、“点石成金”的新型环保纤维。
2.功能性优良的材料玄武岩纤维是继碳纤维,芳纶纤维和超高分子量聚乙烯纤维的第四大高技术纤维支柱,在许多条件下可替代碳纤维﹑芳纶纤维,在某些场合甚至比上述两种纤维性能还好。
玄武岩纤维及其制品的异常优越性能具体表现在以下几个方面:(1)显著的耐高温性能和热震稳定性。
玄武岩纤维的使用温度范围为-260 ℃~880 ℃,这一温度远远高于芳纶纤维、无碱E玻纤、石棉、岩棉、不锈钢,接近硅纤维、硅酸铝纤维和陶瓷纤维。
(2)较低的热传导系数。
玄武岩纤维的热传导系数低于芳纶纤维、硅酸铝纤维、无碱玻纤、岩棉、硅纤维、碳纤维和不锈钢。
(3)高的弹性模量和抗拉强度。
玄武岩纤维的弹性模量为:9100 kg/mm2~11000 kg/mm2,高于无碱玻纤、石棉、芳纶纤维、聚丙稀纤维和硅纤维。
玄武岩纤维的抗拉强度为3800~4800 MPa,比大丝束碳纤维、芳纶、PBI纤维、钢纤维、硼纤维、氧化铝纤维都要高,与S玻璃纤维相当。
(4)化学稳定性好。
玄武岩纤维的耐酸性和耐碱性均比铝硼硅酸盐纤维好。
其耐久性﹑耐候性﹑耐紫外线照射﹑耐水性﹑抗氧化等性能均可与天然玄武岩石头相比美。
(5)吸音系数较高。
玄武岩纤维的吸音系数为0.9~0.99,高于无碱玻纤和硅纤维;优良的透波性和一定的吸波性,吸音和隔音性能优异,具有良好的隐身性能, 可制做隐身材料。
(6)良好的电绝缘性和介电性能。
玄武岩纤维的比体积电阻较高大大高于无碱玻纤和硅纤维;体积电阻率比电绝缘E玻璃纤维高一个数量级, 介电损失角正切高50 %。
(7)较低的吸湿性。
玄武岩纤维的吸湿性低于0.1 %,低于芳纶纤维、岩棉和石棉。
(8)天然的硅酸盐相溶性。
与水泥﹑混凝土的分散性好,结合力强,热胀冷缩系数一致,耐候性好。
三.玄武岩纤维的发展与现状:玄武岩纤维是指用天然玄武岩作为唯一原料生产的连续纤维材料。
玄武岩纤维所用的原料是自然界中分布最广的玄武岩。
目前,玄武岩主要用作一些低附加值的建筑及道路用的填料石子,也可用作一些较高附加值的矿物棉原料,另外,也有少量用于制造铸石。
最早的玄武岩连续纤维制造技术,出现在1922年的美国专利(US1438428)上,是由法国人Paul提出的。
但后来并没有实质性的工业化生产。
到了60年代初,为了满足军事工业发展的需要,特别是先进导弹的开发,急需高强度玻璃纤维。
美国的某些玻纤公司,如Owens Corning等公司都对玄武岩纤维进行了独立的研发工作,由此也产生了一些有关玄武岩纤维的专利。
可是到了70年代,在寻找到了性能更为稳定的高强玻璃纤维后,这些美国公司基本都放弃了玄武岩纤维开发项目,其中以Owens Corning公司开发的高强玻纤S-2最具代表性。
自1997年Subramanian 离开华盛顿州立大学后,该大学在玄武岩纤维方面的研发工作也随之终止。
据Subramanian所说,尽管当时他己退休,但有不少做玄武岩纤维市场的公司经常向他咨询纤维应用问题。
我国自20世纪70年代起,就断断续续地开展对玄武岩纤维的研究,但未获得成功。
2001年我国哈尔滨工业大学组建了专门的研究队伍致力于玄武岩纤维制备技术的研发。
2004年哈尔滨工业大学深圳研究院与成都航天万欣科技有限公司组建了成都航天拓鑫科技有限公司,进一步研究改进玄武岩连续纤维制造设备功能,开发出玄武岩纤维终端产品。
由此可见,尽管经过长期的市场开发,玄武岩纤维在今天的美国市场占有率还有限,其几百吨的年用量根本不能与其他玻璃纤维市场及碳纤维市场同日而语。
在上世纪70年代初,前苏联在玄武岩纤维方面的一些科研论文与成果开始陆续出现在某些出版物上,再一次引起其他一些国家的关注,如美国和我国的一些玻璃纤维科研人员均开展了一些研发工作,当时,美国的一位学者Raff还发表了一篇名为“玄武岩纤维一~美国潜在的新产业”的文章,遗憾的是他的这一预言至今为止并没有成为现实。
上世纪70年代,在前苏联国防部的主持下,玄武岩纤维作为国家级的军工项目也实现了工业化的生产。
事实上,当时前苏联不仅开发了连续玄武岩纤维,而且也开发了由连续玄武岩一次初丝,采用火焰喷吹技术生产的玄武岩超细纤维棉,该材料主要用于高端的隔热应用。
前苏联的玄武岩纤维项目的主要研发及生产基地在乌克兰的基辅。
前苏联解体,玄武岩纤维项目开始公开,并用于民用项目。
目前玄武岩纤维的生产厂基本上集中在俄罗斯及乌克兰两个国家。
四.玄武岩纤维的应用1.防火隔热领域的应用玄武岩纤维用于防火服正处于起步阶段,由于其本身的特殊性能,用于防火服领域有较大的优势。
