全国硕士研究生入学统一考试资料答案附后
全国硕士研究生入学统一考试资料答案附后

【经典资料,WORD文档,可编辑修改】【经典考试资料,答案附后,看后必过,WORD文档,可修改】
2015年全国硕士研究生入学统一考试
管理类专业学位联考综合能力考试大纲
I.考试性质
综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而设置的具有选择性质的全国联考科目,其目的是科学、公平、有效地测试考生是否具备攻读专业学位必需的基本素质、一般素质和培养潜能,评估的标准是高等学校本科毕业生所能达到的及格或及格以上水平,以利于高等院校和科研院所在专业上择优选拔,确保专业学位硕士研究生的招生质量。
II.考察目标
1.具有运用数学基础知识、基本方法分析和解决问题的能力。
2.具有较强的分析、推理、论证等逻辑思维能力。
全国硕士研究生入学考试英语(一)试题_附答案

全国硕士研究生入学考试英语(一)试题_附答案全国硕士研究生入学考试英语(一)试题_附答案Section ⅠUse of EnglishDirections:Read the following text. Choose the best word(s) for each numbered blank and mark [A], [B], [C] or [D]on ANSWER SHEET 1. (10 points)The ethical judgments of the Supreme Court justices became an important issue recently. The court cannot__1___ its legitimacy as guardian of the rule of law___2___ justices behave like politicians. Yet, in several instances, justices acted in ways that__3___ the court’s reputation for being independent and impartia l.Justices Antonin Scalia and Samuel Alito Jr., for example, appeared at political events. That kind of activity makes it less likely that the court’s decisions will be__4__ as impartial judgments. Part of the problem is that the justices are not ___5__ by an ethics code. At the very least, the court should make itself____6___ to the code of conduct that __7____to the rest of the federal judiciary.This and other cases ___8___the question of whether there is still a ___9__ between the court and politics.The framers of the Constitution envisioned law__10__ having authority apart from politics. They gave justices permanent positions __11__ they would be free to__12__those in power and have no need to__13___ political support. Our legal system was designed to set law apart from politics precisely because they are so closely __14___.Constitutional law is political because it results from choices rooted in fundamental social ___15___like liberty and property. When the court deals with social policy decisions, the law it __16___is inescapably political —which is why decisions split along ideological lines are so easily ___17__ as unjust.The justices must __18___doubts about the court’s legitimacy by makingthemselves __19___to the code of conduct. That would make their rulings morelikely to be seen as separate from politics and, __20___, convincing as law.1. [A] emphasize [B] maintain [C] modify [D] recognize2. [A] when [B] best [C] before [D] unless3. [A] restored [B] weakened [C] established [D] eliminated4. [A] challenged [B] compromised [C] suspected [D] accepted5. [A] advanced [B] caught [C] bound [D] founded6. [A] resistant [B] subject [C] immune [D] prone7. [A] resorts [B] sticks [C] leads [D] applies8. [A] evade [B] raise [C] deny [D] settle9. [A] line [B] barrier [C] similarity [D] conflict10. [A] by [B] as [C] through [D] towards11. [A] so [B] since [C] provided [D] though12. [A] serve [B] satisfy [C] upset [D] replace13. [A] confirm [B] express [C] cultivate [D] offer 14. [A] guarded [B] followed [C] studied [D] tied15. [A] concepts [B] theories [C] divisions [D] convenience16. [A] excludes [B] questions [C] shapes [D] controls17. [A] dismissed [B] released [C] ranked [D] distorted18. [A] suppress [B] exploit [C] address [D] ignore19. [A] accessible [B] amiable [C] agreeable [D] accountable20. [A] by all means [B] at all costs [C] in a word [D] as a resultSection ⅡReading ComprehensionPart ADirections:Read the following four texts. Answer the questions below each text by choosing [A], [B], [C] or [D]. Mark your answers on ANSWER SHEET1. (40 points)Text 1Come on –Everybody’s doing it. That whispered message, half invitation and halfforcing, is what most of us think of when we hear the words peer pressure. It usually leads to no good-drinking, drugs and casual sex. But in her new book Join the Club, Tina Rosenberg contends that peer pressure can also be a positive force through what she calls the social cure, in which organizations and officials use the power of group dynamics to help individuals improve their lives and possibly the word.Rosenberg, the recipient of a Pulitzer Prize, offers a host of example of the social cure in action: In South Carolina, a state-sponsored antismoking program called Rage Against the Haze sets out to make cigarettes uncool. In South Africa, anHIV-prevention initiative known as LoveLife recruits young people to promote safe sex among their peers.The idea seems promising,and Rosenberg is a perceptive observer. Her critique of the lameness of many pubic-health campaigns is spot-on: they fail to mobilize peer pressure for healthy habits, and they demonstrate a seriously flawed understanding of psychology.” Dare to be different, please don’t smoke!” pleads one billboard campaign aimed at reducing smoking among teenagers-teenagers, who desire nothing more than fitting in. Rosenberg argues convincingly that public-health advocates ought to take a page from advertisers, so skilled at applying peer pressure.。
1999年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

由格林公式,前一部分 I1
D
(b a)dxdy
2
a2 (b a) ,
„„1 分 „„3 分
1999 年 • 第 2 页
其中 D 为 L L1 所围成的半区域. 直接计算后一积分可得
I2
2a (bx)dx 2a2b .
