2016山东春季高考数学真题(含答案)

合集下载

济南市2016-2017学年度上学期春季高考联考数学试题

济南市2016-2017学年度上学期春季高考联考数学试题

济南市中职学校文化课联合考试数学试题注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

2、本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确的到0.01。

第Ⅰ卷(选择题,共60分)一.选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将该选项的字母代号填涂在答题卡上) 1.“b c a 2=+”是“a,b,c ”成等差数列的( )A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件 2.设命题p :∅=0,q :3≥2,则下列结论正确的是( ). A .p q ∨为真B .p q ∧为真C .p 为真D . q ⌝为真3.设全集{}12345,,,,U =,集合{}1234,,,A =,集合{}1345,,,B =,则()U C A B ⋂的所有子集个数是( )A.1B.2C.4D.8 4.两个数的等比中项为8,等差中项为10,则这两个数为( ) A.8、8 B.4、16 C.2、18 D.6、14 5.若m >n >0,0<a <1,则下列各式成立的是( )A.a m ≥a nB.a m ≤a nC.log a m >log a nD.log a m <log a n 6.不等式012>--x 的解集是 ( ) A .{x x >-1} B .{xx <3}C .{x x >3或x <-1} D .{x-1<x <3}7.若函数()f x 满足(1)23f x x +=+,则(0)f =( )A .3B .1C .5D .32-8.函数x y 21-=的定义域是( )A .]0,(-∞B .),0[+∞C .),1[+∞D .]1,(-∞9.已知函数)1,0)((log ≠>+=a a b x y a 的图象过两点(0,0)和(1,1),则 A .a =2,b =1 B .a =1,b =2 C .a =2,b =2 D .a =1,b =1 10.下列函数中,在定义域上为奇函数的是( )A .x y lg =B .x x y sin =C .x xy +-=11lg D .x x y cos +=11.函数32++=bx ax y 在]1,(--∞上是增函数,在),1[+∞-上是减函数,则( ) A .00<>a b 且 B .02<=a b C .02>=a b D .02<-=a b12.已知奇函数)(x f 在),0(+∞上是增函数,且0)2(=f ,则0)(>x f 的解集为( ) A . )2,0( B .)0,2(- C .)0,2(-Y ),2(+∞D .)2,2(-13.如图:若0<a <1,函数y =a x 与y =x +a 的图像可能是( ).A .B .C .D .14.已知c bx x x f ++=2)(的对称轴是1=x ,则)3()0(f f 与的大小( ) A .)3()0(f f = B .)3()0(f f > C .)3()0(f f < D .无法比较 15.若x ,a ,2x ,b 成等比数列,则ba的值为( )A.22B.2C.2D.2116.已知数列的通项公式为a n =2n-1-1,则2047是这个数列的第( )项 A.10 B.11 C.12 D.1317.已知角α的终边经过点P (2,m), 若sin α=-54,则m 的值为( ).A.-38B.38C.±38D.-8318.已知tan (π+α)= 2,则cos 2α等于( ). A .54B .53C .52 D . 51 19.使sinx=a 2-1有意义的a 的取值范围是( )A .[-2,2]B .[0,2]C .[0,2]D .[-2,2] 20.已知函数f(x)=3sin ωx +cos ωx(ω>0)的图像与直线y=2的两个相邻的交点的距离等于π,则f(x)的单调增区间( )A .[k π-12π,k π+125π](k ∈Z)B .[k π+125π,k π+1211π](k ∈Z)C .[k π-3π,k π+6π](k ∈Z)D .[k π+6π,k π+32π](k ∈Z)第Ⅱ卷(非选择题,共60分)二.填空题(本大题共5个小题,每小题4分,共20分)21.若不等式ax 2+ax +a +3>0对一切实数x 恒成立,则实数a 的取值范围是_____________22.若函数f(x)是定义在R 上的偶函数,且图像经过点(-1,2),则f(-1)+f(1)= 23.已知f(x)=x 2+mx+1,若对任意实数x ∈R ,都有f(1+x)=f(1-x),m= ______.24.设等比数列{}n a 的q=2,且248a a =,则17a a =_____________ 25.函数f(x)=cos2x +3sinx 的值域为_________三.解答题(本大题共5个小题,共40分)26.一种车床变速箱8个齿轮的齿数成等差数列,其中首末两个齿轮的齿数分别是24和45,求其余各齿轮的齿数。

最新山东省春季高考数学试题

最新山东省春季高考数学试题

机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟,考试结束后,请将本试卷和答题卡一并交回。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={1,3},B={2,3},则A⋃B等于()A.ΦB. {1,2,3}C. {1,2}D. {3}2 . 已知集合A,B.则“A⊆B”是“A=B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 不等式|x+2|>3的解集是()A.(-∞,-5)⋃(1,+∞)B. (-5,1)C. (-∞,-1) ⋃(5,+ ∞)D. (-1,5)4. 若奇函数y=在(0,+∞)上的图像如图所示,则该函数在(-∞,0)上的图像可能是()5.若函数a>0,则下列等式成立的是( )A. (-2)2-=4B. 2a3-=321aC. (-2)0=-1D. (a41-)4=a16. 已知数列{}是等比数列。

