北科大matlab数学实验_第二次作业
第二次作业

第二次作业1、在Matlab 中 设多项式2()()(1)f x x x x =+-,2()21g x x x =++。
(1)求()()f x g x +的展开式,并求方程的根()()0f x g x +=;(2)求()/()f x g x 的商式和余式。
m=[1 0 -1 0]f=poly2sym(m)A=[2 2 1]g=poly2sym(A)z=[1 2 1 1]roots(z)z1=f+gexpand(z1)[q,r]=deconv(m,A)2、在Matlab 中 将函数432()25452f x x x x x =-+-+进行因式分解。
a=[2 -5 4 -5 2]f=poly2sym(a)factor(f)3 、在Matlab 中在MATLAB 中计算下列极限:(1)2lim (sin 1)x x e x x →+- (2)lim )x x x →+∞(3)tan 2lim(sin )x x x π→ (4)2220cos lim [ln(1)]x x x e x x x -→-+- (5)111lim sin x x e x --→f='exp(sin(x)+x-1)'limit(f,x,2)f='x*((x^2+2)^0.5-x)'limit(f,x,inf,'left')f='(sin(x))^tan(x)'limit(f,x,pi/2)f='(cos(x)-exp(-x/2))/x^2(x+ln(1-x))' limit(f,x,0)f='exp(1/(x-1)*sin(x))'limit(f,x,1,'left')4、编写判断函数在某点处左(或右)连续的程序,从而判断分段函数在分段点处的连续性(1)2211()31x x f x x x ⎧+<=⎨+≥⎩(2)1(1)0()30x x x f x x ⎧⎪+<=⎨⎪≥⎩ 5 求下列函数的一阶导数:(1)211()ln()x f x e x x-=+ (2)2()a f x x =f='exp(1-x^2)*ln(x+1/x)'diff(f)f='x^(2*a)'diff(f,'x')6 求函数ax bf be xe =-关于x 的3阶导数以及关于a 的一阶导数: f='b*exp^(a*x)-x*exp^b'diff(f,'x',3) diff(f,'a')7 求二元函数23(,)f x y xy y =-的所有一阶偏导数以及二阶偏导数。
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学实验2 班级 学号 姓名 一.用MATLAB计算下列极限: (1); (2

ans =
m/n
(8)
syms x m n
>> limit((tan(m*x)+x)/sin(n*x),x,0)
ans =
(m+1)/n
二.用MATLAB解方程。
1.一元方程与线性方程组
用两个函数solve ( )和linsolve( )来解线性方程,具体格式如下:
>> X=linsolve(A,B)
X =
[ 1]
[ -1]
[ -1]
[ 1]
说明:X=zeros(4,1)表示建立一个4元素列向量X。
1.非线性方程(组)
用命令函数fsolve()来解非线性方程(组)。具体格式如下:
X=fsolve(fun,x0,options)
参数fun为定义好的待求解的非线性方程(组)的文件名。x0为求解方程的初始向量或矩阵。Options设置命令函数fsolve求解过程的各种参数。通常我们设为optimset(fsolve)。Options的其他参数项可通过帮助文档查询,或直接在MATLAB的命令行输入help optimset查询。
limit(f(x),x,a,'left')(求 )
例1.用MATLAB计算下列极限:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) 。
解(1)
clear
>> syms x
>> limit((exp(2*x)-1)/x,x,0)
ans =
2
(2)clear
>> syms x k
MATLAB)课后实验答案

实验一 MATLAB 运算基础1、 先求下列表达式得值,然后显示MATLAB 工作空间得使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0、5:2、5 解:4、 完成下列操作:(1) 求[100,999]之间能被21整除得数得个数。
(2) 建立一个字符串向量,删除其中得大写字母。
解:(1) 结果:(2)、 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果就是:实验二 MATLAB 矩阵分析与处理1、 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵与对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5、 下面就是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程得解。
(2) 将方程右边向量元素b 3改为0、53再求解,并比较b 3得变化与解得相对变化。