0
„„4 分
从而
I
I1
I2
2
a2 (b
a)
2a2b
( 2
2)a2b
解:曲线 y y(x) 上在点 P(x, y) 处的切线方程为Y y y(x)( X x) .
它与 x 轴的交点为 (x y , 0) .由于 y(x) 0, y(0) 1 ,从而 y(x) 0 , y
于是 S1
1 2
y
x (x
y) y
y2 2 y
.
又 S2
dz dx
f
xf Fx
.
由此解得 dz ( f xf )Fy xf F x
dx
Fy xf F z
( Fy x f Fz 0 ) .
„„5 分
(注:不写出条件 Fy x f Fz 0 不扣分).
四、(本题满分 5 分)
求 I (ex sin y b(x y)) dx (ex cos y ax) dy ,其中 a, b 为正的常数, L 为从点 L
A(2a, 0) 沿曲线 y= 2ax x2 到点 O(0, 0) 的弧.
解一:添加从点 O(0, 0) 沿 y 0 到点 A(2a, 0) 的有向直线段 L1 ,
I (ex sin y b(x y))dx (ex cos y ax)dy L L1
(ex sin y b(x y))dx (ex cos y ax)dy L1
全国硕士研究生入学综合能力考试资料答案附后

全国硕士研究生入学综合能力考试资料答案附
后
文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
【经典资料,WORD文档,可编辑修改】【经典考试资料,答案附后,看后必过,WORD文档,可修改】
2013年全国硕士研究生入学统一考试管理类专业学位联考综合能力考试大纲
Ⅰ考试性质
综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而
设置的具有选拔性质的全国联考科目,其目的是科学、公平、有效地测试
考生是否具备攻读专业学位所必须的基本素质、一般能力和培养潜能,评
价的标准是高等学校本科毕业生所能达到的及格或及格以上的水平,以利
于各高等院校和科研院所在专业上择优选拔,确保专业学位硕士研究生的
招生质量。
Ⅱ考查目标
1. 具有运用数学基础知识、基本方法分析和解决问题的能力。
2. 具有较强的分析、推理、论证等逻辑思维能力。
3. 具有较强的文字材料理解能力、分析能力以及书面表达能力。
Ⅲ考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为 200 分,考试时间为 180 分钟。
二、答题方式
答题方式为闭卷、笔试。
不允许使用计算器。
三、试卷内容与题型结构
数学基础 75 分,有以下两种题型:
问题求解 15 小题,每小题 3 分,共 45 分。
2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1
求
lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x
,
1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时
2020年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解

x (0, 0)
xy (0, 0)
(x, y)→( 0,0 )
y→0 x→0
数是
A.4 B.3 C.2 D.1
答案:B
6. 设函数 f (x) 在区间 − 2,2上可导,且 f (x) f (x) 0 ,则()
A f (−2) 1 f (−1)
B f (0) e C f (1) e2 D f (2) e3
3.
1
0
arcsin
x (1−xx)源自dx=π2
A.
4
π2
B.
8
C. π
D. π
4
8
答案: A
解析: 1 arcsin xdx = arcsin2
0 x(1− x)
x
1 0
2 =
4
.