其中=2,=16,则该数列的公比q等于( )A.314B. 2C. 4D. 87. 某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求及有男生又有女生,则不同选法的种数是( )A.60B. 31C. 30D.108. 下列说法正确的是()A.函数y=(x+a)2+b的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数y=logax(a>0且a≠1)的图像经过点(0,1)D.函数y=(a∈R)的图像经过点(1,1)9. 如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量坐标是( )A. (4,-1)B. (4,1)C. (1,-4)D. (1,4) 10.过点P (1,2)与圆+=5相切的直线方程是( )A. x-2y+3=0B. x-2y+5=0C. x+2y-5=0D. x+2y-5=0 11.表1中数据是我国各种能源消耗量占当年能源消耗总量的百分率,由表1可知,从2011年到2014年,消费量占比增长率最大的能源是( )A. 天然气B. 核能C. 水利发电D. 再生能源 表1 我国各种能源消费的百分率 原油(% 天然气(%) 原煤(%) 核能(%) 水利发电(%) 再生能源(%) 2011 17.7 4.5 70.4 0.7 6.0 0.7 2014 17.5 5.6 65.0 1.0 8.1 0.8 12. 若角α的终边过点P(-6,8),则角α的终边与圆+=1的交点坐标是( )A.(-53,54)B.(54,-53)C.( 53,-54)D. (-54,53)13.关于x ,y 的方程y=mx+n 和 + =1在同一坐标系中的图像大致是( )14.已知nx )2(-的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A. -280B. -160C.160D. 56015. 若有7名同学排成一排照相,恰好甲,乙两名同学相邻,并且丙,丁两名同学不相邻的概率是( )A.214 B. 211 C. 141 D. 7216. 函数y=Sin (2x+)在一个周期内的图象可能是( )17.在∆ABC 中,若||=||=|CA |=2, 则等于AB •BC 等于( )、A. -23B. 23C. -2D. 218.如图所示,若x ,y 满足约束条件则目标函数Z=x+y 的最大值是( ) A.7 B.4 C.3 D.119.已知α表示平面,l,m,n,表示直线,下列结论正确的是( ) A.若l ⊥ n ,m ⊥n ,则l ∥m B.若l ⊥ n ,m ⊥n ,则l ⊥m C.若l ∥α,m ∥α,则 l ∥m D. 若l ⊥α,m ∥α,则l ⊥m 20.已知椭圆+=1的焦点分别是,,点M 在椭圆上,如果•=0,那么点M 到x 轴的距离是( ) A.2 B.3 C.223 D.1二、填空题(本大题共5个小题,每小题4分,共20分)21.已知 tan α=3,则ααααcos sin cos sin -+的值是___________22.若表面积为6的正方体内接于球,则该球的表面积等于__________ 23.如果抛物线=8x 上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是_________.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32,现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出________名25.设命题p :函数f(x)=x 2+(a-1)x+5在(-∞,1]上是减函数; 命题q :x ∈R,lg(x 2+2ax+3)0若p q ⌝∨是真命题,p q ⌝∧是假命题,则实数a 的取值范围是_________三、简答题(本大题共5个小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素)(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)27.(本小题8分)已知数列{}的前n 项和=2-3,求:(1)第二项(2)通项公式28.(本小题8分)如图所示,已知四边形ABCD是圆柱的轴截面,M是下底面圆周上不与点A,B重合的点(1)求证:平面DMB⊥平面DAM(2)若∆AMB是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值29.(本小题8分)如图所示,要测量河两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=20m,BP=10m,∠APB=60, ∠PAQ=105, ∠PBQ=135试求PQ两点之间的距离30. (本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是(-2,0),(2,0),且双曲线上任意一点到两个焦点的距离之差的绝对值等于2 (1)求该双曲线的标准方程,离心率及渐近线方程(2)若直线L 经过双曲线的右焦点,并与双曲线交于M,N两点,向量=(2,-1)是直线L的法向量,点P是双曲线左支上的一个动点,求∆PMN面积的最小值。

2016年山东春考数学真题答案

2016年山东春考数学真题答案


,
整理得
,

,
,

,
,

, 设和 但直线
平行的直线方程为
,
与双曲线的左支相切时,
代入入

,
整理得
,
则判别式

,则

(舍),
此时点 P 是直线和双曲线相切的切点,此时点 P 到 MN 的距离
,

面积的最小值
21. 2 22. 3π
23. 5 24. 33 25. (- 2),-1)∪【 2,+∞)
三、解答题答案
26.(1)解 y=200 ( 1 + 1% ) (2)令 y=210,即 200 ( 1 + 1% ) =210 解得 x=log1.01 1.05≈5
答:约经过五年该城市人口总数达到 210 万
, .
30 解
解:(1) 双曲线的中心在坐标原点 O,焦点分别是
,
,
双曲线的焦点在 x 轴,且
,
双曲线上的任意一点到两个焦点的距离之差的绝对值等于 2.
,则
,
,
则双曲线的方程为
,
离心率
,渐近线方程为
.
(2)设直线 l 的方向向量为
,
向量
是直线 l 的法向量,
,

,
即直线的斜率
,
则直线的方程为
,

.代入
山东省 2016 年春季高考数学真题答案
一. 选择题答案(20 个小题,每小题 3 分,共 60 分)
题号 1
2
3
4
5
6
7
8
9 10

最新山东春季高考数学试题(word版)9.28

最新山东春季高考数学试题(word版)9.28

机密★启用前山东省201 6年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={1,3),B={2,3),则AUB等于(A)φ(B){1,2,3) (C){1,2) (D){3)2.已知集合A,B,则“A B”是“A=B”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3.不等式| x+2 |>3的解集是(A)(一∞,一5)∪(1,+oo) (B)(-5,1)(C)(-∞,-1)∪(5,+oo) (D) (-1,5)4.若奇函数y=f(x)在(0,+∞)上的图象如图所示,则该函数在(一∞,0)上的图象可能是5.若实数a>0,则下列等式成立的是(A)(一2)-2=4 (B)2a -3=12a3(C)(- 2)0= -1 (D)( a -14)4=1a6.已知数列{a n}是等比数列,其中a3 =2,a6=16,则该数列的公比q等于(A)143(B)2 (C)4 (D)8(A) (B) (C)(D)7.某职业学校的—个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是 (A )60 (B )31 (C) 30 (D) 10 8.下列说法正确的是(A )函数y=(x +a )2+b 的图象经过点(a ,b ) (B)函数y=a x (a >0且a ≠1)的图象经过点(1,0) (C)函数y=log a x (a >0且a ≠1)的图象经过点(0,1) (D)函数y=x a (a ∈R)的图象经过点(1,1)9.如图所示,在平行四边形OABC 中,点A(1,-2),0(3,1), 则向量→OA 的坐标是(A )(4,- 1) (B)(4,l) (C)(1,-4) (D) (1,4) 10.过点P(l ,2)与圆x 2 +y 2=5相切的直线方程是(A )x-2y+3=0 (B)x-2y+5=0 (C)x+2y-5 =0 (D) x+2 y-5=011.表1中数据是我国各种能源消费量占当年能源消费总量的百分率,由表1可知,从2011 年到2014年,消费量占比增长率最大的能源是 (A)天然气 (B)核能 (C)水利发电 (D)再生能源 表1我国各种能源消费的百分率 12.若角α的终边过点P( -6.8),则角α的终边与圆x 2+ y 2=l 的交点坐标是 ┃(A ) (-35,45) (B )(45,-35) (C )(35,-45) (D )(-45, 35)13.关于x ,y 的方程y=mx +n 和 x 2m +y 2n =1在同一坐标系中的图象大致是(第9题图)14.已知(x -2)n 的二项展开式有7项,则展开式中二项式系数最大的项的系数是 (A )- 280 (B) -160 (C) 160 (D) 56015.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是(A )421 (B ) 121 (C )114 (D )2716.函数y=sin(2x+π4)在—个周期内的图象可能是17.在△ABC 中,若∣→AB ∣= ∣→BC ∣=∣→CA ∣=2,则→AB •→BC(A )一23 (B )23 (C)一2 (D )218.如图所示,若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0x ≤0x -y -1≤0x-2y +2≥0则目标函数z=x+y 的最大值是 (A)7 (B)4 (C)3 (D)119.已知α表示平面,l ,m ,n 表示直线,下列结论正确的是 (A )若l ⊥ n , m ⊥n ,则l // m(B )若l ⊥ n , m ⊥n ,则l ⊥ m(C )若l //α ,m //α,则l // m (D )若l ⊥α ,m //α,则l ⊥ m20.已知椭圆x 22+y 26=1的焦点分别是F 1, F 2,点M 在椭圆上→F 1M •→F 2M =0,那么点M 到x 轴的距离是(A) 2 (B)3 (C) 322 (D)1卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的 横线上) (A)(C)(B)(D)x -2y21.已知tan α=3,则sin α+cos αsin α-cos α的值是________________.22.若表面积为6的正方体内接于球,则该球的表面积等于_________.23.如果抛物线y 2=8x 上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距 离是_____________.24.某职业学校有三个年级,共有1 000召学生,其中一年级有350名,若从全校学生中任意 选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从 全体学生中选出100名参加座谈会,那么需要从三年级学生中选出___________名. 25.设命题p :函数f (x ):x 2+(a - l)x+5在(一∞,1]上是减函数; 命题q :∀x ∈R ,Ig (x 2 +2 ax +3)>0.若p ∨⌝q 是真命题,p ∧⌝q 是假命题,则实数a 的取值范围是_________.三、解答题(本大题5个小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式; (2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)? 27.(本小题8分)已知数列{a n }的前n 项和S n =2n 2-3.求: (1)第二项a 2; (2)通项公式a n .28.(本小题8分)如图所示,已知四边形ABCD 是 圆柱的轴截面,M 是下底面圆周上不与点A ,B 重合的点.(1)求证:平面DMB ⊥平面DAM;(2)若△AMB 是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值. A BMCD(第28题图)29.(本小题8分)如图所示,要测量河两岸P ,Q两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A,B ,P ,Q 四点在同一平面内), 并测得AP= 20 m ,BP= 10 m , ∠APB= 60°, ∠PAQ= 105°,∠PBQ= 135°. 试求P ,Q 两点之问的距离.30.(本小题10分)如图所示,已知双曲线的中心在坐标 原点O ,焦点分别是F l (-2,0),F 2(2,0)(1)(2)若直线l 经过双曲线的右焦点F 2 交于M ,N 两点,向量→n =(2,-l )是直线l 法向量,点P 是双曲线左支上的一个动点.求△PMN 面积的最小值.(第30题图)(数学试题共4页)第4页。

