高中数学 选修 非线性回归模型

合集下载

非线性回归模型概述

非线性回归模型概述

非线性回归模型概述在统计学和机器学习领域中,回归分析是一种重要的数据建模技术,用于研究自变量和因变量之间的关系。

在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出复杂的非线性关系。

为了更准确地描述和预测这种非线性关系,非线性回归模型应运而生。

一、什么是非线性回归模型非线性回归模型是指自变量和因变量之间的关系不是线性的数学模型。

在非线性回归模型中,因变量的变化不是随着自变量的线性变化而变化,而是通过非线性函数的变化来描述二者之间的关系。

非线性回归模型可以更好地拟合实际数据,提高模型的预测准确性。

二、非线性回归模型的形式非线性回归模型的形式可以是各种各样的,常见的非线性回归模型包括多项式回归模型、指数回归模型、对数回归模型、幂函数回归模型、逻辑回归模型等。

这些非线性回归模型可以通过引入非线性函数来描述自变量和因变量之间的关系,从而更好地拟合数据。

1. 多项式回归模型多项式回归模型是一种常见的非线性回归模型,其形式为:$$y = \beta_0 + \beta_1x + \beta_2x^2 + \beta_3x^3 + ... +\beta_nx^n + \varepsilon$$其中,$y$为因变量,$x$为自变量,$\beta_0, \beta_1,\beta_2, ..., \beta_n$为回归系数,$n$为多项式的阶数,$\varepsilon$为误差。

2. 指数回归模型指数回归模型是描述因变量和自变量之间呈指数关系的非线性回归模型,其形式为:$$y = \beta_0 + \beta_1e^{\beta_2x} + \varepsilon$$其中,$y$为因变量,$x$为自变量,$\beta_0, \beta_1, \beta_2$为回归系数,$e$为自然对数的底,$\varepsilon$为误差。

3. 对数回归模型对数回归模型是描述因变量和自变量之间呈对数关系的非线性回归模型,其形式为:$$y = \beta_0 + \beta_1\ln(x) + \varepsilon$$其中,$y$为因变量,$x$为自变量,$\beta_0, \beta_1$为回归系数,$\ln$为自然对数,$\varepsilon$为误差。

高考数学冲刺策略非线性回归分析与模型选择

高考数学冲刺策略非线性回归分析与模型选择

高考数学冲刺策略非线性回归分析与模型选择高考数学冲刺策略:非线性回归分析与模型选择在高考数学的备考中,非线性回归分析与模型选择是一个重要且具有一定难度的考点。

对于即将迎来高考的同学们来说,掌握有效的冲刺策略至关重要。

首先,我们来了解一下什么是非线性回归分析。

简单来说,非线性回归分析是处理变量之间非线性关系的一种统计方法。

与我们常见的线性关系不同,非线性关系的表达式更加复杂,可能是指数形式、对数形式、幂函数形式等等。

在高考中,常见的非线性模型有指数模型、对数模型、幂函数模型等。

以指数模型为例,比如 y = aebx ,其中 a 和 b 是待确定的参数。

在解决这类问题时,我们通常会通过对等式两边取对数,将其转化为线性形式,然后再进行参数的估计。

那么,在冲刺阶段,如何更好地掌握非线性回归分析与模型选择呢?第一步,要熟练掌握各种非线性模型的形式和特点。

这就需要我们对教材中的相关内容进行深入复习,弄清楚每个模型适用的情况。

比如,当数据呈现出快速增长或衰减的趋势时,可能适合使用指数模型;而当数据的增长或减少速度逐渐变慢时,对数模型可能更为合适。

第二步,要多做练习题。

通过大量的练习,我们可以更加熟悉不同类型的题目,提高解题的速度和准确性。

在做题的过程中,要注意总结解题的方法和技巧。

比如,对于给定的数据,如何通过观察初步判断可能适合的模型类型;如何利用给定的条件和数据进行参数的估计等等。

第三步,学会利用数学软件或工具辅助分析。

在现代科技的帮助下,我们可以利用一些数学软件,如 Matlab、SPSS 等,来对数据进行处理和分析。

这不仅可以提高我们的效率,还能让我们更加直观地看到数据的分布和模型的拟合效果。

第四步,注重思维的培养。

非线性回归分析不仅仅是计算和公式的运用,更需要我们具备逻辑思维和分析问题的能力。

在面对复杂的问题时,要能够冷静思考,从多个角度去分析和解决问题。

在实际解题中,模型选择是一个关键的环节。

我们需要根据数据的特点和问题的背景,合理地选择模型。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

高中数学 选修1-2 2.非线性回归模型 (2)