4. f ( x) = x2 ln (1− x), n 3 时, f (n) (0) =
A. − n! n−2
答案: A
+
y(x)dx =
0
解析:由
y + 2y + y = 0
y
(0)
=0,y
(
0)
y))dy
dz
(0, )
=
(
−1)dx − dy
12.斜边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度 为 g,水密度为 ,则该平板一侧所受的水压力为
答案: 1 ega3 3
解析: a g(a − y)[ y − (− y)]dy = 1 ga3
0
3
13.设 y = y ( x) 满足 y + 2y + y = 0 ,且 y (0) =0,y(0) =1,则
1992年全国硕士研究生入学统一考试英语真题(附带答案和详细解析)

1992年全国硕士研究生入学统一考试英语试题Section ⅠUse of EnglishDirections:For each numbered blank in the following passage, there are four choices marked [A],[B],[C]and [D].Choose the best one and put your choice in the ANSWER SHEET. (15 points)The key to the industrialization of space is the U.S. space shuttle. ___1___ it, astronauts will acquire a workhouse vehicle ___2___ of flying into space and returning many times. ___3___ by reusable rockets that can lift a load of 65,000 pounds, the shuttle will carry devices for scientific inquiry, as ___4___ as a variety of military hardware. ___5___ more significantly, it will ___6___ materials and machines into space for industrial purposes___7___ two decades ago when “sputnik” (artificial satellite) was ___8___ to the vocabu lary. In short, the___9___ importance of the shuttle lies in its ___10___ as an economic tool.What makes the space shuttle ___11___ is that it takes off like a rocket but lands like an airplane. ___12___, when it has accomplished its ___13___, it can be ready for ___14___ trip in about two weeks.The space shuttle, the world’s first true spaceship, is a magnificent step ___15___ making the impossible possible for the benefit and survival of man.1. [A]In [B]On [C]By [D]With[解析] 本题考核知识点:介词的用法。
1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1990 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题:(本题满分15分,每小题3分)(1)过点)1,2,1(-M 且与直线⎪⎩⎪⎨⎧-=-=+-=1432t z t y t x 垂直的平面方程是 x -3y -z +4=0 .(2)设a 为非零常数,则a xx e a x a x 2)(lim =-+∞→.(3)设函数11,0,1)(>≤⎩⎨⎧=x x x f , 则)]([x f f = ___1___. (4)积分dy e dx xy ⎰⎰-2022的值等于4(1)/2e --.(5)已知向量组 1α=(1,2,3,4),2α=(2,3,4,5),3α=(3,4,5,6),4α=(4,5,6,7),则该向量组的秩是2二、选择题:(本题满分15分,每小题3分) (1)设()f x 是连续函数,且⎰-=x e xdt t f x F )()(则)(x F '等于(A)(A ))()(x f e f e x x ----(B) )()(x f e f e x x +---(C))()(x f e f e x x ---(D) )()(x f e f e x x +--(2)已知函数()f x 具有任意阶导数,且[]2)()(x f x f =', 则当n 为大于2的正整数时,()f x 的n 阶导数)()(x fn 是(A)(A) 1)]([!+n x f n (B) 1)]([+n x f n (C) nx f 2)]([ (D) nx f n 2)]([!(3)设α为常数,则级数]1)sin([12nn na n -∑∞=(C )(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与α的取值有关.(4)已知()f x 在0x =的某个邻域内连续 ,且(0)0f =,2cos 1)(lim0=-→xx f x 则在点0x =处()f x (D)(A)不可导(B)可导,且0)0(≠'f (C)取得极大值(D)取得极小值(5)已知1β和2β是非齐次线性方程组AX = b 的两个不同的解,21,αα是对应导出组AX = 0基础解系,21,k k 为任意常数,则方程组AX = b 的通解(一般解)必是(B)(A) 2)(2121211ββααα-+++k k (B) 2)(2121211ββααα++-+k k (C) 2)(2121211ββββα-+++k k (D) 2)(2121211ββββα++-+k k 三、(本题满分15分,每小题5分)(1)求dx x x ⎰-+102)2()1ln(.解:11200ln(1)1ln(1)(2)2x dx x d x x +=+--⎛⎛⎜⎜⎠⎠110011ln(1)2(1)(2)x dx x x x =+--+-⎛⎜⎠……2分 101111ln 2()ln 232(1)3dx x x =-+=-+⎰.……5分 (2)设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的二阶偏导数,求yx z∂∂∂2.