图形的相似教案含课时
图形的相似优秀教案

图形的相似优秀教案【篇一:教案:图形的相似全章教案】【篇二:27.1图形的相似(第1课时)教学设计】课题:27.1图形的相似(第1课时)教学设计一、教学目标知识技能1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.过程与方法1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。
3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度价值观1.积极参与数学活动,对数学有好奇心和求知欲。
2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。
3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
4.敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:??(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:??(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4)(5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)c/ac/ab/师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)ab与a′b′的比是abab(板书:),bc与b′c′的比aⅱbaⅱbbcbccaca是(板书:),ca与c′a′的比是(板书:),这三bⅱcbⅱccⅱacⅱa个比相等吗?生:(齐答)相等.师:为什么相等?(稍停后指准图)△a′b′c′可以看成是△abc缩小得到的,假如ab是a′b′的2倍,那么可以想象,bc也是b′c′的2倍,ca也是c′a′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. d/da/ (师出示下图) a c/cb/师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′)师:(指图)这两个相似四边形的边有什么关系?生:abbccadaabbccada===.(生答师板书:===)aⅱbbⅱccⅱadⅱaaⅱbbⅱccⅱadⅱa师:(指式子)这四个比为什么相等?(稍停后指准图)四边形a′b′c′d′可以看成是四边形abcd放大得到的,假如ab是a′b′的一半,那么可以想象,bc也是b′c′的一半,cd也是c′d′的一半,da也是d′a′的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:??(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:??(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义.(师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形. 师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节a5 a/3 110bbc c/(1)两个等边三角形一定相似;()(2)两个正方形一定相似;()(3)两个矩形一定相似;()(4)两个菱形一定相似. ()(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:p35练习1.p38习题1.4.)教学反思:注意讲课节奏,对学困生要跟踪辅导注意少讲多练,提高课堂效率;注意调动学生的积极性,培养认真细致,勤奋钻研的品质。
图形的相似全章自制简易教案

图形的相似全章自制简易教案一、教学目标知识与技能:1. 理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 能够运用相似图形解决实际问题,提高空间想象能力。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的动手能力和思维能力。
2. 学会用数学语言描述图形之间的相似关系,提高数学表达能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心,激发学生学习图形的相似性的热情。
2. 培养学生的团队协作精神,学会与他人交流和分享。
二、教学内容第一课时:相似图形的概念1. 引入:通过观察生活中常见的图形,如卫星图片、动物图形等,引导学生发现图形的相似性。
2. 讲解:讲解相似图形的定义,强调对应边成比例、对应角相等的特征。
3. 例题:分析并解决一些判断相似图形的问题,让学生加深对相似图形的理解。
第二课时:相似图形的性质1. 引入:通过观察和操作,让学生发现相似图形的一些性质,如面积比、周长比等。
2. 讲解:讲解相似图形的性质,包括面积比、周长比、角度相等等。
3. 例题:解决一些有关相似图形性质的问题,让学生学会运用性质解决问题。
第三课时:相似图形的判定1. 引入:通过观察和操作,引导学生发现判定相似图形的方法。
2. 讲解:讲解判定相似图形的方法,如AA相似定理、AAA相似定理等。
3. 例题:解决一些有关判定相似图形的问题,让学生学会运用判定方法解决问题。
第四课时:相似图形在实际中的应用1. 引入:通过实际问题,引导学生思考如何运用相似图形解决问题。