2016春季高考数学真题

2016春季高考数学真题

xx2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合,,则等于()A.B.C.D.【答案】B【解析】因为,,所以.2.已知集合A,B,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】又,“”是“”的必要不充分条件.3.不等式的解集是()A.B.C.D.【答案】A【解析】,即不等式的解集为.4.若奇函数在上的图像如图所示,则该函数在上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a>0,则下列等式成立的是()A.B.C.D.【答案】D【解析】Axx,Bxx,Cxx,故D选项正确.6.已知数列是等比数列,其中,,则该数列的公比q等于()A.B.4D.8【答案】 B【解析】,,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是()A.60B.30 D.10【答案】C【解析】由题知,有两种选法①两名男生一名女生种,②两名女生一名男生种,所以一共有种.8.下列说法正确的是( )A.函数的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数(a>0且a≠1)的图像经过点(0,1)D.函数()的图像经过点(1,1)【答案】D【解析】Axx,函数的图像经过点(-a,b);Bxx,函数(a>0且a≠1)的图像经过点(0,1);Cxx,函数(a>0且a≠1)的图像经过点(1,0);Dxx,把点代入,可知图象必经过点.9.如图所示,在平行四边形OABCxx,点A(1,-2),C(3,1),则向量的坐标是()第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A【解析】A(1,-2),C(3,1),,又,.10.过点P(1,2)与圆相切的直线方程是()A. B.C. D.【答案】B【解析】将点代入圆方程,可知点在圆上,又因为将点代入C,D等式不成立,可排除C,D,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),半径为,即圆心到直线的距离,圆心到直线的距离,则只有B符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气B.核能C.水利发电D.再生能源表我国各种能源消费的百分率【答案】D【解析】根据表1可知,从2011年到2014年,天然气:,核能:,水力发电:,再生能源:,则消费量占比增长率最大的能源是再生能源.12.若角的终边过点,则角的终边与圆的交点坐标是()A.B.C.D.【答案】A【解析】因为,所以xx为,设交点为,又因为圆的半径为,因此有,,又因为终边在第二象限,所以选A.13.关于x,y的方程和在同一坐标系中的图象大致是()GD27GD28GD29GD30【答案】D【解析】当的图象为椭圆时,,则的图象单调递增,且与y轴的截距大于0,A、B均不符;当的图象为双曲线时,当时,双曲线的焦点在y轴上,的图象单调递减,且与y轴的截距大于0;当时,双曲线的焦点在x轴上,的图象单调递增,且与y轴的截距小于0,综上所述,选项D正确.14.已知的二项xx有7项,则xx中二项式系数最大的项的系数是()A.-280B.-.160D.560【答案】B【解析】的二项xx有7项,,,又xx中二项式系数最大的项为第4项,则,则其系数为.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、xx两名同学不相邻的概率是()A.B.C.D.【答案】A【解析】先利用捆绑法将甲乙进行捆绑并全排列,有种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有种排列方法,再利用插空法将丙丁进行插空,有种排列方法;总共有种排列方法,所以概率为.16.函数在一个周期内的图像可能是()GD31GD34GD32GD33【答案】A【解析】B选项中当,C选项中当时,,D选项中,当.17.在xx,若,则等于()A.B.C.-2D.2【答案】C【解析】因为,所以是等边三角形,所以各个角均为,.18.如图所示,若满足约束条件则目标函数的最大值是()第18题图 GD35A.7B.3D.1【答案】B【解析】由图可知,目标函数在点(2,2)处取得最大值,即.19.已知表示平面,表示直线,下列结论正确的是()A.若则B.若C.若D.若16.D【解析】A,B,C选项,直线l与m相交、平行、异面都有可能;D选项,∵,∴存在一个平面,使得且,∵∴,.20.已知椭圆的焦点分别是,点在椭圆上,如果,那么点到轴的距离是()A.B.C.D.【答案】B【解析】椭圆,即,设点的坐标为,又,点又在以原点为圆心,半径为2的圆上,圆方程为,即①,又②,联立①②得,点到轴的距离是.卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知,则的值是.【答案】【解析】分式上下同除以得,把代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于.【答案】【解析】设正方体的边长为,,则边长为,所以正方体上下两个面的斜线长为,则圆的直径为,.23.如果抛物线上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是.【答案】【解析】因为抛物线上的点M到y轴的距离是3,所以点的横坐标为3,再将代入得到,所以点,又因为,准线,则点M到该抛物线焦点F的距离是5.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出名.【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35,则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人.25.设命题p;函数在上是减函数;命题q:.若是真命题,是假命题,则实数a的取值范围是.【答案】或【解析】是真命题,是假命题,pq同为真或pq同为假,当pq同为真时,函数在上是减函数,函数的对称轴为,即,,即xx成立,设,即,则;同理,当pq同为假时,或,综上所述得,实数a的取值范围为或.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某xx2015年底的人口总数为200万,假设此后该xx人口的年增长率为1%(不考虑其他因素).(1)若经过x年该xx人口总数为y万,试写出y关于x的函数关系式;(2)如果该xx人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得;(2)如果该xx人口总数达到210万,则,那么至少需要经过5年.27.(本小题8分)已知数列的前n项和.求:(1)第二项;(2)通项公式.【解】(1)因为,所以,,,所以.( 2 ),.28.(本小题8分)如图所示,已知四边形ABCD是圆柱的轴截面,是下底面圆周上不与点重合的点.(1)求证:平面DMB平面DAM;(2)若是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值.GD36第28题图【解】(1)∵是下底面圆周上不与点重合的点,∴在一个平面上,又∵四边形是圆柱的轴截面,∴边过圆心,平面,,根据定理以直径为斜边的三角形为直角三角形,所以,∵平面,且,∴平面,又∵平面,∴平面平面.(2)设底面圆的半径为,圆柱的高为,又∵是等腰直角三角形,所以两个直角边长为,所以,所以,所以.29.(本小题8分)如图所示,要测量xx两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=,BP=,,,.试求P,Q两点之间的距离.SH17第29题图【解】连接AB,又,AP=,BP=,则,则,又,,,在xx,由正弦定理得,,即,在中,由余弦定理得,,,P,Q两点之间的距离为米.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O,焦点分别是,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l经过双曲线的右焦点,并与双曲线交于M,N两点,向量是直线l的法向量,点P是双曲线左支上的一个动点.求面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,,即,则该双曲线的标准方程为,离心率,渐近线方程为;(2)向量是直线l的法向量,直线的斜率,又直线l经过双曲线的右焦点,即直线l的方程为,设,又双曲线的方程为,即,,则,要使面积的最小值,即点P到直线l的距离最小,则点P坐标为,,则.。