解:2cos z f fy x x u v ∂∂∂=+∂∂∂.……2分 2222222(2sin cos )sin cos cos z f f f fx y x y x x x x y u u v v v∂∂∂∂∂=-+-++∂∂∂∂∂∂∂. ……5分 (3) 求微分方程x e y y y 244-=+'+''的通解(一般解).解:特征方程为2440r r ++=的根为1,22r =-.对应齐次方程的通解为212()x Y C C x e -=+,其中12,C C 为任意常数. ……2分 设原方程的特解为*2()x y x Ax e 2-=,代入原方程得12A =.……4分 因此,原方程的通解为2*2212()()2xx x y x Y y C C x ee --=+=++. ……5分四、(本题满分6分) 求幂级数∑∞=+0)12(n nxn 的收敛域, 并求其和函数.解:因为123limlim 121n n n n a n a n ρ+→∞→∞+===+,所以11R ρ==.显然幂级数(21)nn n x∞=+∑在1x =±时发散,故此幂级数的收敛域为(1,1)-.……2分又0()(21)2nnnn n n S x n x nx x ∞∞∞====+=+∑∑∑012()1n n x x x∞='=+-∑……5分 2221111(1)1(1)x xx x x x +=+=-<<---.……6分五、(本题满分8分) 求曲面积分I=⎰⎰+sdxdy yzdzdx .2其中S 是球面4222=++z y x外侧在0≥z 的部分解:令2214x y S z ⎧+≤=⎨=⎩,其法向量与z 轴的负向相同. 设1S S 和所围成的区域为Ω,则由奥-高公式有12S I yzdzdx dxdy zdxdydz Ω++=⎰⎰⎰⎰⎰. ……2分而221140,228S S x y yzdzdx dxdy dxdy π+≤==-=-⎰⎰⎰⎰⎰⎰.……4分2222cos sin 4zdxdydz d d r r dr ππθϕϕϕπΩ=⋅=⎰⎰⎰⎰⎰⎰.……7分 所以12I π=.……8分六、(本题满分8分)设不恒为常数的函数)(x f 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =. 证明:在(,)a b 内至少存在一点ξ, 使0)(>'ξf .证:因()()()f a f b f x =且不恒为常数,故至少存在一点(,)c a b ∈,使得()()()f c f a f b ≠=.于是()()()()f c f a f c f a ><或.……2分现设()()f c f a >,则在[,]a c 上因()f x 满足拉格朗日定理的条件,故至少存在一点(,)(,)a c a b ξ∈⊂,使得1()[()()]0f f c f a c a ξ'=->-. ……6分对于()()f c f a <情形,类似地可证得此结果.……7分七、(本题满分8分) 设四阶矩阵=B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000110001100011,=C ⎪⎪⎪⎪⎪⎭⎫⎝⎛2000120031204312且矩阵A 满足关系式E C B C E A =''--)(1, 其中E 为四阶单位矩阵, 1-C 表示C 的逆矩阵,C '表示C 的转置矩阵, 将上述关系化简并求矩阵A .解:因11()[()]()A E C B C A C E C B A C B --''''-=-=-,故()A C B E '-=……2分因此 1[()]A C B -'=-11000210032104321-⎛⎫⎪⎪= ⎪⎪⎝⎭……4分1000210012100121⎛⎫⎪-⎪= ⎪-⎪-⎝⎭……6分八、(本题满分8分)求一个正交变换化二次型32312123222184444x x x x x x x x x f -+-++=成标准形.解:二次型的矩阵122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ……1分由2122||244(9)244λλλλλλ---=---=----A E ,A 的特征值为1230,9λλλ===.……3分对于120λλ==,122122244000244000λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A E ,从而可取特征向量1011P ⎛⎫ ⎪= ⎪ ⎪⎝⎭及与1P 正交的另一特征向量2411P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. ……5分 对于39λ=,822245254099245000λ----⎛⎫⎛⎫ ⎪ ⎪-=---→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A E ,取特征向量3122P ⎛⎫⎪=- ⎪ ⎪⎝⎭. ……6分将上述相互正交的特征向量单位化,得1231032,,323ξξξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===- ⎪ ⎪⎪ ⎪⎝⎭, ……7分故在正交变换1122331032323x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎭下,二次型239f y =. ……8分九、(本题满分8分)质点P 沿着以A,B 为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力→F 作用 (见图),→F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且于y 轴正向的夹角小于2π.求变力→F 对质点P 所作的功.解:按题意,变力y x =-+F i j .……3分圆弧AB的参数方程是23443x y θππθθ⎧=⎪-≤≤⎨=⎪⎩.……5分 变力F 所作的功ABW ydx xdy =-+⎰434)sin )cos ]d ππθθθθθ-=⎰()21π=-……8分十、填空题:(本题满分6分,每小题2分)(1)已知随机变量X 的概率密度函数f (x )=x e -21, +∞<<∞-x ,则X 的概率分布函数()F x =1212010xx e x ex -⎧<⎨-≥⎩.(2)设随机事件A ,B 及其事件A B 的概率分别为6.0,3.0,4.0和,若_B 表示B 的对立事件,那么积事件B A 的概率3.0)B A (P =(3)已知离散型随机变量X 服从参数为2的泊松分布,则随机变量32Z X =-的数学期望()E Z = 4 .十一、(本题满分6分)设二维变量(X ,Y )在区域 x y x D <<<,10:内服从均匀分布,求关于X 的边缘概率密度函数及随机变量 Z =2X +1的方差D (Z ).