2. 讲解:讲解相似图形在实际中的应用,如测量物体长度、计算物体体积等。
3. 例题:解决一些实际问题,让学生学会运用相似图形解决实际问题。
第五课时:总结与复习1. 回顾本章所学内容,让学生总结相似图形的概念、性质和判定方法。
2. 通过复习题,巩固学生对相似图形的理解和运用能力。
三、教学资源1. PPT课件:制作精美的PPT课件,配合生动的语言和图片,吸引学生的注意力。
27.1图形的相似教案

27.1图形的相似教案篇一:27.1图形的相似教案(含1.2课时)[1]九年级数学图形的相似集体备课教案27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题1.观察下列图形,指出.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,.二、选择题1.(1)????????;(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()a.一组B.二组c.三组d.四组2.下列说法中,正确的是()a.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同c.形状相同的两个图形的面积一定相等d.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()a.形状大小都一样B.形状一样,大小不一样c.形状不一样,大小一样d.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()a.不能够互相重合B.形状相同,大小也一定相同c.形状不一样d.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】篇二:27.1图形的相似教学设计教案教学准备1.教学目标1.1知识与技能:1.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。
1.2过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题。
1.3情感态度与价值观:培养学生严谨的数学思维习惯。
2.教学重点/难点教学重点:相似多边形的主要特征与识别教学难点:运用相似多边形的特征进行相关的计算。
《图形的相似(第1课时)》教案 (省一等奖)

图形的相似一、教学目标1.理解并掌握两个图形相似的概念.2.了解成比例线段的概念,会确定线段的比二、重点、难点1.重点:相似图形的概念与成比例线段的概念.2.难点:成比例线段概念.3.难点的突破方法〔1〕对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形〞,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关〔其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形〕;②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的局部拉长或加宽得到的图形和原图形不是相似图形.〔2〕对于成比例线段:①我们是在学生小学学过数的比,及比例的根本性质等知识的根底上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作或a:b=c:d;⑤假设四条线段满足,那么有ad=bc〔为利于今后的学习,可适当补充:反之,假设四条线段满足ad=bc,那么有,或其它七种表达形式〕.三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:〔1〕相似形一定要形状相同,与它的位置、颜色、大小无关;〔2〕两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的局部拉长或加宽得到的图形和原图形不是相似图形;〔3〕在识别相似图形时,不要以位置为准,要“形状相同〞;例2通过分别采用m、cm、mm三种不同的长度单位,求得的的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生比照例尺有进一步的认识:比例尺= ,而求图上距离与实际距离的比就是求两条线段的比.四、课堂引入1.〔1〕请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如以以下图的两个画面,他们的形状、大小有什么关系.〔还可以再举几个例子〕〔2〕教材P36引入.〔3〕相似图形概念:把形状相同的图形说成是相似图形.〔强调:见前面〕〔4〕让学生再举几个相似图形的例子.〔5〕讲解例1.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如〔即ad=bc〕,我们就说这四条线段是成比例线段,简称比例线段.【注意】〔1〕两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;〔2〕线段的比是一个没有单位的正数;〔3〕四条线段a,b,c,d成比例,记作或a:b=c:d;〔4〕假设四条线段满足,那么有ad=bc.五、例题讲解例1〔补充:选择题〕如图,下面右边的四个图形中,与左边的图形相似的是〔〕分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按一定比例缩小得到的,因此图C与左图相似,故此题应选C. 