高中数学 选修1-2 2.非线性回归模型 (2)

欢迎共阅2.非线性回归模型教学目标 班级____姓名________1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程一、非线性回归模型.非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2R ,刻画拟合效果. 二、例题分析.例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据:3.作散点图:4.选取函数模型,并转化成线性回归模型,并转化数据: (1)根据样本点的变化趋势,选取函数模型:x c e c y 21=(指数函数模型); (2)令yz ln =,将指数函数模型转化成一次函数模型a bx z +=(1ln c a =,2c b =); (3)数据转化: 温度C x / 21 23 25 27 29 32 35 产卵数/y 个 71121246611532521 23 25 27 29 32 351.9462.3983.0453.1784.1904.7455.784欢迎共阅(4)新散点图: 5.求线性回归方程:运用公式求得272.0ˆ=b,849.3ˆ=a ,线性回归方程为849.3272.0ˆ-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0)1(ˆ-=x e y. 6.建线性回归模型,求残差,画残差图;残差849.3272.0)1()1(ˆˆ--=-=i x i i i i e y yy e7.求2R ,刻画拟合效果. 注意事项:(1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=,(3)令2x t =,将二次函数模型转化成一次函数模型43c tc y +=; (4)不同模型拟合效果不同,可根据2R 来判断,2R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y /个612254995190(1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数2R .(4)。

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

2.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它
们的决定系数R2如下,其中拟合效果最好的模型是(
2为0.98
A.模型1的决定系数R

B.模型2的决定系数R2为0.80
C.模型3的决定系数R2为0.50
D.模型4的决定系数R2为0.25
A
[R2越大拟合效果越好.]
)
3.从某省“双一流”大学中随机选出8名女大学生,得到其身高
残差图
观测值等,这样作出的图形称为______.在残差图中,残差点比较
均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的
带状区域的宽度____,说明模型拟合精度越高.
越窄
残差
(3)残差分析:____是随机误差的估计结果,通过对残差的分析可以
判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据
建立两个变量间的非线性经验回归方程.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)残差平方和越接近0,线性回归模型的拟合效果越好.
(√ )
(2)在画两个变量的散点图时,响应变量在x轴上,解释变量在y轴
上.
( × )
(3)R2越小,线性回归模型的拟合效果越好.
( × )
(4)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( √ )
和幂函数模型的求解过程.(数学运算、数学建模)
01
必备知识·
情境导学探新知
设某幼苗从观察之日起,第x天的高度为y cm,测得的一些数据如表
所示:
第x天
1
4
9
16
25
36
49
高度y/cm
0
4
7
9

高中数学选修23《回归分析的初步应用探究非线性回归模型》教案

高中数学选修23《回归分析的初步应用探究非线性回归模型》教案

回归分析的初步应用(教案)——探究非线性回归模型一、教材分析1. 教材的地位与作用:“回归分析的初步应用”是人民教育出版社A版《数学选修2-3》统计案例一章的内容,是《必修3》“线性回归分析”的延伸。

根据高中课程标准,这里准备安排4个课时,本次说课的内容为第3课时。

虽然线性回归分析具有广泛的应用,但是大量实际问题的两个变量不一定都呈线性相关关系,所以有必要探究如何建立非线性回归模型,进行更有效的数据处理。

2. 教学重点、难点:教学重点:探究用线性回归模型研究非线性回归模型。

教学难点:如何选择不同的模型建模,以及如何将非线性回归模型转化为线性回归模型。

二、学情分析教学对象是高二的学生,通过前面的学习,具有一定的线性回归分析、相关指数和残差分析的知识,这为探究非线性模型奠定了良好的基础,但由于学生较少接触数学建模的思想,思路不够开阔,为模型间的转化带来了一定的困难。