解:(,)X Y 的联合概率密度函数是1,01,||,(,)0,x y x f x y <<<⎧=⎨⎩其它,因此关于X 的边缘概率密度函数是2,01()(,)0,X x x f x f x y dy +∞-∞<<⎧==⎨⎩⎰其它. ……2分22D(Z)(21)4[()(())]D X E X E X =+=-()22X X 4()()x f x dx xf x dx +∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰……4分()21132001424224299x dx x dx ⎡⎤⎛⎫=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰.……6分数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题满分15分,每小题5分)【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1)【 同数学一 第四、(1)题 】(2)求微分方程0)ln (ln =-+dx x y xdy x 满足条件1==ex y的特解.解:将原方程化为11,(1)ln y y x x x x'+=≠.……1分 由公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰……3分 得2ln ln 111ln ln 2dx dx x x x xy e e dx C x C x x -⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭. ……4分 又由|1x e y ==,可解出12C =,所以方程的特解是11ln 2ln y x x ⎛⎫=+ ⎪⎝⎭.……6分(3)过点(1,0)P 作抛物线2-=x y 的切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积.解:设所作切线与抛物线相切于点0(x .因00|x x y =='==,故此切线的方程为)y x x =-.……1分又因该切线过点(1,0)P ,所以有03x =. 从而切线的方程为1(1)2y x =-. ……3分 因此,所求旋转体的体积332121(1)(2)4V x dx x dxππ=---⎰⎰……5分 6π=.……6分五、(本题满分8分)【 同数学一第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分8分)【 同数学一 第九题】数 学(试卷三)一、填空题:(本题满分15分,每小题3分)(1)曲线⎩⎨⎧==ty t x 33sin cos 上对应于6π=t 点处的法线方程是13-=x y .(2)设x e y x tg 1sin 1⋅=,则='y 1tan 221111(sec sin cos )x e x x x x-⋅+.(3)=-⎰11dx x x15/4(4)下列两个积分的大小关系是:dx e dxe x x ⎰⎰----->121233.(5)【 同数学一 第一、(3) 题 】二、选择题:(本题满分15分,每小题3分)(1)已知0)1(lim 2=--+∞→b ax x x x ,其中,a b 常数,则(C)(A)1,1a b ==(B)1,1a b =-=(C)1,1a b ==-(D)1,1a b =-=-(2)设函数)(x f 在),(+∞-∞上连续,则⎰])([dx x f d 等于(B)(A))(x f (B)dxx f )((C)cx f +)((D)dxx f )('(3)【 同数学一 第二、(3) 题 】(4)【 同数学一 第二、(4) 题 】(5)设⎪⎩⎪⎨⎧=≠=0),0(0,)()(x f x x x f x F ,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 (B )(A)连续点 (B) 第一类间断点 (C) 第二类间断点(D)连续点或间断点不能由此确定三、(本题满分15分,每小题3分) (1)已知9)(lim =-+∞→xx ax a x ,求常数a . 解:因2(1)lim()lim (1)x x a x x xa x a x e ax a x→∞→∞++==--……3分 故29a e =,ln 3a =.……5分(2)求由2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .解:对方程两边求微分2()ln()()dx dydy dx dx dy x y x y x y--=--+--, ……3分故2ln(),3ln()2x y xdy dx dy dx x y x y +-==+--或.……5分 (3)求曲线)0(112>+=x xy 的拐点. 解:22223231,2(1)(1)x x y y x x -'''=-=++. ……2分 令0y ''=,解得x =.因在x =的左右邻近"y 变号,故x =是拐点的横坐标.所以曲线的拐点是3)4.……5分 (4)计算 ⎰-dx x x2)1(ln . 解:原式1ln 1xd x =-⎰ln 11(1)x dxxx x =---⎰……2分 10ln 11()11x dxx x x =-+--⎰……4分 ln |1|ln 1x x C x x-=++-.……5分 (5)见【 数学二 第四(2)题 】四、(本题满分9分)在椭圆12222=+by a x 的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小(其中0,0a b >>).解:设00(,)P x y 为所求之点,则此点处的切线方程为00221xx yya b+=. ……2分令0x =,得该切线在y 轴上的截距20b y .令0y =,得该切线在x 轴上的截距2a x . ……4分于是所围图形的面积为2200011,(0,)24a b S ab x a x y π=⋅-∈.……6分 求S的最小值时,不妨设00A x y ==22b A a '=. ……7分令0A '=,解得在(0,)a 内唯一驻点0x =……8分由A '在0x =右侧为负,得知0x =A 的极大点,即S 的极小点.所以0x =S 为最小,此时0y =,即为所求之点.……9分 五、(本题满分9分)证明:当0x >时,有不等式 21π>+x arctgx . 解:考虑函数1()arctan ,02f x x x x π=+->.……2分 有2211()0,01f x x x x '=-<>+. ……4分 所以()f x 在(0,)+∞上是单调减少的.……5分 又lim ()0x f x →+∞=……7分知当10,()arctan 02x f x x x π>=+->时. ……8分 即1arctan 2x x π+>. ……9分六、(本题满分9分)设dt t t x f x⎰+=11ln )(, 其中0,x >求 1()().f x f x+解:111ln ()1xt f dt xt =+⎰. 