玄武岩纤维是无机纤维,具有不燃性、耐温性(-269℃~650℃)、无有毒气体排出、绝热性好、无熔融或滴落、强度高、无热收缩现象等优点。
2.在过滤环保领域的应用玄武岩纤维是一种新型的绿色环保材料,可用于环保领域有害介质、气体的过滤、吸附和净化,特别是在高温过滤领域,玄武岩纤维的长期使用温度是650℃,远优于传统过滤材料,是过滤基布、过滤材料、耐高温毡的首选材料。
目前过滤材料主要有天然纤维、各种合成纤维、各种无机纤维和金属纤维。
但是,目前所有的过滤材料都不能解决过滤高温介质的问题,而玄武岩纤维可以在-269~650 ℃的范围内长期使用,它的耐高温性能是其它材料所无法比拟的。
3.玄武岩纤维增强树脂基复合材料的应用玄武岩纤维具有良好的技术特性:低容重,低导热率,低吸湿率和对腐蚀介质的化学稳定性,能够降低结构重量,形成新型结构材料。
利用这些特性,在军品和民品领域有广泛的应用。
玄武岩纤维增强树脂基复合材料是制造坦克装甲车辆的车身材料,可减轻其重量;用于制造火炮材料,尤其是用于炮管热护套材料可以大大提高火炮的命中率和射击精度。
在枪弹、引信、弹匣、大口径机枪枪架、坦克装甲车辆的薄板装甲、汽车发动机罩、减振装置等等方面有大量的应用。
在船舶工业中可大量用于船壳体、机仓绝热隔音和上层建筑;用玄武岩纤维蜂窝板可制成火车车厢板,既减轻了车厢的重量,又是一种良好的阻燃材料。
4.在电子技术领域的应用玄武岩纤维具有良好的介电性能。
其含有较多的导电氧化物,是不适合做介电材料的,但是采用某种浸润剂处理纤维表面后,其介电损失角正切比常规玻纤大大降低,它的体积电阻率比E玻璃纤维高1个数量级,所以CBF非常适合用于耐热介电材料。
五.玄武岩纤维生产工艺虽然玄武岩纤维的生产技术看似简单,但实际上颇为复杂,需要很多的技术诀窍。
为实现高质量玄武岩的工业生产,需要考虑各方面的技术复杂性和设计专用设备。
图(1)1-料仓;2-喂料器;3-提升输送机;4-定量下料器;5-原料初级熔化带;6-天然气喷嘴;7-二级熔制带(前炉);8-铂铑合金漏板;9-施加浸润剂;10-集束器;11-纤维张紧器;12-自动卷丝机图1为目前典型的玄武岩纤维生产工艺流程:首先要选用合适的玄武岩矿原料,经破碎,清洗后的玄武岩原料储存在料仓1中待用,经喂料器2用提升输送机3输送到定量下料器4喂入单元熔窑,玄武岩原料在1500℃左右的高温初级熔化带5下熔化,目前玄武岩熔制窑炉均是采用顶部的天然气喷嘴6的燃烧加热。
熔化后的玄武岩熔体流入拉丝前炉7,为了确保玄武岩熔体充分熔化,其化学成分得到充分的均化以及熔体内部的气泡充分的挥发,一般需要适当提高拉丝前炉中的熔制温度,同时还要确保熔体在前炉中的较长停留时间。
最后,玄武岩熔体进入两个温控区,将熔体温度调至约1350℃左右的拉丝成型温度,初始温控带用于“粗”调熔体温度,成型区温控带用于“精”调熔体温度。
来自成型区的合格玄武岩熔体经200 孔的铂铑合金漏板8拉制成纤维,拉制成的在施加合适浸润剂9后经集束器10及纤维张紧器11,最后至自动绕丝机12。
六.目前面临的问题1.玄武岩成分波动大由于玄武岩是由地球熔岩形成的,因此造成它的先天不足,就是其成分的波动,不仅不同矿床成分波动较大,就是同一矿点化学成分也有一定的波动范围。
这就直接导致了玄武岩纤维性能波动大,使其在高端领域上的大量应用受到限制。
制造玄武岩纤维对使用的玄武岩原料有一定的选择性,一般要求玄武岩原料中的基本没有耐高温的晶相,这种晶相在不完全的熔制工艺中易形成二次结晶的晶核而影响玄武岩拉丝过程的稳定性。
2.天然玄武岩原料的料性短实验表明,玄武岩成分的析晶上限温度与其拉丝成形温度非常接近,成纤温度范围窄,而且在温度梯度炉中的析晶温度测试进一步表明玄武岩的析晶温度点有较大的离散性。
这样就大大降低了玄武岩熔体成纤工艺的稳定性,经常会出现断丝等现象,这种熔制、均化不充分的玄武岩熔体不宜用高孔数的拉丝漏板拉制纤维,而且这样的玄武岩熔体即使纤维在拉制过程中未出现断丝,也会给纤维拉伸强度等方面的特性产生较大的波动。
3.玄武岩原料内部的微晶相结构差异玄武岩的成分波动及其所经受的热历史的差异,也造成了玄武岩原料内部某些结晶物的差别,某些微晶物(如石英等)具有较高熔点,在玄武岩原料不充分的熔制过程中,这些微晶体未能得到充分的熔化与均化,因此在玄武岩纤维成形过程中,这些熔制不充分的微晶体在拉丝过程中极易成为晶核而加速析晶现象的出现。