(3) 计算系数矩阵A 得条件数并分析结论。
解: M 文件如下:实验三 选择结构程序设计1、 求分段函数得值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5、0,-3、0,1、0,2、0,2、5,3、0,5、0时得y 值。
matlab实验2

实验2 Matlab 绘图和可视化一、实验目的1、掌握绘制二维图形的常用函数。
2、掌握绘制三维图形的常用函数。
3、掌握图像读写函数和显示函数的使用方法。
二、实验内容程序:>> x=0:pi/50:2*pi;y=(0.5+3.*sin(x)./(1+x.^2)).*cos(x); plot(x,y)xlabel('Variable X'); ylabel('Variable Y'); 图像:01234567-1-0.50.511.5Variable XV a r i a b l e Y2、已知y 1= x 2 , y 2 = cos(2x ), y 3 = y 1⋅ y 2,完成以下操作:(1)在同一坐标系下,用不同的颜色和线型绘制三条曲线。
程序:x=-6:pi/100:6; y1=x.^2;y2=cos(2*x);y3=y1.*y2;plot(x,y1,'b',x,y2,'g-.',x,y3,'r:') xlabel('Variable X'); ylabel('Variable Y'); 图像:-6-4-20246-30-20-1010203040Variable XV a r i a b l e Y(2)在同一个图形窗口中,以子图的形式绘制三条曲线。
程序:x=-6:pi/100:6; y1=x.^2;y2=cos(2*x); y3=y1.*y2;subplot(3,1,1);plot(x,y1); xlabel('Variable X'); ylabel('Variable Y');subplot(3,1,2);plot(x,y2); xlabel('Variable X'); ylabel('Variable Y');subplot(3,1,3);plot(x,y3); xlabel('Variable X'); ylabel('Variable Y');-6-4-2024602040Variable XV a r i a b l e Y-6-4-20246-101Variable XV a r i a b l e Y-6-4-20246-50050Variable XV a r i a b l e Y(3)在同一个图形窗口中,以子图的形式,分别用条形图、阶梯图、杆图和填 充图绘制三条曲线。
实验二matlab矩阵分析与处理

《MATLAB及应用A》第二次上机作业一、一球从100米高度自由落下,每次落地后反弹回原高度的一半,再落下。
求它在第10次落下时共经过多少米?第10次反弹多高?MATLAB源程序:MATLAB运行结果:二、有如下一段MATLAB程序,请解释说明每个语句的功能,必要时用数学表达式(不是在MATLAB中的输入形式);并给出y1、y2、y3的值(可从MATLAB中复制)。
MATLAB源程序:x=linspace(0,6);y1=sin(2*x);y2=sin(x.^2);y3=(sin(x)).^2;各条命令语句的功能如下:y1、y2、y3的值分别为:三、教材第55页习题三,第3题。
MATLAB源程序:MATLAB运行结果:四、选择题(1) i=2; a=2i; b=2*i; c=2*sqrt(-1); 程序执行后,a, b, c的值分别是多少?()(A) a=4, b=4, c=2.0000i(B) a=4, b=2.0000i, c=2.0000i(C) a=2.0000i, b=4, c=2.0000i(D) a=2.0000i, b=2.0000i, c=2.0000i(2) 求解方程x4-4x3+12x-9 = 0 的所有解,其结果为()(A) 1.0000, 3.0000, 1.7321, -1.7321(B) 1.0000, 3.0000, 1.7321i, -1.7321i(C) 1.0000i, 3.0000i, 1.7321, -1.7321(D) -3.000-0i, 3.0000i, 1.7321, -1.7321五、求[100,1000]之间的全部素数(选做)。
MATLAB源程序: MATLAB运行结果:一、一球从100米高度自由落下,每次落地后反弹回原高度的一半,再落下。
求它在第10次落下时共经过多少米?第10次反弹多高?MATLAB源程序:>> a=(0:-1:-9) %产生一个行向量aa =0 -1 -2 -3 -4 -5 -6 -7 -8 -9>> b=pow2(a) %对行向量a中的每一个元素分别求幂函数b =1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.007 8 0.0039 0.0020>> h=100*b %对行向量b中的每一个元素分别乘以100h =100.0000 50.0000 25.0000 12.5000 6.2500 3.1250 1.5625 0. 7813 0.3906 0.1953>> s1=sum(h) %对行向量h中的元素求和s1 =199.8047>> s=s1*2-100 %求出第10次落下时经过的高度s =299.6094>> h10=h(10)/2 %求出第10次反弹的高度h10 =0.0977二、有如下一段MATLAB程序,请解释说明每个语句的功能,必要时用数学表达式(不是在MATLAB中的输入形式);并给出y1、y2、y3的值(可从MATLAB 中复制)。
