光纤式传感器

合集下载

光纤传感器

光纤传感器

这种干涉仪是多光束干涉,与前几种双光束干涉仪不同。
光 源
BS
M2
光纤
M1
调制
S0(t)
透射 输出
反射输出
几种干涉仪的共同点:如果相干光均在空气中传播, 受环境温度变化的影响,会引起空气折射率的扰动以 及声波干扰,导致空气光程的变化,造成工作不稳定, 精度的降低。
利用单模光纤作干涉仪的光路,可以减小环境温度的 影响。
其中
2
a

微弯光纤纤芯半径
n1 n2 相对折射率差 n1
2 2 n1 n2 2 2n1
对SIF, 对GIF,
g
g2
有: 有:
0
a
2a
0

例:水听器
2.光强度的外调制
外调制技术的调制环节通常在光纤外部,因而光纤
本身只起传光作用。这里光纤分为两部分:发送光纤和

被测物理量(温度)
I in
折射率改变
I out
1
强度改变
2 3
(a)
(b)
斜面反射式光纤温度传感器 1、2 光纤 3 棱镜
4 由光吸收系数的改变引起的强度调制
X射线等辐射线会使光纤材料的吸收损耗增加,光纤的输出 功率降低.
辐射 Iin L Iout D
(二) 解调
S0(t)
1 直接检测
L
D2 S D1
可得: I 2 I 0 1 cos( m t )


频移 m 一般由声光调制器AOM(布喇格盒)获得.其实质 是多谱勒效应
注:相位检测技术非常复杂,限于课时,不能展开讲解.有兴趣 的同学可参看王惠文主编的«光纤传感技术与应用»一书.

光纤传感器

光纤传感器

光纤传感器光纤传感器技术在现代科技领域中扮演着重要的角色。

本文将介绍光纤传感器的原理、应用领域以及未来发展趋势。

光纤传感器是一种利用光纤输送光信号并将其转换为传感信号的装置。

其工作原理基于光纤的光学特性,利用光的传输和反射来检测物理量的变化。

光纤传感器可以实现高灵敏度、高分辨率、快速响应和远程感知等特点,因此在许多领域得到广泛应用。

一种常见的光纤传感器类型是光纤光栅传感器。

光纤光栅传感器利用光栅的干涉效应来实现对物理量的测量。

光栅是将光纤纤芯中周期性的折射率变化引入的装置,在光的传播过程中形成干涉。

当光栅受到外界物理量的作用时,其折射率发生变化,从而引起干涉的变化,进而实现对物理量的检测。

光纤传感器的应用领域非常广泛,其中之一是环境监测领域。

光纤传感器可以用于测量温度、湿度、压力等环境参数,用于监测大气污染、水质污染、土壤质量等环境指标。

通过将光纤传感器网络部署在不同地点,可以实现对环境状况的实时连续监测,为环境保护提供重要数据支持。

另外,光纤传感器在基础设施安全领域也起着关键作用。

例如,光纤传感器可以应用于石油管道、天然气管道、电力输电线路等重要设施的监测和安全保护。

通过光纤传感器可以实现对温度、压力、振动等参数的监测,及时发现异常情况并采取措施,避免事故的发生。

光纤传感器还在医疗领域发挥着重要作用。

例如,在手术中,医生可以使用光纤传感器来监测患者的生命体征,如心率、血压等,并及时作出反应。

此外,光纤传感器还可以用于光学成像,如光纤内窥镜等,帮助医生进行精确的病灶检测和治疗。

未来,光纤传感器技术有望进一步发展。

一方面,随着光纤技术的不断革新,光纤传感器的性能将得到进一步提升。

例如,光纤传感器的灵敏度和分辨率将更高,响应速度将更快,从而满足更多领域对传感器的需求。

另一方面,光纤传感器的应用范围也将不断扩大,如在机器人技术、智能交通、航空航天等领域的应用都将成为可能。

这些发展将进一步推动光纤传感器技术的应用和创新。

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理光纤传感器作为一种重要的光学传感器,广泛应用于各个领域,如光通信、工业自动化、医疗设备等。