最新山东省春季高考数学试题

最新山东省春季高考数学试题

机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟,考试结束后,请将本试卷和答题卡一并交回。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={1,3},B={2,3},则A⋃B等于()A.ΦB. {1,2,3}C. {1,2}D. {3}2 . 已知集合A,B.则“A⊆B”是“A=B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 不等式|x+2|>3的解集是()A.(-∞,-5)⋃(1,+∞)B. (-5,1)C. (-∞,-1) ⋃(5,+ ∞)D. (-1,5)4. 若奇函数y=在(0,+∞)上的图像如图所示,则该函数在(-∞,0)上的图像可能是()5.若函数a>0,则下列等式成立的是( )A. (-2)2-=4B. 2a3-=321aC. (-2)0=-1D. (a41-)4=a16. 已知数列{}是等比数列。

其中=2,=16,则该数列的公比q等于( )A.314B. 2C. 4D. 87. 某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求及有男生又有女生,则不同选法的种数是( )A.60B. 31C. 30D.108. 下列说法正确的是()A.函数y=(x+a)2+b的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数y=logax(a>0且a≠1)的图像经过点(0,1)D.函数y=(a∈R)的图像经过点(1,1)9. 如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量坐标是( )A. (4,-1)B. (4,1)C. (1,-4)D. (1,4) 10.过点P (1,2)与圆+=5相切的直线方程是( )A. x-2y+3=0B. x-2y+5=0C. x+2y-5=0D. x+2y-5=0 11.表1中数据是我国各种能源消耗量占当年能源消耗总量的百分率,由表1可知,从2011年到2014年,消费量占比增长率最大的能源是( )A. 天然气B. 核能C. 水利发电D. 再生能源12. 若角α的终边过点P(-6,8),则角α的终边与圆+=1的交点坐标是( )A.(-53,54)B.(54,-53) C.( 53,-54) D. (-54,53)13.关于x ,y 的方程y=mx+n和 + =1在同一坐标系中的图像大致是( )14.已知nx )2(-的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A. -280B. -160C.160D. 56015. 若有7名同学排成一排照相,恰好甲,乙两名同学相邻,并且丙,丁两名同学不相邻的概率是( )A.214 B. 211 C. 141 D. 7216. 函数y=Sin (2x+)在一个周期内的图象可能是( )17.在∆ABC 中,若||=||=||=2, 则等于∙等于( )、A. -23B. 23C. -2D. 218.如图所示,若x ,y 满足约束条件则目标函数Z=x+y 的最大值是( )A.7B.4C.3D.119.已知α表示平面,l,m,n,表示直线,下列结论正确的是( ) A.若l ⊥ n ,m ⊥n ,则l ∥m B.若l ⊥ n ,m ⊥n ,则l ⊥m C.若l ∥α,m ∥α,则 l ∥m D. 若l ⊥α,m ∥α,则l ⊥m 20.已知椭圆+=1的焦点分别是,,点M 在椭圆上,如果∙=0,那么点M 到x 轴的距离是( ) A.2 B.3 C.223 D.1二、填空题(本大题共5个小题,每小题4分,共20分)21.已知 tan α=3,则ααααcos sin cos sin -+的值是___________22.若表面积为6的正方体内接于球,则该球的表面积等于__________ 23.如果抛物线=8x 上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是_________.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32,现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出________名25.设命题p :函数f(x)=x 2+(a-1)x+5在(-∞,1]上是减函数;命题q :x ∈R,lg(x 2+2ax+3)0若p q ⌝∨是真命题,p q ⌝∧是假命题,则实数a 的取值范围是_________ 三、简答题(本大题共5个小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素)(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)27.(本小题8分)已知数列{}的前n 项和=2-3,求:(1)第二项 (2)通项公式28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点A,B 重合的点(1)求证:平面DMB ⊥平面DAM(2)若∆AMB 是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值29.(本小题8分)如图所示,要测量河两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=20m,BP=10m,∠APB=60, ∠PAQ=105, ∠PBQ=135试求PQ两点之间的距离30. (本小题10分)如图所示,已知双曲线的中心在坐标原点O,焦点分别是(-2,0),(2,0),且双曲线上任意一点到两个焦点的距离之差的绝对值等于2 (1)求该双曲线的标准方程,离心率及渐近线方程(2)若直线L 经过双曲线的右焦点,并与双曲线交于M,N两点,向量=(2,-1)是直线L的法向量,点P是双曲线左支上的一个动点,求 PMN面积的最小值。

山东春季高考数学真题 含答案

山东春季高考数学真题 含答案

山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B U 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B U {}1,2,3=. 2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B=⇒⊆Q,又A B A B A B⊆⇒=或Ø,∴“A B⊆”是“A B=”的必要不充分条件.3.不等式23x+>的解集是()A. ()(),51,-∞-+∞U B. ()5,1-C. ()(),15,-∞-+∞U D.()1,5-【答案】A【解析】23123235x xxx x+>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为()(),51,-∞-+∞U.4.若奇函数()y f x=在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a Q 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OBuuu r的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】Q A (1,-2),C (3,1),()()1231OA OB ∴=-=u u u r u u u r,,,,又OA CB =u u u r u u u r , ()4,1OB OC CB OC OA ∴=+=+=-u u u r u u u r u u u r u u u r u u u r.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D.250x y +=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5即圆心到直线230x y -+=的距离55d =≠圆心到直线250x y -+=的距离55d '==则只有B 符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )A.天然气B.核能C.水利发电D.再生能源表 我国各种能源消费的百分率【答案】D 【解析】 根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.16.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n=+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】 ()2nx -Q 的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===u u u r u u u r u u u r,则AB BC ⋅u u u r u u u r 等于( )A. 23-B. 23C.-2【答案】C 【解析】因为2AB BC CA ===u u u r u u u r u u u r,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-u u u r u u u r u u u r u u u r.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=u u u u r u u u u r,那么点M 到x 轴的距离是( )2D. 1【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=u u u u r u u u u rQ ,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 . 【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()-∞+∞U ,【解析】 Q p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<<,则1a -<<pq 同为假时,a 或a ≤数a 的取值范围为(1-或()-∞+∞U ,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求: (1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =I ,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱所以2233D AMBV x hx h V -π==π圆柱.29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 45sin 603AQ AQ =⇒==︒︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220(102)220102cos1054002003=+-⨯⨯︒=+,10(13)103PQ =+=+P ,Q 两点之间的距离为10103+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-r是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN△面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -Q ,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)Q 向量()2,1n =-r是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则1130225PMN S MN d =⨯=⨯⨯=△。