数学实验第二次作业——常微分方程数值求解
实验4常微分方程数值解实验目的:1.练习数值积分的计算;2.掌握用MATLAB软件求微分方程初值问题数值解的方法;3.通过实例学习用微分方程模型解决简化的实际问题;4.了解欧拉方法和龙格——库塔方法的基本思想和计算公式,及稳定性等概念。
实验内容:3.小型火箭初始质量为1400kg,其中包括1080kg燃料,火箭竖直向上发射是燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。
设火箭上升是空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度,速度,加速度,及火箭到达最高点是的高度,速度和加速度,并画出高度,速度,加速度随时间变化的图形。
解答如下:这是一个典型的牛顿第二定律问题,分析火箭受力情况;先规定向上受力为正数建立数学模型:A燃料未燃尽前,在任意时刻(t<60s)火箭受到向上的-F=32000N,向下的重力G=mg,g=9.8,向下的阻力f=kv^2, k=0.4, v表示此时火箭速度;此时火箭收到的合力为F1=(F-mg-f);火箭的初始质量为1400kg,燃料燃烧率为-18kg/s;此刻火箭质量为m=1400-18*t根据牛顿第二定律知,加速度a=F1/m=(F-mg-f)/(m-r*t)=(32000-(0.4.*v.^2)-9.8.*(1400-18.*t))由此可利用龙格-库塔方法来实现,程序实现如下Function [dx]=rocket[t,x] %建立名为rocket的方程m=1400;k=0.4;r=-18;g=9.8; %给出题目提供的常数值dx=[x(2);(32000-(k*x(2)^2)-g*(m+r*t))/(m+r*t)];%以向量的形式建立方程[a]=(32000-(k*x(2)^2)-g*(m+r*t))/(m+r*t); %给出a的表达式End;ts=0:60; %根据题目给定燃烧率计算出燃料燃尽的时间,确定终点x0=[0,0]; %输入x的初始值[t,x]=ode15s(@rocket,ts,x0); %调用ode15s计算[t,x];h=x(:,1);v=x(:,2);plot(t,x(:,1)),grid; %绘出火箭高度与时间的关系曲线title('h-t');xlabel('t/s');ylabel('h/m'),pause;plot(t,x(:,2)),grid ; %绘出火箭速度与时间的曲线关系title('v-t');xlabel('t/s');ylabel('v/m/s'),pause;a=(32000-(0.4.*v.^2)-9.8.*(1400-18.*t))/(1400-18.*t); plot(t,a),grid; %绘出火箭加速度与时间的曲线关系title('a-t');xlabel('t/s'),ylabel('a/m^2/s'),pause火箭高度随时间变化的曲线火箭速度随时间变化的曲线火箭加速度随时间变化的曲线数据过多,故截取部分如下第一列为时间,第二列为火箭高度,第三列为火箭速度由此可以,在t=60s时,即火箭燃料燃尽瞬间,引擎关闭瞬间,火箭将到达12912m的高度,速度为267,29m,加速度a=0.9m/s^2B燃料燃尽之后,与A 类似,分析受力如下火箭受到向上的F=0向下的重力G=mg,g=9.8,向下的阻力f=kv^2, k=0.4, v表示此时火箭速度;此时火箭收到的合力为F2=(-mg-f);火箭的初始质量为320kg,恒定根据牛顿第二定律,加速度a=F2/m=-g-0.4v^2/320;程序实现如下function [ dx ] = rocket2( t,x ) %建立以rocket2为名的函数dx=[x(2);-9.8-0.4.*x(2).^2/320]; %以向量的形式建立方程ts=60:120; %给出初始时刻,估计终点时刻x0=[12190,267.26]; %给出x初始值[t,x]=ode15s(@rocket2,ts,x0); %调用ode15s计算[t,x]plot(t,x(:,1)),grid; %绘出火箭高度随时间变化的曲线title('h-t');xlabel('t/s'),ylabel('h/m'),pause;plot(t,x(:,2)),grid; %绘出火箭速度随时间的变化曲线title('v-t');xlabel('t/s'),ylabel('v/m/s'),pause;v=x(:,2);a=-9.8-0.4*v.^2/320; %给出加速度的具体表达式plot(t,a),grid; %绘出火箭加速度随时间变化的曲线title('a-t');xlabel('t/s'),ylabel('a/m^2/s'),pause得到的曲线图形如下火箭高度随时间的变化曲线从图中可以大致看出,最高点在13km左右,火箭速度随时间的变化曲线加速度随时间变化曲线如下数据表格大致如下从图表中可以看出,在71s左右速度到达0,即此时到达最高处,高度为13117m加速度为-9.8m/m/s^2;本题总结:这道题是典型的物理牛顿力学的题目,通过受力的正确分析,可以知道,以[h,v]为向量建立微分方程即可求解,h的微分是速度v,速度v的微分是加速度a解题过程中存在的难点是:取值步长不太容易确定,而且是哪种算法不确定,先用ode15s 速度较快,ode23s速度差不太多,其他两种速度较慢,等待时间较长5.一只小船渡过宽为d 的河流,目标是起点A 正对着的另一岸B 点。