本文将介绍光纤传感器的工作原理及其在实际应用中的特点。

一、工作原理光纤传感器是利用光学原理来实现物理量的检测和测量的装置。

它基于光的传输、反射、折射、散射等现象,通过改变光的强度、频率或相位来感知和测量被测物理量。

1. 光传输光纤传感器中的光信号通过光纤传输到被测物体或环境中。

光纤具有优异的光导传输特性,可以保证光信号在传输过程中的稳定性和可靠性。

2. 光的接收与反射被测物体或环境中的光信号与光纤发射的光信号相互作用后,一部分被反射回光纤。

这里的反射可以是由于光的散射、反射或折射等效应引起的。

3. 光的探测与解读通过光纤传感器接收到的反射光信号会被传感器内部的光电探测器接收并转换成电信号。

电信号会被后续的电路处理和解读,从而获取被测量的物理量信息。

二、特点和应用光纤传感器具有以下特点,使其在各个领域得到广泛应用:1. 高精度光纤传感器具有高分辨率和高灵敏度,可以对微小物理量进行准确测量。

同时,光纤传感器还能实现长距离的传输,适用于大范围的测量需求。

2. 免受干扰光纤传感器的信号传输是光学信号,不会受到电磁干扰,有较高的抗干扰能力。

这使得光纤传感器在工业自动化、电磁环境复杂的场合下具有稳定可靠的性能。

3. 多功能光纤传感器可以根据需求设计不同的传感结构,实现对不同物理量的测量。

如温度、压力、湿度等物理量都可以通过光纤传感器进行检测。

4. 实时性光纤传感器的工作响应快速,能够实时获取被测物理量的变化。

这使得在对实时监测和控制要求较高的应用领域,如工业生产过程中的物料流动监测等,光纤传感器发挥了极其重要的作用。

光纤传感器由于其独特的工作原理和优越的性能,在多个领域有广泛的应用。

以下是一些典型的光纤传感器应用案例:1. 环境监测通过光纤传感器,可以实时监测环境参数,如温度、湿度、气体浓度等。

这对于环境保护、工业安全等方面具有重要意义。

光纤传感器的特点和工作原理

光纤传感器的特点和工作原理

光纤传感器的特点和工作原理一、光纤传感器的特点:1.高灵敏度:光纤传感器可以实现高灵敏度的测量,在微小尺度下可以检测到微小变化,并将其转化为电信号输出。

2.多功能性:光纤传感器可以根据不同的应用需求进行设计和选择,可以实现温度、压力、形变、位移、流速、振动等多种物理量的测量和监测。

3.抗干扰性强:由于光纤传感器采用光学原理进行测量,光信号不易受到电磁干扰的影响,从而大大提高了传感系统的稳定性和抗干扰性。

4.远距离传输:光纤传感器的传输距离可以达到几公里,甚至更远,可以满足从传感位置到控制中心的长距离传输需求。

5.抗腐蚀性强:光纤传感器中的光缆材料一般为二氧化硅或光纤增强复合材料,具有抗腐蚀性、耐高温性和强韧性,适用于恶劣环境下的测量和监测。

6.体积小、重量轻:由于光纤传感器使用光学器件作为传感元件,所以整个传感器可以做得非常小巧轻便,便于安装和携带。

7.高精度:光纤传感器可以实现高精度的测量和检测,可以满足高要求的科研和工业应用。

二、光纤传感器的工作原理:1.光源:光源一般采用激光器、发光二极管或白炽灯,产生一束光信号。

2.传输介质:传输介质即为光纤,光纤由高折射率的芯心和低折射率的包层组成。

光信号会在光纤中以全内反射的方式传输。