令1t y =,得11ln ()(1)x y f dy x y y =+⎰. ……3分 于是111ln ln ()()(1)(1)x x t t f x f dt dt x t t t +=+++⎰⎰111()ln (1)(1)x tdtt t t =+++⎰……5分 1111()ln 11x tdt t t t =+-++⎰……7分 21ln 1ln 2x t dt x t ==⎰. ……9分七、(本题满分9分)【 同数学二 第四、(3)题 】 八、(本题满分9分)求微分方程ax e y y y =+'+''44之通解,其中a 为实数.解:特征方程为2440r r ++=,特征根为1,22r =-.对应齐次方程的通解为212()x y C C x e -=+ .……2分 当2a ≠-时,设非齐次方程的特解为*()ax y x Ae =, ……3分代入原方程,可得21(2)A a =+,*21()(2)axy x e a =+. 当2a =-时,设非齐次方程的特解为*21()xy x A x e 2-=.代入原方程,得12A =,*21()2x y x x e 2-=.……8分故通解为212222121()2(2)()()()22x axx C C x e e a a y x x y x C C x e a --⎧++≠-⎪+⎪=⎨⎪=++=⎪⎩,当,当.……9分数 学(试卷四)一、填空题:(本题满分15分,每小题3分) (1)极限n →∞=2(2)设函数()f x 有连续的导函数,0)0(=f 且b f =')0(,若函数00,sin )()(=≠⎪⎩⎪⎨⎧+=x x A xx a x f x F 在0x =处连续,则常数A = a + b .(3)曲线2y x =与直线2y x =+所围成的平面图形的面积为 4.5 .(4)若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足条件04321=+++a a a a (5)一射手对同一目标独立的进行四次射击,若至少命中一次的概率为8180,则射手的命中率为2/3二、选择题:(本题满分15分,每小题3分) (1)设函数x e tgx x x f sin )(⋅⋅=,则)(x f 是 (B )(A )偶函数(B)无界函数(C)周期函数(D)单调函数(2)设函数()f x 对任意x 均满足等式(1)()f x a f x +=, 且有b f =')0(,其中,a b 为非零常数,则 (D)(A )()f x 在1x =处不可导(B )()f x 在1x =处可导,且a f =')1((C )()f x 在1x =处可导,且 f (1)b '= (D )()f x 在1x =处可导,且 f (1)ab '=. (3)向量组s ααα,,21⋅⋅⋅⋅线性无关的充分条件是(A)s ααα,,21⋅⋅⋅⋅均不为零向量(B) s ααα,,21⋅⋅⋅⋅中任意两个向量的分量不成比例(C) s ααα,,21⋅⋅⋅⋅中任意一个向量均不能由其余1s -个向量线形表示 (D) s ααα,,21⋅⋅⋅⋅中有一部分向量线形无关(4)设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是(A)(A)P (A+B )= P (A )(B)P(AB )=P(A )(C)P (A B )= P (B )(D)P (B -A )=P (B )-P (A )(5)设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 (C )(A )X =Y(B ){}0P X Y ==(C ){}P X Y ==21(D ){}1P X Y ==三、(本题满分20分,每小题5分) (1)求函数()I x =dt t t t xe ⎰+-12ln 2在区间[2,e e ]上的最大值.解:由222ln ln ()0,[,]21(1)x x I x x e e x x x '==>∈-+-, ……1分可知()I x 在2[,]e e 上单调增加,故222ln max ()(1)e e x e e t I x dt t ≤≤==-⎛⎜⎠21ln 1e e tdt --⎛⎜⎠22ln 1111e e e e t dt t t t =-+⋅--⎛⎜⎠……3分 22121ln11e e t e e t -=-+--11ln ln(1)11e e e e e e+=+=+-++. ……5分(2)计算2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.解:原式2302yy y edy xdx+∞-=⎰⎰……2分 20111()249y y y e dy +∞-=-⎰……3分 205572144y ye dy +∞-==⎰.……5分(3)求级数的∑∞=-12)3(n nn x 收敛域. 解:21n a n=,121(1)n a n +=+,212lim lim 1(1)n n n n a n a n +→∞→∞==+, ……2分 因此当131x -<-<,即24x <<级数收敛. ……3分当2x =时,得交错级数211(1)n n n ∞=-∑;当4x =时,得级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].……5分(4)求微分方程x e x x y y sin )(ln cos -=+'的通解解:cos cos sin (ln )xdxxdx x y e x e e dx C --⎰⎰=⋅⋅+⎰……3分 sin (ln )x e xdx C -=+⎰……4分 sin (ln )x e x x x C -=-+.……5分四、(本题满分9分)某公司可通过电台和报纸两种方式做销售某种商品广告,根据统计资料,销售收入R (万 元)与电台广告费用1x (万元) 及报纸广告费用2x (万元) 之间的关系有如下经验公式:222121211028321415x x x x x x R ---++=. (1)在广告费用不限的情况下, 求最优广告策略;(2)若提供的广告费用为1.5 万元, 求相应的最优广告策略.解:(1) 利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210x x x x x x =++---……1分 由12121248130,820310x x x x x x ππ∂∂=--+==--+=∂∂……2分 解得10.75x =(万元),2 1.25x =(万元). 因利润函数12(,)x x ππ=在(0.75,1.25)处的二阶偏导数为:2222211224,8,20A B C x x x x πππ∂∂∂==-==-==-∂∂∂∂. ……3分 故有26480160,40B AC A -=-=-<=-<,……4分 所以函数12(,)x x ππ=在(0.75,1.25)处达到极大值,亦即最大值.……5分(2)若广告费用为1.5万元,则只需求利润12(,)x x ππ=在12 1.5x x +=时的条件极值.