八年级分式教案解析
八年级数学上册《分式方程及解法》教案、教学设计

-教师针对分式方程的解法进行详细讲解,特别是换元法、消元法等难点。
-设计具有针对性的练习题,让学生在练习中巩固所学知识,逐步突破难点。
4.实践应用,提高能力
-设计实际应用题,让学生将分式方程应用于解决实际问题,提高数学应用能力。
-教师及时给予反馈,指导学生调整解题策略,提高解题效果。
(四)课堂练习
1.设计具有代表性的练习题,涵盖分式方程的各种解法。
-练习一:求解分式方程,如:$\frac{2x+1}{3} = \frac{4}{x}$
-练习二:实际问题转化为分式方程,如:某商品原价为x元,打8折后的价格为0.8x元,求原价。
2.学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.分式方程的定义:给出分式方程的一般形式,讲解分母、分子和未知数之间的关系。
-解释:分式方程就是含有分数的方程,其中分数的分母和分子可以是各种代数式。
2.分式方程的解法:
-换元法:通过设未知数,将分式方程转化为整式方程,然后求解。
-消元法:将方程两边的分母消去,转化为整式方程求解。
-通分法:将方程两边的分式通分,转化为整式方程求解。
7.创设良好的学习氛围,激发学生学习兴趣
-教师应以亲切、热情的态度对待学生,营造轻松、愉快的学习氛围。
-通过表扬、鼓励等方式,激发学生的学习积极性,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的购物打折、银行利率等实际问题为例,引导学生思考如何用数学知识解决这些问题。
4.针对不同学生的需求,给予个性化的指导,帮助他们克服学习中的困难,提高学习效果。
三、教学重难点和教学设想
人教版数学八年级上册15.3分式方程的解法(教案)

1.教学重点
(1)理解分式方程的定义:重点强调分式方程的形式特点,即方程中包含有分母,且分母不为零,让学生充分理解这一核心内容。
举例:如方程2/x = 3/(x+1),其中x≠0。
(2)掌握分式方程的解法:包括消元法、代入法、加减法等,特别是消元法在求解分式方程中的应用。
举例:消元法求解方程2/x = 3/(x+1):
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是指含有分母的方程,它是代数方程的一种特殊形式。分式方程在解决实际问题时具有重要作用,能够帮助我们处理比例、速率、百分比等问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小红的糖果总数为10个,要平均分给两人,我们可以建立分式方程x/2 = 10,其中x表示每人应得的糖果数。通过解这个方程,我们可以得到答案。
2.提升学生的数学建模素养:使学生能够将实际问题抽象为分式方程模型,并运用所学方法求解,从而提高解决实际问题的能力;
3.增强学生的数学运算能力:让学生熟练掌握分式方程的消元、代入、加减等解法,培养他们准确、迅速地进行数学运算的能力。
这些核心素养目标与新教材的要求相符,旨在帮助学生形成系统的数学知识体系,提高数学思维品质和解决问题的综合能力。
难点解析:代入法中,学生可能会遇到以下困难:
-不清楚应该将哪个表达式代入另一个表达式中;
-在代入过程ቤተ መጻሕፍቲ ባይዱ,容易忽视方程中的限制条件(如分母不为零);
-计算过程中可能因粗心导致错误。
(3)分式方程在实际问题中的应用:学生需要学会将实际问题抽象为分式方程,并正确求解。
难点解析:实际问题抽象为分式方程时,学生可能会遇到以下问题:
分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
第十五章 分式【教案】八年级上册数学

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
八年级上册数学分式教案

八年级上册数学分式教案教案标题:八年级上册数学分式教案一、教学目标1. 知识目标:掌握分式的定义和性质,能够进行分式的加减乘除运算。
2. 能力目标:能够灵活运用分式进行实际问题的解决。
3. 情感态度目标:培养学生对数学的兴趣,增强学生的数学自信心。
二、教学重点和难点1. 重点:分式的定义和性质,分式的加减乘除运算。
2. 难点:分式的加减乘除运算和实际问题的应用。
三、教学内容1. 分式的概念和定义2. 分式的性质及化简3. 分式的加减乘除运算4. 分式在实际问题中的应用四、教学过程1. 导入:通过一个实际问题引入分式的概念,引起学生的兴趣。
2. 概念讲解:讲解分式的定义和性质,引导学生理解分式的含义和特点。
3. 例题演练:通过一些例题,让学生掌握分式的化简和加减乘除运算方法。
4. 拓展应用:结合实际问题,让学生应用分式进行解决,培养学生的问题解决能力。
5. 总结归纳:总结本节课的重点内容,强化学生的记忆和理解。
五、教学方法1. 归纳法:通过例题引导学生总结分式的性质和运算法则。
2. 实践法:通过实际问题的应用,培养学生的问题解决能力。
3. 演练法:通过大量的例题演练,巩固学生的知识点。
六、教学工具1. 教学课件:包括分式的定义、性质、例题演练和实际问题应用的案例。
2. 教学板书:重点知识点和例题的归纳总结。
七、教学评估1. 课堂练习:通过课堂练习,检验学生对分式的掌握程度。
2. 作业布置:布置相关的作业,巩固学生的知识点。
八、教学反思通过本节课的教学,学生是否能够掌握分式的定义和性质?分式的加减乘除运算是否能够熟练运用?是否能够灵活应用分式解决实际问题?针对学生的学习情况,及时调整教学方法,帮助学生提高数学学习的效果。
八年级数学下册《分式》教案北师大版