3.光接收器:光接收器一般采用光电二极管或光电倍增管,用于接收光信号并将其转换为电信号输出。

当光纤传感器用于测量物理量时,会根据物理量的不同使用不同的传感技术。

例如,当光纤传感器用于温度测量时,可以使用基于热敏特性的传感技术,即通过测量光纤材料的热传导特性来推断温度的变化。

当光纤传感器用于压力测量时,可以使用基于光纤的布拉格光栅技术,即通过载荷的作用使光纤纳米尺度的周期结构发生畸变,进而引起光纤波导特性的变化,从而实现压力的测量。

总之,光纤传感器的工作原理是利用光学原理将待测物理量转化为光信号,然后通过光接收器将光信号转化为电信号输出,从而实现对物理量的测量和检测。

由于光纤传感器具有高灵敏度、多功能性、抗干扰性强、远距离传输、抗腐蚀性强、体积小、重量轻和高精度等特点,因此在各个领域都得到了广泛的应用。

光纤传感器的原理和分类

光纤传感器的原理和分类

光纤传感器的原理和分类光纤传感器是一种利用光纤作为传感元件的传感器,其原理基于光的传输和传导特性。

由于光纤具有高强度、高精度、抗干扰性强等优点,因此在许多领域被广泛应用。

本文将介绍光纤传感器的原理以及常见的分类。

一、光纤传感器的原理光纤传感器是通过利用光的传输和传导特性来实现对物理量的测量或检测。

其原理基于光在光纤中传播的特性,通过引入测量介质或改变光纤本身的物理性质,来实现对所测量量的感应和转换。

光纤传感器的工作原理主要包括两个部分:光纤内部光的传输和光的检测与测量。

光纤中的光通过全反射现象在光纤内部传输,当外界环境或测量介质的物理性质发生变化时,会引起光的入射角度或传播路径的改变。

这样,光的特性变化就能被传感器感受到,并通过光的检测与测量来转换成电信号或数字信号进行处理。

二、光纤传感器的分类1. 根据测量原理分类- 干涉型光纤传感器:利用干涉原理测量物理量的变化,如干涉型位移传感器、干涉型应力传感器等。

- 散射型光纤传感器:利用光的散射现象测量介质的物理性质,如散射型温度传感器、散射型液位传感器等。

- 吸收型光纤传感器:利用介质对光的吸收特性测量物理量的变化,如吸收型浓度传感器、吸收型压力传感器等。

2. 根据传感原理分类- 光纤光栅传感器:利用光栅的周期性结构产生的光波反射、衍射或干涉现象进行测量,如光纤光栅位移传感器、光纤光栅应变传感器等。

- 光纤光栅传感器具有高精度、高分辨率和良好的抗干扰性能,在工业自动化、航空航天等领域得到广泛应用。

3. 根据测量的物理量分类- 光纤温度传感器:通过测量介质对光的吸收和散射特性来对温度进行测量。

- 光纤压力传感器:通过测量介质对光的压力和扭转特性来对压力进行测量。

- 光纤位移传感器:通过测量光纤长度的变化来对位移进行测量。

三、光纤传感器的应用领域光纤传感器由于其高灵敏度、高分辨率、抗干扰性强等特点,被广泛应用于各个领域。

以下是一些主要的应用领域:1. 工业自动化:光纤传感器在工业自动化中常用于测量温度、压力、液位等参数,可以实现对工业过程的监测与控制。

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理光纤传感器是一种利用光纤作为传感器的感应元件的传感器。