山东省春季高考数学试卷(含解析)

山东省春季高考数学试卷(含解析)

山东省春季高考数学试卷一、选择题1已知全集U={1 , 2},集合M={1},则?U M等于( )A. ?B. {1}C. {2}D. {1,2}2 •函数■,-= -p_—的定义域是( )A. [ - 2, 2] B .( — s, —2] U [2 , +R) C. (- 2, 2) D.( — s, —2)U( 2, +3. 下列函数中,在区间(-s, 0)上为增函数的是()A. y=xB. y=1C. .D. y=|x|4. 二次函数f (x)的图象经过两点(0, 3), (2, 3)且最大值是5,则该函数的解析式是( )A. f (x) =2x2- 8x+11B. f (x) =- 2x2+8x - 1C. f (x) =2x2- 4x+3D. f ( x )=-2x2+4x+35. 等差数列{a n}中,a=- 5, a3是4与49的等比中项,且a3v 0,贝U a5等于( )A. - 18 B . - 23 C . - 24 D . - 326. 已知A ( 3, 0), B (2,1),则向量忑的单位向量的坐标是( )A. (1,-1)B. (- 1 , 1)7. “p V q为真”是“p为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件&函数y=cos2x - 4cosx+1的最小值是()A.- 3B. - 2C. 5D. 69.下列说法正确的是()A. 经过三点有且只有一个平面B. 经过两条直线有且只有一个平面C. 经过平面外一点有且只有一个平面与已知平面垂直D. 经过平面外一点有且只有一条直线与已知平面垂直A. 1B. 2C. - 1D. - 214.如果-:,:::..,那么.• |等于()17.已知圆G 和C 2关于直线y= - x 对称,若圆C 的方程是 2 2 2 2 2 2 A. ( x+5) +y =2 B. x + (y+5) =4 C . (x - 5) +y =2 D . 18 .若二项式 f 三八的展开式中,只有第 4项的二项式系数最大,则展开式中的常数 项是( ) A. 20B. - 20 C . 15D. - 1519 .从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技 能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为 ( ) 成绩分析表甲 乙 丙 丁平均成绩; 96 96 85 8510 .过直线x+y+1=0与2x - y - 4=0的交点,且一个方向向量j t ::,的直线方程是( )A. 3x+y -仁0B. x+3y - 5=0C. 3x+y - 3=0D. x+3y+5=011 .文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是 A. 72B. 120C. 144D. 28812.若a , b , c 均为实数,且 a v b v 0, 则下列不等式成立的是(2 2A. a+c v b+c B . ac v beC. a v bD .呼「「“'J13.函数 f (x ) =2kx , g (x ) =log a x ,若f (- 1) =g (9),则实数k 的值是()A. — 18 B .-6 C. 0D. 1815.已知角 a 的终边落在直线 y= - 3x 上,则COS ( n +2 a )的值是(B.16 .二元一次不等式 2x - y >0表示的区域(阴影部分)是((x+5) 2+y 2=4,则圆C 2的方程是2 2x + (y - 5) =4A.C .D.2 2' -(a>0, b>0)的两个顶点,以2 1 2 1 a b20.已知A, A为双曲线AA为直径的圆与双曲线的一条渐近线交于M N两点,若△ A MN的面积为―,则该双曲线的离心率是( )2A.匚B. _C. _D.匚3 3 3 3二、填空题:21 .若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于____________ .22 .在厶ABC中,a=2, b=3,Z B=2/ A 贝U cosA= ________ .2 223 .已知F i, F2是椭圆’< =1的两个焦点,过F i的直线交椭圆于P、Q两点,则△ PQF16 36的周长等于_______ .24 .某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是_________ .■- x25 .对于实数m n,定义一种运算:,已知函数f (x) =a*a,其中0v a| n,V 1,若f (t - 1 )> f ( 4t ),则实数t的取值范围是______________ .三、解答题:26 .已知函数f (x) =log 2 (3+x)- log 2 (3 - x),(1)求函数f ( x)的定义域,并判断函数 f (x)的奇偶性;(2)已知f (sin a ) =1,求a的值.27 .某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC- ABQ的所有棱长都相等,D, E分别是AB, AQ的中点,如图所示.(1)求证:DE//平面BCCB;(2 )求DE与平面ABC所成角的正切值.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3 )用“五点法”作出该函数在长度为一个周期的闭区间上的简图.2 230.已知椭圆’的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心a2 b2率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线I ,1与椭圆的另一个交点为B,求线段AB的长.参考答案与试题解析一、选择题29.已知函数1已知全集U={1 , 2},集合M={1},则?U M等于()A. ?B. {1}C. {2}D. {1 , 2}【考1F:补集及其运算.点】【分根据补集的定义求出M补集即可.析】【解解:全集U={1, 2}, 集合M={1},则?U M={2}答】故选:C.2 •函数;.-=-p——的定义域是()A. [ - 2, 2] B . (-a, - 2] U [2 , +R) C. (- 2, 2) D.(-汽-2)U(2, + OO)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数丁二] ------ 2>0,即|x| >2,解得X V- 2或x > 2,•函数y的定义域是(-O,-2)U(2, +O).故选:D.3.下列函数中,在区间(-O,0)上为增函数的是()A. y=xB. y=1C.,-丄D. y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A函数y=x,在区间(-O, 0)上是增函数,满足题意;对于B,函数y=1,在区间(-O,0)上不是单调函数,不满足题意;对于C,函数y=—,在区间(-^, 0)上是减函数,不满足题意;x对于C,函数y=|x|,在区间(-8, 0)上是减函数,不满足题意.故选:A.4•二次函数f (x)的图象经过两点(0, 3), (2, 3)且最大值是5,则该函数的解析式是( )A. f (x) =2x2- 8x+11B. f (x) =- 2X2+8X- 1C. f (x) =2x2- 4x+3D. f ( x )=-2X2+4X+3【考点】3W二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f (x) =a (x- 1) 2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f (x)的图象经过两点(0, 3) , (2, 3),则对称轴x=1,最大值是5,可设 f (x) =a (x - 1) 2+5,于是3=a+5,解得a=- 2,故 f (x) =- 2 ( x - 1) 2+5= - 2x2+4x+3,故选:D.5.等差数列{a n}中,a1=- 5, a3是4与49的等比中项,且a3v 0,贝U a5等于( )A. - 18 B . - 23 C . - 24 D . - 32【考点】8F:等差数列的性质;84 :等差数列的通项公式.【分析】根据题意,由等比数列的性质可得( a s) 2=4X 49,结合解a s v 0可得a s的值,进而由等差数列的性质a5=2a3 - a1,计算即可得答案.【解答】解:根据题意,a a是4与49的等比中项,则(a3)2=4X 49,解可得a3=± 14,又由a3v 0,贝U a3= - 14,又由a1=- 5,则a5=2a3 —a1 = - 23,故选:B.6.已知A ( 3, 0), B (2, 1),则向量爲的单位向量的坐标是( )【考点】95:单位向量.【分析】先求出'.:;=(-1, 1),由此能求出向量:的单位向量的坐标. 【解答】解:••• A ( 3, 0) , B (2 , 1), •••:.;=(- 1, 1), •••丨:.;|=-,•••向量丁啲单位向量的坐标为( ―,丄一),即(-二,—).|AB I |AB I 2 2故选:C.7•“p V q 为真”是“p 为真”的( ) A.充分不必要条件B.必要不充分条件C. 充要条件D .既不充分也不必要条件【考点】2L :必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“ p V q 为真命题”则p 或q 为真命题,故由充要条件定义知 为真”是“p 为真”必要不充分条件【解答】解:“ p V q 为真命题”则p 或q 为真命题,所以“p V q 为真”推不出“p 为真”,但“p 为真” 一定能推出“ p V q 为真”, 故“p V q 为真”是“p 为真”的必要不充分条件, 故选:B.