北科大Matlab_数学实验报告1~6次全
《数学实验》报告实验名称 Matlab 基础知识学院专业班级姓名学号2014年 6月一、【实验目的】1、认识熟悉Matlab这一软件,并在此基础上学会基本操作。
2、掌握Matlab基本操作与常用命令。
3、了解Matlab常用函数,运算符与表达式。
4、掌握Matlab工作方式与M文件的相关知识。
5、学会Matlab中矩阵与数组的运算。
二、【实验任务】P16 第4题编写函数文件,计算1!nkk =∑,并求出当k=20时表达式的值。
P27第2题矩阵A=123456789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B=468556322⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,计算A*B,A、*B,并比较两者的区别。
P27第3题已知矩阵A=5291⎡⎤⎢⎥⎣⎦,B=1292⎡⎤⎢⎥⎣⎦,做简单的关系运算A>B,A==B,A<B,并做逻辑运算(A==B)&(A<B),(A==B)&(A>B)。
P34 第1题用11114357π=-+-+……公式求π的近似值,直到某一项的绝对值小于-610为止。
三、【实验程序】P16 第4题function sum=jiecheng(n) sum=0;y=1;for k=1:nfor i=1:ky=y*i;endsum=sum+y;endsumP27第2题>>A=[1 2 3;4 5 6;7 8 9]>>B=[4 6 8;5 5 6;3 2 2]>>A*B>>A、*BP27第3题>> A=[5 2;9 1];B=[1 2;9 2];>>A>B>>A==B>>A<B>> (A==B)&(A<B)>> (A==B)&(A>B)P34 第1题t=1;pi=0;n=1;s=1;while abs(t)>=1e-6pi=pi+t;n=n+2;s=-s;t=s/n;endpi=4*pi;四、【实验结果】P16 第4题P27第2题两者的区别:A*B就是按正规算法进行矩阵的计算, A、*B就是对应元素相乘。
MATLAB第二次上机实验报告
电子科技大学电子工程学院标准实验报告(实验)课程名称MATLAB与数值分析学生姓名:学号:指导教师:一、实验名称实验二 线性方程组求解和函数的数值逼近二、实验目的通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步的理解。
实验涉及的核心知识点:病态方程求解、矩阵分解和方程组求解、Lagrange 插值。
实验重点与难点:算法设计和MATLAB 编程三、实验内容1. 对高阶多项式()()()()()2011220k p x x x x x k ==---=-∏编程求下面方程的解()190p x x ε+=并绘图演示方程的解与扰动量ε的关系。
2. 对220n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组()n H x b =最后,用矩阵分解方法求解方程组,并分析计算结果。
3. 对函数()21125f x x =+ []1,1x ∈-的Chebyshev 点()()21cos 21k k x n π⎛⎫-= ⎪ ⎪+⎝⎭,1,2,,1k n =+编程进行Lagrange 插值,并分析插值结果。
四、实验数据及结果分析1. 对高阶多项式()()()()()2011220k p x x x x x k ==---=-∏编程求下面方程的解()190p x x ε+=并绘图演示方程的解与扰动量ε的关系。
p=[1,-1]; for i=2:20 n=[1,-i];p=conv(p,n); % 求多项式乘积 endm=zeros(1,21); % m 的最高次幂为20,有21项 hold on x=1:20;d=[-1,0,0.1,0.5,1]; for i=1:5delt=d(i); m(2)=delt;y=(roots(p+m))'; % 求多项式的根 plot(x,y,'-o','color',[i/5,i/20,i/10]); endtitle('方程p(x)=0的解与扰动量delt 的关系')legend('delt=-1','delt=0','delt=0.1','delt=0.5','delt=1')24681012141618200102030405060方程p(x)=0的解与扰动量delt 的关系delt=-1delt=0delt=0.1delt=0.5delt=12.对220n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组()n H x b =最后,用矩阵分解方法求解方程组,并分析计算结果。