拉格朗日函数为221212121212(,,)1513318210( 1.5)L x x x x x x x x x x λλ=++---++-……7分令120,0,0L L L x x λ∂∂∂===∂∂∂,有121212481308203101.50x x x x x x λλ--++=⎧⎪--++=⎨⎪+-=⎩……8分由此可得10x =,2 1.5x =,即将广告费1.5万元全部用于报纸广告,可使利润最大.……9分五、(本题满分6分)设)(x f 在闭区间[0,c]上连续,其导数)(x f '在开区间(0,)c 内存在且单调减少.(0)0f =,试应用拉格郎日中值定理证明不等式()()()f a b f a f b +≤+,其中常 数,a b 满足条件c b a b a ≤+≤≤≤0.证:当0a =时,(0)0f =有()()()()f a b f b f a f b +==+. ……1分当0a >时,在[0,]a 和[,]b a b +上分别应用拉格朗日定理,有()11()(0)()(),0,0f a f f a f a a aξξ-'==∈-;……3分 ()22()()()()(),,()f a b f b f a b f b f b a b a b b aξξ+-+-'==∈++-.……4分 显然120a b a b c ξξ<<≤<<+≤. 因()f x '在[0,]c 上单调减少,故21()()f f ξξ''≤.从而有()()()f a b f b f a a a+-≤.……5分 故由0a >,有()()()f a b f a f b +≤+. ……6分六、(本题满分8分)已知线性方程组 1234512345234512345323022654332x x x x x ax x x x x x x x x bx x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩(1)问,a b 为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时, 求出方程组的全部解.解:(1) 考虑方程组的增广矩阵1111111111321130012263012260000035433120000022a aa A bb a a ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭……2分当30b a -=且220a -=,即13a b ==且时,方程组的系数矩阵与增广矩阵之秩相等,故1,3a b ==时,方程组有解.……3分(2)当1,3a b ==时,有11111101152012263012263000000000000000000000000a a A ----⎛⎫⎛⎫⎪⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因此,原方程组的同解方程组为13452345522263x x x x x x x x ---=-⎧⎨+++=⎩,故导出组的基础解系为123115226,,100010001v v v ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ……6分(3)令3450x x x ===,得原方程组的特解23000u -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,于是原方程组的全部解为1231234521153226010000100001x x u x c c c x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,c c c 为任意常数.……8分 七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0=kA ,试证明矩阵E A -可逆,并写出 其逆矩阵的表达式(E 为n 阶单位阵).解:由0kA =及1k k E A E A A E A --+++=-()() ,得1k E A E A A E--+++=()() ……3分 可知E A -可逆,且有11()k E A E A A ---=+++ .……5分八、(本题满分6)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值,21,x x 是分别属于1λ和2λ的特征向量,试证明:21x x +不是A 的特征向量.解:因11122212,,Ax x Ax x λλλλ==≠,故12121122()A x x Ax Ax x x λλ+=+=+……2分 设21x x +是A 的特征向量,则1212()()A x x x x λ+=+,即112212()x x x x λλλ+=+, 于是有1122()()0x x λλλλ-+-=.……4分由于12,x x 属于不同的特征值,所以12,x x 线性无关,故有120,0λλλλ-=-=,即12λλ=, 这与假设矛盾,因此21x x +不是A 的特征向量.……6分九、(本题满分4分)从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率:=1A { 三个数字中不含0和5 } ;=2A { 三个数字中含0但不含5 }解:3813107()15C P A C ==……2分 33982310214()15C C P A C -==. ……4分十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:⎩⎨⎧≥≥+--=+---它其00,01),()(5.05.05.0y x e e e y x F y x y x .(1)问X 和Y 是否独立?(2)求两个部件的寿命都超过100小时的概率α.解 X 的分布函数1()F x 和Y 的分布函数2()F y 分别为:0.511,0;()(,)0,0x e x F x F x x -⎧-≥=+∞=⎨<⎩若若,0.521,0;()(,)0,0y e y F y F y y -⎧-≥=+∞=⎨<⎩若若……2分 显然12(,)()()F x y F x F y =,故X 和Y 独立,……3分 于是{0.1,0.1}{0.1}{0.1}P X Y P X P Y α=>>=>⋅>……4分 0.050.050.112[1(0.1)][1(0.1)]F F e e e ---=-⋅-=⋅=.……5分十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3 %,试求考生的外语成绩在60分至84分之间的概率.[附表] (表中)(x Φ是标准正态分布函数)解:设X 为考生的外语成绩,由题设知2~(,)X N μσ,其中72μ=. ……1分由条件知{96}0.023P X ≥=,即9672{}0.023X P μσσ--≥=,亦即24()0.977σΦ=,由()x Φ的数值表,可见242σ=.因此12σ=.