&函数y=cosx - 4cosx+1的最小值是( )A.- 3B. - 2C. 5D. 6【考点】HW 三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y 的最小值.【解答】 解:T 函数 y=cos 2x - 4cosx+1= (cox - 2) 2- 3,且 cosx € [ - 1, 1],故当 时,函数y 取得最小值为-2, 故选:B.A. ( 1, -1)B •(— 1 , 1)cosx=1 D.9. 下列说法正确的是( )A. 经过三点有且只有一个平面B. 经过两条直线有且只有一个平面C. 经过平面外一点有且只有一个平面与已知平面垂直D. 经过平面外一点有且只有一条直线与已知平面垂直 【考点】LJ :平面的基本性质及推论.【分析】在A 中,经过共线的三点有无数个平面; 在B 中,两条异面直线不能确定一个平面; 在C 中,经过平面外一点无数个平面与已知平面垂直; 在D 中,由线面垂直的性质得经过平 面外一点有且只有一条直线与已知平面垂直.【解答】在A 中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故 A错误;在B 中,两条相交线能确定一个平面, 两条平行线能确定一个平面, 两条异面直线不能确定 一个平面,故B 错误;在C 中,经过平面外一点无数个平面与已知平面垂直,故C 错误;在D 中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直, 故D 正确.故选:D.10.过直线x+y+1=0与2x - y - 4=0的交点,且一个方向向量:1. 的直线方程是( )A. 3x+y -仁0B. x+3y - 5=0C. 3x+y - 3=0D. x+3y+5=0【考点】IB :直线的点斜式方程.【分析】 求出交点坐标,代入点斜式方程整理即可.由方向向量. ■得: 直线的斜率k= - 3, 故直线方程是:y+2= - 3 (x - 1), 整理得:3x+y -仁0, 故选:A.11 •文艺演出中要求语言类节目不能相邻, 现有4个歌舞类节目和2个语言类节目,若从中【解答】解:由2x-y-4=0解得:X=1y=-2,任意选出4个排成节目单,则能排出不同节目单的数量最多是()A. 72B. 120C. 144D. 288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的 4 个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21G3=8种取法,将4个节目全排列,有A/=24种可能,则以排出8X 24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有G2G2=6种取法,将2个歌舞类节目全排列,有A2=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A2=6种情况,此时有6 X 2X 6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12. 若a, b, c均为实数,且a v b v 0,则下列不等式成立的是()A, a+c v b+c B . ac v be C. a2v b2 D.;.【考点】R3:不等式的基本性质.【分析】A由a v b v 0,可得a+c v b+c;B, c的符号不定,则ac, bc大小关系不定;C, 由a v b v 0,可得a2> b2;D, 由a v b v 0,可得-a>- b? .' I ;【解答】解:对于A由a v b v 0,可得a+c v b+c,故正确;对于B, c 的符号不定,则 ac , be 大小关系不定,故错;2 2对于C,由a v b v 0,可得a > b ,故错; 对于 D,由 a v b v 0,可得-a >- b? 一_ “ _i ,故错; 故选:A13.函数 f (x ) =2kx , g (x ) =log a x ,若 f (- 1) =g (9),则实数 k 的值是( )A. 1B. 2C. - 1D.- 2【考点】4H:对数的运算性质.【分析】由g (9) =log a 9=2=f (- 1) =2- k ,解得即可. 【解答】 解:g (9) =log a 9=2=f (- 1) =2-k , 解得k= - 1, 故选:C14•如果 ||_5 :,那么 * ]等于()A.- 18 B . - 6 C. 0D. 18【考点】9R 平面向量数量积的运算.【分析】由已知求出 「|及[与一的夹角,代入数量积公式得答案. 【解答】解: ••• _::二 _;,且V 皿]:::> =n .则一-j= 1=3 X 6X(- 1) = - 18.故选:A.15 .已知角a 的终边落在直线 y= - 3x 上,贝U COS ( n +2 a )的值是(【考点】GO 运用诱导公式化简求值; G9任意角的三角函数的定义. 【分析】由直线方程,设出直线上点的坐标,可求 COS a ,利用诱导公式,二倍角的余弦函 数公式可求COS ( n +2 a )的值.【解答】解:若角a 的终边落在直线y= - 3x 上, (1)当角a 的终边在第二象限时,不妨取x= - 1,则y=3 , r=寸.j.;ld = !:',C.A.B . 土 - D. b2 ■所以COS a = ^,可得COS ( n +2 a ) =- COS2 a =1 - 2COS a ="' ;V10 5(2)当角a的终边在第四象限时,不妨取x=1,则y= - 3,所以sin a =——,COS a =一,可得COS ( n +2 a ) = - COS2 a =1 - 2COS2% = 一‘ , V10V10 5故选:B.【考点】7B:二元一次不等式(组)与平面区域.【分析】禾U用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1, 0)点满足2x - y> 0,所以二元一次不等式2x - y >0表示的区域(阴影部分)是: C.故选:C.17.已知圆G和C2关于直线y= - x对称,若圆C的方程是(x+5) 2+y2=4,则圆G的方程是( )A. ( x+5) 2+y2=2B. x2+ (y+5) 2=4C. (x - 5) 2+y2=2D. x2+ (y -5) 2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆G的圆心关于y= - x的对称点,再由圆的标准方程得答案.【解答】解:由圆C的方程是(x+5)2+y2=4,得圆心坐标为(-5, 0),半径为2,设点(-5, 0)关于y= - x的对称点为(x o, y o),•••圆C2的圆心坐标为(0, 5), 则圆C2的方程是x2+ (y - 5)2=4. 故选:D.18•若二项式讳勺展开式中,只有第4项的二项式系数最大,则展开式中的常数上■项是( )A. 20B. - 20 C • 15 D.- 15【考点】DB二项式系数的性质.则*,解得16.二元一次不等式2x - y >0表示的区域(阴影部分)是(【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幕指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:•二项式1’的展开式中只有第4项的二项式系数最大,•••n=6,x6—3r则展开式中的通项公式为T r+i=C6r? (- 1) r?x --------------- .令6- 3r=0,求得r=2,故展开式中的常数项为C62? (- 1) 2=15,故选:C.19•从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( )成绩分析表A.甲B.乙C.丙D. 丁【考点】BC极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙, 由此知乙同学成绩较高,且发挥稳定,应选乙参加.故选:B.2 220.已知A, A为双曲线'(a>0, b>0)的两个顶点,以AA为直径的圆与双曲a2 b22线的一条渐近线交于M N两点,若△ A i MN 的面积为匚,则该双曲线的离心率是()2A W2B 座C -D 应~~3_ ~~3_~~3_【考点】KC 双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A i (- a , 0)到直线渐近线的距离 d ,根据三角形的面积公式,即可求得△ AMN 的面积,即可求得 a 和b 的关 系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程 y= ± x ,设以A i A 为直径的圆与双曲线的渐近线 y=^a ax 交于M N 两点,△ A i MN 的面积S= x 2a x 丄=' =',整理得:b= c ,2 c c 2 2贝H a 2=b 2 - c 2= • c 2, 即 a= c ,4 2双曲线的离心率e == _,故选B.二、填空题:21•若圆锥的底面半径为 1,母线长为3,则该圆锥的侧面积等于 3 n .【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为 I ,弧长为2n ,则圆锥侧面积 S=n rl ,由此 能求出结果.【解答】 解:圆锥侧面展开图是一个扇形,半径为 I ,弧长为2 n r •••圆锥侧面积:[二厂二 丁n r|则A i (- a , 0)到直线y=—x 的距离d= aaXO-bXa |=ab=n X 1 X 3=3 n .故答案为:3 n ./ :jT H22.在△ ABC中,a=2, b=3,/ B=2/ A 贝U cosA=_4一【考点】HR余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解. 