例2〔补充〕一张桌面的长a=,宽b=,那么长与宽的比是多少?〔1〕如果a=125cm,b=75cm,那么长与宽的比是多少?〔2〕如果a=1250mm,b=750mm,那么长与宽的比是多少?解:略.〔〕小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例3〔补充〕:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺= ,可求出北京到上海的实际距离.解:略答:北京到上海的实际距离大约是1120 km.六、课堂练习1.教材P37的观察.2.以下说法正确的选项是〔〕A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,〔1〕〔小〕长是_______cm,宽是_______cm;〔大〕长是_______cm,宽是_______cm;〔2〕〔小〕;〔大〕.〔3〕你由上述的计算,能得到什么结论吗?〔答:相似的长方形的宽与长之比相等〕4.在比例尺是1:8000000的“中国政区〞地图上,量得福州与上海之间的距离时,那么福州与上海之间的实际距离是多少?5.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?七、课后练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
图形相似教学设计(共6篇)

图形相似教学设计(共6篇)第1篇:图形相似的教学案例三星初中邱清华教学内容:依据新教材(苏科版)八年级下学期《图形的相似》的相关内容而开发生成的适合网络教学的自编教材。
教材设计意念:根据基础教育课程的具体目标,我们知道学习是学生主动建构知识的过程的建构主义理论,把握好学生的独立探索与教师的引导支持之间的辩证关系。
因此在教学中,我给予了学生充足的时间习参与集体活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观;其次根据初中生的心理特点,他们对游戏活动有着强烈的好奇心,以及对具有挑战性的知识强烈的欲望,再加上他们已有平面图形的有关知识作基础,完全有可能也有能力自己探索相似图形的一些本质特征,因此我利用几何画板软件设计了几个带有竞争意识的游戏活动,使他们在游戏中学到数学知识,在活动中掌握知识,从而在快乐中感受知识的来龙去脉。
教材分析:本节内容选于苏科版教材八年级(下),本章在已学习“全等图形”的基础上,以认识相似图形(即形态相同图形)为核心内容,在本节课的学习过程中,通过几何画板软件,让学生充分感受到相似图形的魅力,通过动手操作画出相似图形,体会相似图形在现实中的应用,进一步增强学生的数学应用意识,通过几个小游戏让学生充分领略到学习的乐趣。
本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
教学重点:学生自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。
教学难点:正确地运用相似图形的特征解决生活中实际问题。
教学目标:使学生联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;引导学生经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观,使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以“生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的意识,培养学生的动手操作能力和创新精神。
初中数学《图形的相似》教案3 (1)

《图形的相似》教案3第二课时★新课标要求一、知识与技能1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、过程与方法1.经历测量长度和角度,发现相似多边形对应角相等,对应边的比相等的性质的过程.2.经历对日常生活中与相似有关的图形进行观察、分析、欣赏以及动手操作、画图等过程.三、情感、态度与价值观发展审美能力,增强对图形相似性质的理解,通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活.★教学重点相似多边形的主要特征与识别.★教学难点运用相似多边形的特征进行相关的计算.★教学方法归纳、类比、反思、交流.★教学过程一、引入新课教师活动:前面我们结合生活中的实例学习了物体的相似、三维图形的相似、包括平面图形的相似.我们来进一步学习相似多边形的特征.二、进行新课1.正多边形相似的特征.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.结论:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.2.例题例1(补充)下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2课本对应例题.例3知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵四边形ABCD与四边形A1B1C1D1相似,∴AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1.∵A1B1:B1C1:C1D1:D1A1=7:8:11:14,∴AB:BC:CD:DA= 7:8:11:14.设AB =7m ,则BC =8m ,CD =11m ,DA =14m .