光纤传感器的工作原理是基于光的传输和光的特性,通过检测光的强度、光的相位或光的频率等参数的变化来实现测量和检测。

下面将详细介绍光纤传感器的工作原理。

1.光的传输光纤传感器是通过光纤将信号传输到目标位置进行测量和检测的。

光纤是一种将光信号传输的波导,其内部是由高折射率的纤芯和低折射率的包层组成。

光信号通过纤芯进行传输,并且受到光纤的折射规律的影响。

光纤传感器的传感元件一般位于光纤的入口或出口处,通过测量光的强度和光的特性来实现测量和检测。

2.测量原理光纤传感器的测量原理主要有光强度测量、光干涉测量和光散射测量等。

光强度测量是利用光传输时的衰减规律,通过检测光的强度来判断目标物理量的变化。

光干涉测量是利用光的干涉现象来测量目标物理量的变化,一般是通过光纤的长度或折射率的变化来实现测量。

光散射测量是利用光在传输过程中与介质的散射作用来测量目标物理量的变化,例如测量液体的浓度或测量气体的浓度等。

3.传感原理光纤传感器的传感原理主要有光纤布拉格光栅传感器、光纤共振传感器和光纤散射传感器等。

光纤布拉格光栅传感器是利用光栅的折射率周期性变化来测量目标物理量的变化,一般是通过测量光纤中被散射回来的光的特性来实现测量。

光纤共振传感器是利用光在光纤内部多次反射产生共振,通过测量共振波长的变化来实现测量。

光纤散射传感器是利用光在光纤中遇到杂散反射或杂散散射时产生的衰减、散射或反射来测量目标物理量的变化,一般是通过测量光的强度、光的频率或光的相位的变化来实现测量。

总体来说,光纤传感器的工作原理是通过光的传输和光的特性来实现测量和检测。

光纤传感器可以应用于各种领域,例如环境监测、医疗诊断、工业控制和航天航空等。

光纤传感器具有体积小、重量轻、灵敏度高、抗干扰性好等特点,已经成为现代传感器技术中不可或缺的一部分。

光纤传感器的原理是

光纤传感器的原理是

光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。

它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。

光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。

一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。

通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。

光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。

二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。

1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。

它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。

当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。

2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。

它通过纤芯中的光散射来判断外界物理量的变化。

光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。

通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。

3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。

它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。

通过测量光的强度变化,可以获得物理量的信息。

三、应用领域光纤传感器在诸多领域有着广泛的应用。

1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。

通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。

2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。

光纤传感器工作原理

光纤传感器工作原理

光纤传感器工作原理光纤传感器是一种利用光学原理进行测量的传感器。

相比传统的电信号传感器,光纤传感器具有更高的灵敏度、更大的频带宽度和更好的抗干扰性能,因此在工业、医疗、环境监测等领域得到广泛应用。

光纤传感器的工作原理基于光的传播和传感效应。

光纤传感器通常由光源、光纤、敏感元件和光电转换器组成。

在光纤传感器中,光源发出一束光经过光纤进行传播。

光纤是一种能够将光信号限制在光纤内部的细长光导波装置,通常由具有高折射率的芯和具有低折射率的包层构成。

光信号在光纤中的传播受到光纤材料的折射特性和光纤结构的影响。

在光纤传感器中,常用的敏感元件有光纤光栅和光纤干涉仪。

光纤光栅是用特殊的制备工艺在光纤的芯或包层中形成的周期性折射率变化的光学结构,可以实现对光的频率、幅度和相位等参数的敏感检测。

光纤干涉仪则利用光纤在传播过程中发生的干涉现象进行测量,通过改变光波在不同光纤路径中的相位差,可以获取被测物理量的信息。

光纤传感器中的敏感元件接收到通过光纤传播过来的光信号后,将其转换成与被测物理量相关的光学信号。

然后,光学信号通过光电转换器转换为电信号,经过放大、处理和解码等步骤后,最终得到与被测物理量相关的结果。

光纤传感器的工作原理可以通过以下几个方面来解释:1. 光纤传感器的基本原理是利用光的折射和传播规律。

当光束从一个介质传播到另一个介质时,由于光在不同介质中的折射率不同,光束的传播方向会发生偏折。

通过对光束的偏折进行测量,可以得到与被测物理量相关的信息。

2. 光纤传感器的工作过程涉及到光的干涉现象。

干涉是指两个或多个光波相互叠加形成的干涉图样。