【解答】解:•••/ B=2/ A,• sin / B=2sin / Acos Z A,又T a=2, b=3,•由正弦定理可得:2 3 sinZ^A 2sin.ZAcos.ZA-sin Z A M 0, •- cos Z A==.4故答案为:一423.已知F1, F2是椭圆=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△ PQF的周长等于24【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF 2|=2a=12 , |QF1|+|QF2|=2a=12即可求得厶PQF的周长.【解答】解:椭圆——< =1的焦点在y轴上,则a=6, b=4,设厶PQF的周长为I ,16 36则l=|PF 2|+|QF2|+|PQ| ,=(|PF i|+|PF 2| ) + (|QF i|+|QF 2| )=2a+2a,=4a=24.• △ PQF的周长24 ,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是【考点】CB古典概型及其概率计算公式.本事件个数:m・,一」=4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=「| ,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m= 「4,•••其中甲、乙两名志愿者恰好同时被选中的概率是:m 4 1P= = =「故答案为:=乙两名志愿者恰好同时被选中包含的基【分析】先求出基本事件总数< 1,若f (t - 1 )> f ( 4t ),则实数t的取值范围是(-丄,2].3【考点】5B:分段函数的应用.【分析】求出f (x)的解析式,得出f (x)的单调性,根据单调性得出t - 1和4t的大小关系,从而可得t的范围.【解答】解:T 0 < a< 1,•••当x< 1 时,a x> a,当x > 1 时,a> a x,••• f (x)在(-g, 1]上单调递减,在(1, +8)上为常数函数, ••• f (t - 1)> f ( 4t),• t - 1 < 4t W 1 或t - 1 W 1 < 4t ,解得-—< t W—或厶--■ ■-:.3 4 4故答案为:(-_, 2].D1三、解答题:26. 已知函数f (x) =log 2 (3+x)- log 2 (3 - x),(1)求函数f ( x)的定义域,并判断函数 f (x)的奇偶性;(2)已知f (sin a ) =1,求a的值.【考点】4N:对数函数的图象与性质.(x) =log 2 (3+x) - log 2 (3 - x)有意义,则< 3即可,由 f (- x) =log 2 (3 - x)- log 2 (3+x) =- f (x),可判断函数 f (x)为奇函数.(2 )令f (x) =1,即一’「,解得x=1 .即sin a =1,可求得a .【解答】解:(1)要使函数f (x) =log 2 ( 3+x)- log 2 (3 - x)有意义,则 '" ? - 3 25.对于实数m n,定义一种运算:的』m,叮口已知函数(x) =a*a x,其中0< a 【分析】(1 )要使函数1 3-x>0v x v 3,•••函数f (x)的定义域为(-3, 3);T f (- x) =log 2 (3-x) - log 2 ( 3+x) =- f (x),•函数f ( x)为奇函数.(2 )令 f (x) =1,即 4 二,解得x=1 .• sin a =1,•- a=2k r } —^~,(k€ Z).27. 某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50X 0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中玄1=石,q=2, n=20,丄门-乡1 1•••共需缴费S20= - - =,_=219- =524288 - ,_ ~ 52.4 万元,~ 2 2 2•方案①缴纳的保费较低.28. 已知直三棱柱ABC- ABQ的所有棱长都相等,D, E分别是AB, AQ的中点,如图所示(1)求证:DE//平面BCGB;(2 )求DE与平面ABC所成角的正切值.【考点】Ml:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1 )取AC的中点F,连结EF, DF,贝U EF// CG, DF// BQ故平面DEF//平面BCCB i, 于是DE//平面BCCB i.(2)在Rt△ DEF中求出tan / EDF.【解答】(1)证明:取AC的中点F,连结EF, DF,•••D, E, F分别是AB AC, AC的中点,••• EF// CC, DF// BC,又DF A EF=F, AC A CC=C,•••平面DEF// 平面BCCB i,又DE?平面DEF,•DE//平面BCCB i.(2)解:• EF// CG, CC丄平面BCCB.•EF丄平面BCCB i,•••/ EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,贝U DF= , EF=1,(1) 求该函数的最小正周期;(2) 求该函数的单调递减区间;29.已知函数y=3(sin27Txcci —cos2xsirrit7(3 )用“五点法”作出该函数在长度为一个周期的闭区间上的简图. 【考点】HI :五点法作函数 y=Asin (3 x+$ )的图象;H2:正弦函数的图象. 【分析】(1)由已知利用两角差的正弦函数公式可得 y=3sin (2x-—),利用周期公式即6可得解.(2) 令 2k n + W 2x - W 2k n + ------------- , k € Z ,解得:k n +W x W k n +, k € Z ,可2 6 2 36得函数的单调递减区间.(3 )根据五点法作图的方法先取值,然后描点即可得到图象. TT ItIT【解答】解: (..一 . ' =3sin (2x - ^―),•••函数的最小正周期 T= =n .2x 兀71 T1257T 6 13K 122x -匹 60 7T Tn3H 22n y0 3-3(2)7t2k n + W 2x兀3兀 ”W 2k n + 一 , k € Z ,解得: 0 £.n+ . W x W k nk € Z ,•函数的单调递减区间为:[k 兀Tt +57T],k € Z ,描点、连线如图所示:30.已知椭圆. 的右焦点与抛物线y 2=4x 的焦点F 重合,且椭圆的离心a 2b 2率是',如图所示.2(1) 求椭圆的标准方程; (2)抛物线的准线与椭圆在第二象限相交于点 A ,过点A 作抛物线的切线I ,1与椭圆的另一个交点为B ,求线段AB 的长.【考点】KL :直线与椭圆的位置关系.【分析】(1)根据题意得F (1, 0),即c=1,再通过e=l 及c 2=a 2 - b 2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得 A 点坐标,求得抛物线的切线方程,由△ =0,求得k 的值,分别代入椭圆方程,求得 B 点坐标,利用两点之间的距离公式,即可求得线段 AB 的长.【解答】解:(1)根据题意,得F (1 , 0), ••• c=1, 又 e 「, • a=2,「. b 2=a 2 - c 2=3, 2 2故椭圆的标准方程为::'一•=—_:4 33由A 位于第二象限,则 A (- 1,),3冥 + (—1 )过点A 作抛物线的切线I 的方程为:*r'由* /异,解得- 3,----- F --- -1U 3(2)抛物线的准线方程为x=- 1垃二T2 2即直线I : 4x - 3y - 4=0214x-3y-4=02整理得4 ' -=1整理得:ky2- 4y+4k+6=0 ,3当k=0,解得:y<_,不符合题意,当k=时,直线2[2 2x丄y ,直线与椭圆只有一个交点,不符合题意,当k z 0,由直线与抛物线相切,则△=0,(4k+6) =0,解得:k=「或k= - 2,当k= - 2时,直线I的方程为3y- I:= -2 (x+1),2 24‘,整理得:y-y=-2(s+l)则y1=,『2=--三,由以上可知点A (- 1 , ), B (―,- •),u 1 勺>0 W•••丨AB 丨= I 「: . 1:~ = ,V L19 wr 3呂!2 ' 19由-11192--19x +8x - 11=0,解得:X i=- 1 , X2= ,19(x+1),,整理得:(x+1)2=0,22。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省20XX 年普通高校招生(春季)考试数学试题注意事项: 1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上) 1.已知集合A ={}1,3,B ={}2,3,则A B 等于( )A. ∅B. {}1,2,3C. {}1,2D. {}3【答案】B 【解析】因为A ={}1,3,B ={}2,3,所以A B {}1,2,3=.2.已知集合A ,B ,则“A B ⊆”是“A B =”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B =⇒⊆,又A B A B A B ⊆⇒=或,∴“A B ⊆”是“A B =”的必要不充分条件. 3.不等式23x +>的解集是( ) A. ()(),51,-∞-+∞ B. ()5,1-C. ()(),15,-∞-+∞ D.()1,5-【答案】A 【解析】23123235x x x x x +>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为 ()(),51,-∞-+∞.4.