∵四边形ABCD 的周长为40,∴7m +8m +11m +14m =40.∴m =1.∴AB =7,则BC =8,CD =11,DA =14.学生活动:学生先自己解答,再在小组内合作交流,最后在进行全班性的问答或交流. 教师活动:巡视全班,及时发现学生中存在的问题,对学生们的问题作出指导.三、课堂练习四、课堂总结、点评1.相似多边形的特征:相似多边形的对应角相等,对应边的比相等.2.相似多边形的识别:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.3.相似比:相似多边形的对应边的比称为相似比.相似比为1时,相似的两个图形全等.4.对于四条线段a 、b 、c 、d ,如果其中的两条线段的比(即它们的长度的比)与另两条线段的比相等,即如果(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.a cb d。
图形相似复习课教案

图形相似复习课教案一、教学目标1. 知识与技能:(1)理解相似图形的定义和性质;(2)掌握相似图形的判定方法;(3)能够运用相似图形解决实际问题。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力;(2)运用同一直角坐标系中点的坐标关系,推导相似比的性质;(3)利用相似图形解决实际问题,提高学生的解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、合作交流的精神;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 相似图形的定义和性质;2. 相似图形的判定方法;3. 相似比的性质;4. 利用相似图形解决实际问题。
三、教学重点与难点1. 教学重点:(1)相似图形的定义和性质;(2)相似图形的判定方法;(3)相似比的性质。
2. 教学难点:(1)相似图形的判定;(2)利用相似图形解决实际问题。
四、教学过程1. 复习导入:(1)回顾相似图形的定义和性质;(2)引导学生思考:如何判断两个图形是否相似?2. 知识讲解:(1)讲解相似图形的判定方法;(2)引导学生通过实际例子,理解相似比的性质;(3)讲解如何利用相似图形解决实际问题。
3. 课堂练习:(1)布置一些判断相似图形的练习题;(2)让学生运用相似比解决实际问题。
五、课后作业(1)两个正方形;(2)两个等边三角形;(3)一个矩形和一个正方形。
2. 利用相似图形解决实际问题:(1)一个长方形的长是10cm,宽是5cm,求与它相似的长方形的周长;(2)一个圆的半径是5cm,求与它相似的圆的面积。
注意事项:1. 教学中注重引导学生主动探索,培养学生的空间想象能力;2. 注重让学生通过实际例子,理解相似比的性质;3. 鼓励学生互相交流,培养学生的合作精神。
六、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,掌握相似图形的定义和性质;2. 利用数形结合的思想,让学生通过实际例子,理解相似比的性质;3. 注重培养学生的空间想象能力,提高学生解决问题的能力。
图形的相似全章自制简易教案

图形的相似全章自制简易教案一、教学目标:知识与技能:1. 理解相似图形的概念,识别相似图形。
2. 学会用比例尺表示图形间的相似关系。
3. 掌握相似图形的性质,能够运用相似性质解决实际问题。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
2. 学会利用图形相似解决实际问题,提高学生的解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和团队合作意识。
2. 让学生体验到数学与生活的紧密联系,增强学生应用数学的意识。
二、教学内容:第一课时:相似图形的概念1. 通过观察、操作,让学生初步理解相似图形的概念。
2. 学会用比例尺表示图形间的相似关系。
第二课时:相似图形的性质1. 探索相似图形的性质,了解相似图形的对应边成比例、对应角相等。
2. 学会运用相似性质解决实际问题。
第三课时:相似图形的应用1. 利用相似图形的性质解决实际问题,如计算图形面积、长度等。
2. 培养学生的应用能力和解决问题的能力。
三、教学策略:1. 采用情境教学法,引导学生从实际问题中发现数学问题,培养学生的应用意识。
2. 运用操作教学法,让学生通过观察、操作、思考、交流等活动,掌握相似图形的性质。
3. 采用问题驱动法,激发学生的思考,培养学生解决问题的能力。
四、教学评价:1. 课堂问答:通过提问了解学生对相似图形概念、性质的理解程度。
2. 作业批改:检查学生运用相似性质解决问题的能力。
3. 小组讨论:评价学生在团队合作中的表现,以及创新精神和解决问题能力。
五、教学资源:1. 教学课件:制作课件,展示相似图形的概念、性质和应用。
2. 练习题:设计相关练习题,巩固学生对相似图形的理解和应用。
3. 教学素材:准备一些实际问题,供学生解决。