三、教学目标知识与技能目标:能根据散点图的特点选择回归模型,通过函数变换,借助线性回归模型研究非线性回归模型。

过程与方法目标:经历非线性回归模型的探索过程,掌握建立非线性模型的基本步骤,体会统计方法的特点。

情感、态度与价值观:以探究问题为中心,感受研究非线性回归模型的必要意义,体验数学的文化内涵,形成学习数学的积极态度。

四、教学方法1. 教法分析主要采用“引导发现,合作探究”的教学方法,通过组织学生观察、分析、计算、交流、归纳,让学生在探究学习的过程中经历知识形成的全过程。

利用多媒体辅助教学,优化了教学过程,大大提高了课堂教学效率。

2.学法分析重点指导学生通过观察思考、类比联想,形成“自主探究、合作交流”的学习形式,培养学生从“学会知识”到“会学知识”。

五、教学过程(一)知识回顾首先以07年广东的一道高考题引入新课:下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;=+;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程ˆy bx a(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?师:回忆并叙述建立线性回归模型的基本步骤?生:选取变量、画散点图、选择模型、估计参数、分析与预测。

第五章 非线性回归

第五章 非线性回归

β = ( β1 , β 2 ,..., β m )′
如果函数在参数向量 β 0 附近连续可微,将函数 在 β 0 附近进行一阶泰勒展开
∂f ( xt , β 0 ) f ( xt , β) = f (xt , β 0 ) + (β − β 0 ) + rt0 ∂β ∂f (xt , β 0 ) 0 ∂f (xt , β 0 ) = [ f (xt , β ) − β ]+ β + rt 0 ∂β ∂β
S ( β j +1 ) ≈ S ( β j ) + λ j g ( β j ) ∆ j
S ( β j +1 ) − S ( β j ) ≈ λ j g ( β j ) W j ( g j ) ′
附近
三、牛顿-拉弗森法 牛顿 拉弗森法
最基本的迭代算法是牛顿-拉弗森法(NewtonRaphson Method)。牛顿-拉弗森法的基本思想 是利用泰勒级数展开近似,通过迭代运算寻找 NLS估计的数值解法。 具体算法是 1.给定参数初值 2.将残差平方和函数在附近展开成二阶泰勒级 数 3.迭代公式

∂f (xt , β 0 ) 0 Yt = Yt − [ f (xt , β Βιβλιοθήκη − β ] ∂β ∂β0 0
∂f (xt , β0 ) z = = ( Z10t ∂β ∂β
0 t
0 Z 2t
0 L Z mt )
u t0 = u t + rt 0

Yt 0 = z t 0 β + ut0
0 0 = β1 Z10t + β 2 Z 2t + ... + β m Z mt + ut0
j

高中数学选修1-2教案:1.1回归分析的初步应用——非线性回归模型(一)

高中数学选修1-2教案:1.1回归分析的初步应用——非线性回归模型(一)

教学方案精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.非线性回归模型
教学目标 班级____姓名________
1.进一步体会回归分析的基本思想.
2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程
一、非线性回归模型.
非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2R ,刻画拟合效果. 二、例题分析.
例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据: 3.作散点图: 4.选取函数模型,并转化成线性回归模型,并转化数据:
(1)根据样本点的变化趋势,选取函
数模型:x c e c y 21=(指数函数模
型); (2)令y z ln =,将指数函数
模型转化成一次函数模型a
bx z +=(1ln c a =,2c b =);
(3)数据转化: (4)新散点图:
5.求线性回归方程:
温度C x ο/ 21 23 25 27 29 32 35 产卵数/y 个
7
11
21
24
66
115
325
21 23 25 27 29 32 35
1.946
2.398
3.045
3.178
4.190
4.745
5.784
运用公式求得272.0ˆ=b
,849.3ˆ=a ,线性回归方程为849.3272.0ˆ-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0)1(ˆ-=x e y
. 6.建线性回归模型,求残差,画残差图;
残差849.3272.0)1()
1(ˆˆ--=-=i x i i i i e y y
y e
7.求2R ,刻画拟合效果. 注意事项:
(1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=,
(3)令2x t =,将二次函数模型转化成一次函数模型43c t c y +=;
(4)不同模型拟合效果不同,可根据2R 来判断,2R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y /

6
12
25
49
95
190
(1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数
2R .。

相关文档
最新文档