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )第4题图GD21GD22GD23GD24 GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确. 6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143B.2C.4D.8 【答案】 B 【解析】3a 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ) A.60 B.31 C.30 D.10【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b )B.函数xy a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数ay x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数xy a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量OB 的坐标是( )第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A 【解析】A (1,-2),C (3,1),()()1231OA OB ∴=-=,,,,又OA CB =,()4,1OB OC CB OC OA ∴=+=+=-.10.过点P (1,2)与圆225x y +=相切的直线方程是( )A. 230x y -+=B. 250x y -+=C. 250x y +-=D. 250x y +-=【答案】B 【解析】将点P ()1,2代入圆方程,可知点P 在圆上,又因为将点代入C,D 等式不成立,可排除C,D ,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),5230x y -+=的距离55d =≠250x y -+=的距离55d '==B 符合. 11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从20XX 年到20XX 年,消费量占比增长率最大的能源是( ) A.天然气 B.核能 C.水利发电 D.再生能源表 我国各种能源消费的百分率原油(%) 天然气(%) 原煤(%) 核能(%) 水利发电(%) 再生能源(%) 20XX 年 17.7 4.5 70.4 0.7 6.0 0.7 20XX 年17.55.666.01.08.11.8【答案】D 【解析】 根据表1可知,从20XX 年到20XX 年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能: 1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭ B. 43,55⎛⎫- ⎪⎝⎭ C. 34,55⎛⎫- ⎪⎝⎭ D.43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( ) GD27GD28GD29GD30【答案】D 【解析】 当221x y m n +=的图象为椭圆时,00m n >>,,则y mx n =+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160D.560【答案】B 【解析】()2nx -的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T x x -=-=-,则其系数为160-. 15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121 C. 114 D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=. 16.函数sin 24y x π⎛⎫=+⎪⎝⎭在一个周期内的图像可能是( ) GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,22y =,D 选项中,当2,42x y π==. 17.在ABC △中,若2AB BC CA ===,则AB BC ⋅等于( )A. 23-B. 23C.-2D.2【答案】C 【解析】因为2AB BC CA ===,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35A.7B.4C.3D.1【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m16.D 【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120FM F M ⋅=,那么点M 到x 轴的距离是( )A.B.C.2D. 1 【答案】B 【解析】 椭圆22126x y +=,即2a b c ====,设点M 的坐标为00()x y ,,又120F M F M ⋅=,∴点M 又在以原点为圆心,半径为2的圆上,圆方程为224x y +=,即2204x y +=①,又2200126x y +=②,联立①②得0y =点M 到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知tan 3α=,则sin cos sin cos αααα+-的值是 .【答案】2【解析】分式上下同除以cos α得sin cos tan 1cos sin cos tan 1cos αααααααα++=--,把tan 3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 .【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,所以正方体上,243S r =π=π球.23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±,所以点(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名. 【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35, 则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(-或()2⎡-∞-+∞⎣,,【解析】p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<,则1a -<<同理,当pq同为假时,a 或a≤a 的取值范围为(-或()2⎡-∞-+∞⎣,,.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市20XX 年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素). (1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式; (2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)? 【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求:(1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点. (1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上, 又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥, 根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DAAM A =,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △是等腰直角三角形,所以两个直角边长为2x , 所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱 所以2233D AMBV x hx h V -π==π圆柱. 29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则22222010103m AB AP BP -=-=,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ AB ABQ AQB =∠∠,即21031032102m sin 453AQ AQ ⨯=⇒==︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠ 2220(102)220102cos1054002003=+-⨯⨯⨯︒=+,10(13)10103PQ =+=+,P ,Q 两点之间的距离为10103+米.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN △面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a -=-=,则该双曲线的标准方程为2213y x -=,离心率221c e a ===,渐近线方程为331b y a =±=±= (2)向量()2,1n =-是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则12MN x =-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则113022PMN S MN d =⨯=⨯=△。

相关文档
最新文档