教学进度安排:1. 第一课时:相似图形的概念2. 第二课时:相似图形的性质3. 第三课时:相似图形的应用六、教学内容:第四课时:相似图形的绘制1. 学习如何根据已知图形绘制出相似图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.图形的相似教案(含.课时)————————————————————————————————作者:————————————————————————————————日期:2(九年级数学图形的相似集体备课教案陈 军27.1 图形的相似(第 1 课时)【教学任务分析】知识 1.理解并掌握两个图形相似的概念. 技能2.会判断相似图形.教 学 目 标重点 1.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似过程 图形的规律;方法 2.经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观.使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以 情感 “生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的 态度意识,培养学生的动手操作能力和创新精神.学生自主探索出相似图形的基本特征.难点 正确地运用相似图形的特征解决生活中实际问题.【教学环节安排】环节教 学 问 题 设 计请同学们看黑板正上方的五星红旗,和下图的两个画面,感受它们的形状、大小的关系. 还可以再举教学活动设计教师出示问题从几 个图 片 (如问题最佳 解决方案情境 引 入自主 探究几个例子)问题 1. 五星红旗上的大五角星与小五角星他们的形状、大小有什么关系? 问题 2.什么是相似图形?【教师点评】在实际生活中,我们见到过许多大小 不一但形状相同的图形,我们把这种形状相同的图 形叫做相似图形.问题 3.请同学们举出一些相似的几何图形的例子. 观察课本上的相似图片,图)引入相似图形, 学生自己动手、动脑, 亲身体会相似图形与 我们的生活有着密切 的关系,孕育良好的 学习心境,教师放映图片,并 提出问题.学生通过观察,感 性认识形状相同大小 不同的含义,并解决 教师提出的问题学 生 通过 观察 图 片,感受形状相同, 大小不同的含义,并 得到相似定义.同学们思考、讨论、 交换意见给出实例 教师赞扬举例子比较好的同学.合作交流尝例1如图27.1—1,下面右边的四个图形中,与左边的图形相似的是()【分析】图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C与左图相似.练习:1.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.教师出示以下图片让学生感受生活中和数学中的相似教师出示题目.学生观察并回答教师规范解答明确图形相似与它们的位置没关系教师出示练习题组学生尝试练习试应用B.商店新买来的一副三角板是相似的.师巡视,个别指导. C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.下列说法中,错误的是()A.放大镜下看到的图象与原图象的形状相同B.哈哈镜中人像与真人的形状是相同的C.显微镜下看到的图象与原图象的形状相同D.放大一万倍的物体与它本身的形状是相同的3.图27.1—2中的相似图形有几组?()A.一组B.二组C.三组D.四组距离是 5cm ,那么这张平面地图的比例尺是多少?成果展示1.有条件的可利用多媒体,在几何画板上学生自己 操作电脑,同时画出几个相似图形,且具有个性的图 画,充分展示学生的个性特点,培养学生的的审美 情趣2.通过本节课的学习,你有哪些收获?通过所看、所知、所想概括出相似图形的定义、判 断相似图形以及相似多边形的性质特征等概念.1.如图 27.1—3 中,相似图形共有几组? ( )师引导学生动手能 力训练,培养学生的 基本技能.师引导学生进行展 示交流学生对本节课内容 进行归纳总结.教师出示题目.补偿 提高A .5 组B .6 组C .7 组D .8 组 第 1 题、第 2 题由学生独立完成 . 教 师巡视,个别辅导.师生共同评析.存 在的共性问题共同讨论解决.2. 在平面坐标系中,一个图形各点的横坐标、纵坐 第 3 题鼓励学生独立 标都乘以或除以同一个非零数,得到一组新的对应 思考后解决 . 感觉有 用点,则连接所得到点的图形与原图形形状 困难的学生可以寻求 ( ) 同学的帮助,然后完 A .能够互相重合 B .形状相同,大小也一定相同 成.小组交流内. C .形状不一样 D .形状相同,大小不一定相同3. 例尺是 1:8000000 的“中国政区”地图上,量得 福州与上海之间的距离时 7.5cm ,那么福州与上海 之间的实际距离是多少?作必做题:(1)27.1 第 1 题.教师布置作业,并提 出要求.业设计(2)AB 两地的实际距离为 2500m ,在一张平面图上的 学生课下独立完成,延续课堂.选做题:P 55 习题 27·2 题 4,5.教后 反思☺☹✶✷→↑【当堂达标自测题】一、填空题1.观察下列图形,指出是相似图形.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,是形状不同的图形.二、选择题1.(1);(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()A.一组B.二组C.三组D.四组2.下列说法中,正确的是()A.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同C.形状相同的两个图形的面积一定相等D.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()A.形状大小都一样B.形状一样,大小不一样C.形状不一样,大小一样D.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.不能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.)