【推荐】猜灯谜作文(精选30篇)【推荐】猜灯谜作文(精选30篇)在平时的学习、工作或生活中,大家对作文都不陌生吧,借助作文可以宣泄心中的情感,调节自己的心情。
你知道作文怎样才能写的好吗?下面是小编整理的猜灯谜作文,仅供参考,欢迎大家阅读。
猜灯谜作文篇1一年一度的中秋节快到了,中秋节的时候的习俗有:博饼,放孔明灯,敬田头,听香……看着妈妈忙忙碌碌地准备着,陷入美好的记忆中。
去年的中秋节,妈妈决定吃完饭后上天台边赏月边猜谜语,我们乐得直拍手叫好。
“一起赏月,猜谜语啦!”妈妈大喊。
我和弟弟都还在做自己的事。
妈妈提高嗓音:“快来一起赏月,猜谜语啦!”我和弟弟迅速打开房门,以最快的速度赶到天台上。
爸爸妈妈已经坐在天台的椅子上等我们了,我和弟弟也跟着坐在了旁边的椅子上。
开始猜谜语了,妈妈先下手为强:“我先出,听好了。
充耳不闻无话讲,打一茶叶名。
”妈妈话音刚落,爸爸马上接:“是龙井。
”爸爸平日里可爱喝茶了,这种简单的问题怎能难倒他。
“不能常喝浓茶,会生病哦!”我一本正经地说道,“书上就是这样写的!”爸爸微笑着说:“女儿长大了,懂事了!好吧,听你的,我以后要少喝浓茶。
”我们一家人就在这月光下,开始品尝月饼。
我们大口大口地往嘴里塞。
妈妈嘱咐我们:“吃慢点,别噎着了。
”我对妈妈说:“一定不会的,如果噎着了,我就是个大傻子。
”爸爸妈妈放声大笑。
吃完月饼后,爸爸说:“该我出了。
七品小官不明断,打一食品。
”妈妈马上反应过来,说:“是芝麻糊。
”弟弟急了:“现在该我出了。
谜语是话到嘴边又咽下,打一食品。
”“我知道,谜底是云吞。
”我高兴地大喊。
妈妈对我说:“小声点,别吵到人家赏月。
”“好吧,不过该我出了。
三两木耳,打一地理名词。
”我严肃地说。
这可把全家给难住了,“哈哈,不懂了吧?我来告诉你们吧,是森林。
”我得意地说道,爸爸妈妈哈哈大笑。
全家人沉浸在浓浓的月光中。
又是中秋月圆时,月儿圆,人团圆。
仰望夜空,昨夜星辰早已坠落,今日明月正当空。
人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题分式的基本性质授课时间 2.28授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能1.理解分式的基本性质.2.会用分式的基本性质将分式变形.过程与方法通过分式的恒等变形提高学生的运算能力.情感与价值渗透类比转化的数学思想方法.教学重点使学生理解并掌握分式的基本性质,这是学好本章的关键.教学难点灵活运用分式的基本性质和变号法则进行分式的恒等变形教具时间教学环节教师活动学生活动设计意图复习提问讲授新课总结概念回顾旧知例题讲解1.分式的定义?2.分数的基本性质?有什么用途?1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)解:∵x≠0,判断对错课堂小结学生口答.解:∵z≠0,例2 填空:把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.练习1:化简下列分式(约分)(1)(2)(3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分. 问:分式约分的依据是什么?分式的基本性质在化简分式时,小颖和小明的做法出现了分歧:小颖:小明:你对他们俩的解法有何看法?说说看!教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.1.分式的基本性质.2.性质中的m可代表任何非零整式.3.注意挖掘题目中的隐含条件.4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.板书设计分式的基本性质例2例3最简分式的学生板书后记abbca2dba24cba323223-()()ba25ba152+-+-yx20xy5222x20x5yx20xy5=x41xy5x4xy5yx20xy52=⋅== xyz=8;(-1)3=-课题分式的乘除练习授课时间 3.5授课人杨丽新课型练习授课班级二年三、四教学目标知识与技能熟练地进行分式乘除法的混合运算过程与方法经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性情感与价值教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练教学重点熟练地进行分式乘除法的混合运算.教学难点熟练地进行分式乘除法的混合运算教具时间教学环节教师活动学生活动设计意图1、 2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、板书设计分式的乘除学生板演后记课题分式的乘方授课时间 3.6授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能理解分式乘方的运算法则,熟练地进行分式乘方的运算.过程与方法经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性情感与价值教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练教学重点熟练地进行分式乘方的运算.教学难点熟练地进行分式乘、除、乘方的混合运算教具时间教学环节教师活动学生活动设计意图课堂引入小结归纳例题讲解计算下列各题:(1)2)(ba=⋅baba=() (2) 3)(ba=⋅ba⋅baba=()(3)4)(ba=⋅ba⋅bababa⋅=()[提问]由以上计算的结果你能推出nba)((n为正整数)的结果吗?目前为止,幂的运算法则都有什么?(1)a m·a n=a m+n;(2) a m÷a n=a m-n;(3)(a m)n=a mn;(4)(ab)n=a n b n;例题讲解(P14)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.