在光纤传感器中,通过使光波在光纤中沿不同路径传播,利用不同路径上光波的相位差来实现测量。

当被测物理量发生变化时,导致光线的路径长度或相位发生变化,从而引起干涉图样的变化。

3. 光纤传感器的敏感元件可以是光纤光栅或光纤干涉仪。

光纤光栅是通过将光纤的芯或包层制作成具有周期性折射率变化的结构,利用光在光纤光栅中的反射和折射等效应进行测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤式传感器传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。

世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。

光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。

迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。

表 1 为光纤传感器对参数测定的原理及主要方式。

一、光纤传感器的基本原理及组成光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。

光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。

1.1强度调制光纤传感器强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。

待测量作用于光纤敏感元件,使通过光纤的光强发生变化。

设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。

可直接连接光探测器变成电信号(即调制的强度包括电信号)。

1.2相位调制光纤传感器相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。

所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。

但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。

与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。

常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。

它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

1.3 偏振态调制光纤传感器利用光波的偏振性质,可以制成偏振调制光纤传感器。

偏振调制主要是利用光纤的磁光效应、弹光效应等物理效应来实现外界信号对光纤中光波偏振的调制。

磁光效应导致旋光现象,弹光效应导致双折射。

在许多光纤系统中,尤其是包含单模光纤的系统,偏振起着重要作用。

光纤偏振调制技术可用于温度、压力、振动、机械形变、电流和电场等检测。

目前主要是用于检测强电流。

二、光纤传感器测量的物理量和范围绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。

光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。

主要表现在以下几个方面的应用:城市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。

光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松弛、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。

在电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。

分布式光纤温度传感器是近几年发展起来的一种用于实时测量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时测量光纤沿线几公里内各点温度,定位精度可达米的量级,测量精度可达1度的水平,非常适用大范围交点测温的应用场合。

三、传光光纤传感器在医学上的应用在医学中的应用医用光纤传感器目前主要是传光型的,以其小巧、绝缘、不受射频和微波干扰、测量精度高及与生物体亲合性好等优点备受重视。

过去,内科医生依赖间断时间检测病人的方法,从化验室取得结果。

随着医用光纤传感器的出现,不但对诸如氧饱和、pH 、Po2、Pco2及血速等血液特性可以进行实时连续测量,而且与传统测量方法不同的温度和压力光纤传感也投入医用。

同时在对葡萄糖、青霉素的监控、静脉疾病诊断及抗原-抗体鉴定等方面的应用也正在兴起。

医学诊断用光纤传感器为更好地治疗病人提供了一种崭新的医学方法。

国外在医用光纤传感器研制方面比较活跃的国家有美国、日本、英国、意大利、瑞士、荷兰、德国、波兰、奥地利、比利时、法国等。

美国有10多家单位从事医用光纤传感器的研制工作有多种产品已商业化。

如Luxelou公司出售的用于高温治疗的光纤传感器等;心血管器件公司3M健康护理处的pH系列,可用于心脏外科手术的监护;光敏公司的Po2、 Pco2、pH的体温监测系统可同时显示四种血液气体参数;利佛莫尔国家实验室和检测铝离子、pH 值、烃类双氧铀离子等八种参数;Tsl公司出售的Laserflo Blood Profusion监测器,可测量血管血流,配有微机打印输出系统;弗吉尼亚大学研究用荧光法测抗原对药物的反应用的光纤生化传感器等传光型光纤传感器。

在医学上的应用分五个方面分别予以介绍。

3.1压力测量目前临床上应用的压力传感器主要用来测量血管内的血压、颅内压、心内压、膀胱和尿道压力等。

用来测量血压的压力传感器示意见图3,其中对压力敏感的部分是在探针导管末端侧壁上的一块防水薄膜,一面带有悬臂的微型反射镜与薄膜相连,反射镜对面是一束光纤,用来传递入射光到反射镜,同时也将反射光传送出来。