北科数理统计与Matlab上机报告2
区间上限
6
【练习 2_03】
a1=[0.143,0.142,0.143,0.137]; a2=[0.140,0.142,0.136,0.138,0.140]; b1=mean(a1); b2=mean(a2); m1=var(a1); m2=var(a2); n1=length(a1); n2=length(a2);
切比雪夫不等式-----------------------------------------------------------------------样本数 样本均值 标准差 区间半径 区间下限 ------------------------------------------------------------------------------------10 1147.0000 87.0000 123.0366 1023.9634 1270.0366 ------------------------------------------------------------------------------------区间上限
1
2520 3540 2600 3320 3120 3400 2900 2420 3280 3100 2980 3160 3100 3460 2740 3060 3700 3460 3500 1600 3100 3700 3280 2880 3120 3800 3740 2940 3580 2980 3700 3460 2940 3300 2980 3480 3220 3060 3400 2680 3340 2500 2960 2900 4600 2780 3340 2500 3300 3640
已知方差的正态分布-------------------------------------------------------------------样本数 样本均值 标准差 区间半径 区间下限 ------------------------------------------------------------------------------------10 1147.0000 87.0000 53.9222 1093.0778 1200.9222 -------------------------------------------------------------------------------------
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学实验》报告
实验名称matlab绘图
学院计算机与通信工程
专业班级
姓名
学号
2015年5月
2
一、【实验目的】
1.学会使用基本绘图指令;
2.学会使用绘图控制参数;
3.学会使用各种函数对图形进行标记;
二、【实验任务】
1、P79T1
绘制y=
3xesin(3x)(x∈[0,4π])的图像,要求用蓝色的星号画图;并且画出其包络线y=±3
x
e
的图像,用红
色的点划线画图。
2、P79T3
在同一图形窗口画三个子图,要求使用指令legend、title、xlabel、ylabel;
(1)y=xcosx,x∈(-π,π)
(2)y=xtan
x
1
sin3x,x∈(π,4π)
(3)y=
x
1
e
sinx,x∈[1,8]
三、【实验程序】
1、P79T1
x=0:pi/50:4*pi
y1=exp(x/3).*sin(3*x);
plot(x,y,'b*')
holdon
y2=exp(x/3);
y3=-exp(x/3);
plot(x,y2,'r-.',x,y3,'r-.')
2、P79T3
x1=-pi:pi/50:pi;
x2=pi:pi/50:4*pi;
x3=1:0.1:8;
y1=x1.*cos(x1);
y2=x2.*tan(1./x2).*sin(x2.^3);
y3=exp(1./x3).*sin(x3);
subplot(1,3,1),plot(x1,y1,'m-')
title('picture1'),xlabel('x轴'),ylabel('y轴'),legend('y=xcosx')
subplot(1,3,2),plot(x2,y2,'b-')
title('picture2'),xlabel('x轴'),ylabel('y轴'),legend('y=xtan(1/x)sin(x^3)')
subplot(1,3,3),plot(x3,y3,'k-')
title('picture3'),xlabel('x轴'),ylabel('y轴'),legend('y=e^(1/x)sinx')
3
四、【实验结果】
1、P79T1
2、P79T3
4
五、【实验总结】
1.学会了使用plot命令画图;
2.学会了使用legend、title、xlabel、ylabel等命令对图像标注;
3.学会了设置线条属性.