课题分式的加减授课时间授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.过程与方法经历探索分式的加减运算法则的过程,并能结合具体情境说明其合理性情感与价值教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.教学重点熟练地进行异分母的分式加减法的运算.教学难点熟练地进行异分母的分式加减法的运算.教具时间教学环节教师活动学生活动设计意图复习提问讲授新课文字叙述提醒注意1.什么叫通分?2.通分的关键是什么?3.什么叫最简公分母?4.通分的作用是什么?(引出新课)讲授新课1.同分母的分式加减法.由学生类比同分母分数加减法小结同分母分式加减法法则,训练学生使用数学语言.文字叙述:同分母的分式相加减,分母不变,把分子相加减.2.由学生小结异分母的分式加减法法则.文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.例1 计算:小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号.学生试做板演讲授课堂小结(2)把分子相加减后,如果所得结果不是最简分式,要约分.例2 计算:请学生分析:(1)分母是否相同?(2)如何把分母化为相同的?小结:注意符号问题.例3 计算:由学生分析解法:①通分;②加减.请学生观察题目特点,通过讨论,得到最简洁的解法.(三)课堂小结板书设计分式的加减例题,学生板演后记课题分式的加减授课时间授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能明确分式混合运算的顺序,熟练地进行分式的混合运算.过程与方法经历探索分式的加减运算法则的过程,并能结合具体情境说明其合理性情感与价值教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.教学重点熟练地进行分式的混合运算教学难点熟练地进行分式的混合运算教具时间教学环节教师活动学生活动设计意图复习提问讲授新课小结(一)复习提问分式加减法法则.(二)新课分式混合运算.例1 计算:解:小结:学生板演巩固练习1.对于混合运算,一般应按运算顺序,有括号先做括号中的运算,若利用乘法对加法的分配律,有时可简化运算,而合理简捷的运算途径是我们始终提倡和追求的.2.对每一步变形,均应为后边运算打好基础,并为后边运算的简捷合理提供条件.可以说,这是运算能力的一种体现.3.当通分熟练之后,有些步骤可以同时进行.4.注意约分时的符号问题.例2 计算:由学生板演.解:(三)练习教材P.22中1、2.板书设计分式的混合运算后记课题分式方程授课时间授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能使学生理解分式方程的意义.使学生掌握可化为一元一次方程的分式方程的一般解法.了解解分式方程解的检验方法过程与方法在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.情感与价值通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.教学重点可化为一元一次方程的分式方程的解法.分式方程转化为整式方程的方法及其中的转化思想教学难点检验分式方程解的原因教具时间教学环节教师活动学生活动设计意图引入新课(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.解:(1)当x=0时,右边=0,∴左边=右边,这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.板书课题出示定义同学讨论(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x2x+2=5+xx=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.(三)应用 P26引言中的问题(四)总结解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.2.解这个方程.3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.(五)练习补充练习:六、作业七、板书设计板书设计后记课题分式的复习授课时间授课人杨丽新课型新授授课班级二年三、四教学目标知识与技能在熟练掌握分式四则运算的基础上,进一步熟悉掌握分式方程的解法及其应用:培养学生对知识综合掌握、综合运用的能力.过程与方法在学生掌握基本概念、基本方法的基础上将知识融汇贯通,进行一些提高训练.情感与价值在学生掌握基本概念、基本方法的基础上将知识融汇贯通,进行一些提高训练.教学重点(1)熟练而准确地掌握分式四则运算.(2)熟练掌握分式方程的解法.教学难点(1)四则混合运算中的去括号及符号问题(2)分式方程的验根问题.教具时间教学环节教师活动学生活动设计意图总结知识体系(一)总结知识体系要求学生读教材P.103的小结与复习,在读书时思考讨论:1.这一章学习中要掌握哪些内容,有哪些知识点?2.这一章中每一节学习的内容间有什么内在联系?在学生讨论后,教师归纳总结出:分式的定义、性质、运算:(二)例题分析:提问.(2)分式的分子、分母满足什么条件时,分式有意义?(分母≠0)(3)分式的分子、分母满足什么条件时,分式的值为正?(分子、分母同号)即 x=4或x=-1时,分式值为零.求A、B的值.分析:1.符号“≡”是恒等号,表示等式为恒等式.2.两个整式是恒等式,那么意味着这两个整式的项相同,相同项的系数相同.小结:此题的关键是将分式的恒等关系转化为多项式的恒等关系.分式恒等的依据为:(1)分母不为零且相等.(2)分子相等.(三)小结分式这一章最关键的也是最重要的是要求我们熟练掌握分式的运算,这也是我们以后学习的基础.我们要不断提高自己的计算能力.六、作业板书设计后记。