当薄膜上有压力作用时,薄膜发生形变,且能带动悬臂使反射镜角度发生改变从光纤传来的光束照射到反光镜上,再反射到光纤的端点。

由于反射光的方向随反射镜角度的变化,而改变因此光纤接收到的反射光的强度也随之变化这一变化。

通过光纤传到另一端的光电探测器变成电信号,这样通过电压的变化便可知探针处的压力大小。

3.2血流速度的测量多普勒型光纤速度传感器测量皮下组织血流速度的示意见图 4 。

此装置利用了光纤的端面反射现象,测量系统结构简单。

发光频率为f的激光经透镜,光纤被送到表皮组织。

对于不动的组织,例如血管壁,所反射的光不产生频移;而对于皮层毛细血管里流速为v的红细胞,反射光要产生频移,其频率变化为△f;发生频移的反射光强度与红细胞的浓度成比例,频率的变化值可与红细胞的运动速度成正比。

发射光经光纤收集后先在光检测器上进行混频,然后进人信号处理仪,从而得到红细胞的运动速度和浓度。

四、光纤传感器的优缺点4,1功能型传感器功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。

光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。

优点:结构紧凑、灵敏度高。

缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等2.非功能型传感器非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。

光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。

优点:无需特殊光纤及其他特殊技术,比较容易实现,成本低。

缺点:灵敏度较低。

实用化的大都是非功能型的光纤传感器。

光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。

在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。

目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。

五、对课程教学的建议我校开设的传感器课程,是电子信息、测控技术及仪器、自动化等专业的重要专业基础课,是研究各种传感器敏感材料、结构、性能及应用的科学,学生通过对多种传感器的基本静、动态特性,数学模型以及传感器的工作原理、结构和特性的学习,掌握传感器原理及应用技术,为智能仪器、自动化控制等技术打下基础。

在这门课上,通过吴老师的细心讲解,我对各类传感器的结构、工作原理及应用有了大题的了解和掌握。

通过一学期的学习,我对本门课程也有些想法及建议。

比如,教材的内容不是很详尽,老师讲的很多内容教材上并没有涉及,所以我们要拷贝PPT进行补充和学习。

传感器课程的主要内容以各式各样传感器的知识点构架而成,加上新技术的发展,适应各种参数测量的传感器种类也在不断推陈出新,这就要求传感器教学内容发生相应的变化。

然而,现有的传感器教材种类繁多,这些教材在传感器选材上各有侧重,行业特色明显,而目前我们在教材的选择上没有注意学生专业方向与教材的匹配,如电子信息、测控技术及仪器、自动化专业将来所面临的行业不同,检测各种参数的传感器种类也差别很大,现行的状况是所有专业采用同一教材、同一教学大纲;又如近几年发展快速的汽车行业是传感器需求最多的行业,汽车所需的压力、惯性、位置、接近度、流量、氧含量、力、扭矩、震动、图像等实际工程中应用较广的传感器,在同一本教材中体现较少或根本没有体现,人才培养滞后于企业需求,使学生走向工作岗位后无从下手,学生就业缺乏竞争力。

参考文献[1] 蒲晓允,左世友. 光纤生物传感器技术及其应用[J]. 重庆医学, 2006(17):1537-1538[2] 王明时,高伟,李宁,孙伟. 医用传感器的发展[J]. 中国生物医学工程学报, 2005,(06) 668-671.[3]周继明,江世明,传感技术与应用[M].长沙;中南大学出版社,2005.[4]钱显毅,传感器原理与应用[M].南京;东南大学出版社,2008.[5] 张森,刘孟华,王臻等.光纤传感器的应用与研究[J].光通讯研究.2007(3).论文资料来源于教科书,中国知网和相关期刊。

相关文档
最新文档