九年级数学图形的相似集体备课教案陈 军27.1 图形的相似(第 2 课时)【教学任务分析】1.了解比例线段的定义.教 知识 技能2.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计学 目 标算.过程 经历相似图形的认识过程,观察相似图形的关系,得到相似多边形对应边成比例, 方法 对应角相等的性质情感 态度通过学生从图形相似的角度识别现实生活中存在的规律,培养合作交流意识.重点相似多边形的性质.难点 运用相似多边形的特征进行相关的计算.【教学环节安排】环节教 学 问 题 设 计问题:如果把老师手中的教鞭与铅笔,分别看教学活动设计教师出示问题问题最佳 解决方案成是两条线段 AB 和 CD ,那么这两条线段的长度比 上节课学习了图形的是多少?相似的定义,并且能判断一些简单图形是归纳:两条线段的比,就是两条线段长度的比. 否相似,今天继续探情境 引入问题:成比例线段:对于四条线段 a,b,c,d ,如果 其中两条线段的比与另两条线段的比相等,如a c= (即 ad=bc ,我们就说这四条线段是成比例 b d线段,简称比例线段.【注意】 (1)两条线段的比与所采用的长度 单位没有关系,在计算时要注意统一单位;(2)线 段的比是一个没有单位的正数; ( 3 )四条线段a ca,b,c,d 成比例,记作 = 或 a:b=c:d ;(4)若四b da c条线段满足 = ,则有 ad=bc .b d讨相似图形的特征, 及判断方法.请同学们完成左边的 问题.引入新课自主如图 27.1—4 的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形. 教师出示问题,学生作图,并观察思考 下面的问题探究合作交流教师巡视指导学生作图,并了解学生在作图中是不是出现全等的情况学生小组讨论,得出结论.问题1.对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.【结论】:师生共同总结探究结(1)相似多边形的特征:相似多边形的对应角相等,论对应边的比相等.教师板演反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题2:相似比为1时,相似的两个图形有什么关系?【结论】:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.尝试应用例1下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似【分析】:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似.例2如图27.1—5,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x。
教师出示题目。
小组讨论分析:找出正确与错误的理由教师点拨教师出示例题学生独立思考,并列出相应的数量关系,写出解题过程找两名同学板书学生板书成果展示补偿提高作业设计【分析】求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.练习:课后练习1、2、31本节课我们都学习了哪些内容?相似图形的定义判断相似图形相似多边形的性质特征2.在学习的过程中,你有怎样的收获?已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.必做题:P38习题27·1题3、5选做题:P38习题27·1题2、6师巡视,个别指导。
教师提出问题。
学生回顾本课内容,总结回答。
教师适当板书,协助总结,并该强调的强调。
学生讨论分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.一生板演教师布置作业,并提出要求.学生课下独立完成,延续课堂.教后反思′′A.m【当堂达标自测题】一、填空题1.矩形ABCD中AB=CD=8,AD=BC=6,矩形EFGH中,EF=GH=3,EH=FG=4,这两个矩形_____△2.ABC的三条边之比为2:5:△6,与其相似的另一个A•B•C•′最大边长为18cm,则另两边长的和为_______.3.两个相似三角形的一对对应边长分别为20cm,25cm,它们的周长差为63cm,则这两个三角形的周长分别是________.4.ΔABC与△DEF中,∠A=65°,∠B=42°,∠D=65°,∠F=73°,AB=3,AC=5,BC=6,DE=6,DF=10,EF=12,则△DEF与△ABC_____二、选择题△5.ABC与△DEF相似,且相似比是2324 A.B.C.D.325923,则△DEF与△ABC与的相似比是().6.下列所给的条件中,能确定相似的有()(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个B.4个C.5个D.6个7.把mn=pq(mn≠0)写成比例式,写错的是()q p n q n m p=B.=C.=D.=p n m q m p n q8.在一张比例尺为1:15000的平面图上,一块多边形地区的其中一边长为5cm,那么这块地区实际上和这一边相对应的长度应为()A.750cm B.75000cm C.3000cm D.300cm三、解答题9.小红准备在一张宽16cm,长20cm的风景图片的四周镶上一条2cm宽的金色纸边,如图27.1—6问金色纸边的内外边缘所成的矩形相似吗?为什么?10.如图27.1—7,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.。