这样2~(72,12)X N .……4分所求概率为60728472{6084}{}{11}1212X X P X P P μμσσ----≤≤=≤≤=-≤≤(1)(1)2(1)120.84110.682=Φ-Φ-=Φ-=⨯-=.……7分数 学(试卷五)一、填空题 (本题满分15分,每小题3分) (1)【 同数学四 第一、(1) 题 】(2)【 同数学四 第一、(2) 题 】(3)【 同数学四 第一、(3) 题 】(4)【 同数学四 第一、(4) 题 】(5)已知随机变量(3,1),(2,1)X N Y N - ,且,X Y 相互独立,设随机变量27Z X Y =-+,则Z ~ N (0,5) .二、选择题 (本题满分15分,每小题3分) (1)【 同数学四 第二、(1) 题 】(2)【 同数学四 第二、(2) 题 】(3)【 同数学四 第二、(1) 题 】(4)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =(A)(A) 1-n A(B) A (C) nA(D) 1-A(5)已知随机变量X 服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n ,p 的值为 (B )(A )n = 4,p = 0.6(B )n = 6,p = 0.4(C )n = 8,p = 0.3(D )n = 24,p = 0.1三、(本题满分20分,每小题5分) (1)求极限dte t x x t x x 22)1(1lim20-∞→⎰+解:原式22222202(1)(1)limlim(12)xt x x x x x t e dt x e xex e→∞→∞++==+⎰……3分22(1)1lim (12)2x x x →∞+==+. ……5分(2)求不定积分dx x x x ⎰34sin 2cos . 解 443333cos cos cos1222sin 88sin cos sin 222x x x x x x dx dx dx x x x x ==⎰⎰⎰……2分3211sin sin sin 42282x x x x d xd --==-⎛⎛⎜⎜⎠⎠……3分 22111sin 828sin 2x x dx x-=-+⎛⎜⎜⎠……4分 21cot 428sin 2x x C x -=-+211csc cot 8242x xx C =--+.……5分 (3)设)(22y z y z x ϕ=+,其中ϕ为可微函数,求 yz∂∂.解 将原式两边同时对y 求偏导,得2112()()()z z z z z y z y y y y y yϕϕ∂∂'=+-∂∂ ……3分 解出z y ∂∂,得 ()()()()2()2()z z z z z y z zy y yy y zzyz yz y yyϕϕϕϕϕϕ''--∂==∂''--. ……5分(4)【 同数学四 第三、(2) 题 】四、(本题满分9分)【 同数学四 第四题 】五、(本题满分6分)证明不等式1ln(()x x x +≥-∞<<+∞证:记()1ln(f x x x =++()ln(ln(f x x x x '=+=.……2分 令()0f x '=,知0x =为驻点.由()0f x ''=>……4分可知0x =为极小值点,亦即最小值点.()f x 的最小值为(0)0f =,于是,对于一切(,)x ∈-∞+∞,有()0f x ≥,即1ln(()x x x +≥-∞<<+∞. ……6分六、(本题满分4分)设A 为1010⨯矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00001010000 (0010000010)10,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.解:1010000100().......................00011000A E λλλλλ---=--按第一列展开……1分101000100000100100010..............................................00010001101λλλλλλλ-------=-……2分9101010()()1010λλλ=---=-.……4分七、(本题满分5分)设方阵A 满足条件TA A E =,其中TA 是A 的转置矩阵,E 为单位阵.试证明所对应的 特征值的绝对值等于1.证:设x 是A 的实特征向量,其所对应的特征值为λ,则Ax x λ=,即T T Tx A x λ=,于是有2T T T x A Ax x x λ=,即2T Tx x x x λ=,2(1)0T x x λ-=.……3分 因为x 为实特征向量,故0Tx x >,所以得210λ-=,即||1λ=.……5分八、(本题满分8分)【 同数学四 第六题 】九、(本题满分5分)【 同数学四 第九题 分值不同 】 十、(本题满分6分)甲乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 联合概率分布.解:X Y 和都服从二项分布,参数相应为(2,0.2)和(2,0.5).因此X Y 和的概率分布分别为:0120.640.320.04X ⎛⎫⎪⎝⎭,0120.250.50.25Y ⎛⎫ ⎪⎝⎭ ……3分故由独立性,知X Y 和的联合分布为6分十一、(本题满分7分)【 同数学四第十一题 】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国硕士研究生入学统一考试资料答案附后
The document was prepared on January 2, 2021
【经典资料,WORD文档,可编辑修改】【经典考试资料,答案附后,看后必过,WORD文档,可修改】
2015年全国硕士研究生入学统一考试
管理类专业学位联考综合能力考试大纲
I.考试性质
综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而设置的具有选择性质的全国联考科目,其目的是科学、公平、有效地测试考生是否具备攻读专业学位必需的基本素质、一般素质和培养潜能,评估的标准是高等学校本科毕业生所能达到的及格或及格以上水平,以利于高等院校和科研院所在专业上择优选拔,确保专业学位硕士研究生的招生质量。
II.考察目标
1.具有运用数学基础知识、基本方法分析和解决问题的能力。
2.具有较强的分析、推理、论证等逻辑思维能力。
3.具有较强的文字材料理解能力、分析能力以及书面表达能力。
III.考试形式和试卷结构
一、试卷满分及考试时间
1.试卷满分为200分,考试时间为180分钟
二、答题方式
答题方式为闭卷、笔试。
不允许使用计算器。
三、试卷内容与题型结构
数学基础 75分,有一下两种题型:问答求解 15小题,每小题3分,共45分条件充分性判断 10小题,每小题3分,共30分
逻辑推理 30小题,每小题2分,共60分
写作 2小题,其中论证有效性分析30分,论说文35分,共65分。