2020年数学中考试题分类汇编(应用题).doc
2022年中考数学题分类汇编——二次函数应用题(1)

2022年年年年年年年年年年——年年年年年年年年年年1.(2022·辽宁省丹东市)丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?2.(2022·内蒙古自治区鄂尔多斯市)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?3.(2022·湖北省荆门市)某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x<80时,其销x+9.同时销售过程中的其它开支为50万元.售量y(万个)与x之间的关系式为y=−110(1)求出商场销售这种商品的净利润z(万元)与销售价格x函数解析式,销售价格x定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x的取值范围;若还需考虑销售量尽可能大,销售价格x应定为多少元?4.(2022·甘肃省兰州市)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2m,当水平距离为3m时,实心球行进至最高点3m处.所示,掷出时起点处高度为53(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》5.(2022·北京市)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y= a(x−ℎ)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=−0.04(x−9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2(填“>”“=”或“<”).6.(2022·辽宁省盘锦市)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?7.(2022·辽宁省营口市)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?8.(2022·山东省青岛市)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?9.(2022·辽宁省盘锦市)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:x(天)123 (x)每天的销售量(千克)101214…______设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入−成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?10.(2022·贵州省铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?参考答案1.解:(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y =kx +b ,把(35,90),(40,80)代入得: {35k +b =9040k +b =80, 解得{k =−2b =160,∴y =−2x +160;(2)根据题意得:(x −30)⋅(−2x +160)=1200, 解得x 1=50,x 2=60,∵规定销售单价不低于成本且不高于54元, ∴x =50,答:销售单价应定为50元; (3)设每天获利w 元,w =(x −30)⋅(−2x +160)=−2x2+220x −4800=−2(x −55)2+1250, ∵−2<0,对称轴是直线x =55, 而x ≤54,∴x =54时,w 取最大值,最大值是−2×(54−55)2+1250=1248(元), 答:当销售单价为54元时,每天获利最大,最大利润,1248元.2.解:(1)设第二批每个挂件的进价为x 元,则第一批每个挂件的进价为1.1x 元,根据题意可得,66001.1x +50=8000x,解得x =40.经检验,x =40是原分式方程的解,且符合实际意义, ∴1.1x =44.∴第二批每个挂件的进价为40元.(2)设每个售价定为y 元,每周所获利润为w 元,根据题意可知,w =(y −40)[40+10(60−y)]=−10(y −52)2+1440, ∵−10>0,∴当x ≥52时,y 随x 的增大而减小, ∵40+10(60−y)≤90, ∴y ≥58,∴当y =58时,w 取最大,此时w =−10(58−52)2+1440=1080. ∴当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元.3.解:(1)z =y(x −30)−50=(−110x +9)(x −30)−50=−110x 2+12x −320,当x =−b 2a =−122×(−110)=60时,z 最大,最大利润为−110×602+12×60−320=40;(2)当z =17.5时,17.5=−110x 2+12x −320, 解得x 1=45,x 2=75,∵净利润预期不低于17.5万元,且a <0, ∴45≤x ≤75,∵y =−110x +9.y 随x 的增大而减小, ∴x =45时,销售量最大.4.解:(1)根据题意设y 关于x 的函数表达式为y =a(x −3)2+3,把(0,53)代入解析式得:53=a(0−3)2+3, 解得:a =−427,∴y 关于x 的函数表达式为y =−427(x −3)2+3; (2)该女生在此项考试中是得满分,理由: 令y =0,则−427(x −3)2+3=0, 解得:x 1=7.5,x 2=−1.5(舍去), ∵7.5>6.70,∴该女生在此项考试中是得满分.5.解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴ℎ=8,k =23.20,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当x =0时,y =20.00,代入y =a (x −8)2+23.20得: 20.00=a (0−8)2+23.20,解得:a =−0.05, ∴函数关系关系式为:y =−0.05(x −8)2+23.20.(2)设着陆点的纵坐标为t ,则第一次训练时,t =−0.05(x −8)2+23.20, 解得:x =8+√20(23.20−t )或x =8−√20(23.20−t ),∴根据图象可知,第一次训练时着陆点的水平距离d 1=8+√20(23.20−t ), 第二次训练时,t =−0.04(x −9)2+23.24,解得:x =9+√25(23.24−t )或x =9−√25(23.24−t ),∴根据图象可知,第二次训练时着陆点的水平距离d 2=9+√25(23.24−t ), ∵20(23.20−t)<25(23.24−t), ∴√20(23.20−t)<√25(23.24−t), ∴d 1<d 2. 故答案为:<.6.解:(1)设一次函数的关系式为y =kx +b ,由题图可知,函数图象过点(25,50)和点(35,30). 把这两点的坐标代入一次函数y =kx +b , 得{25k +b =5035k +b =30, 解得{k =−2b =100,∴一次函数的关系式为y =−2x +100; (2)根据题意,设当天玩具的销售单价是x 元, 由题意得,(x −10)×(−2x +100)=600, 解得:x 1=40,x 2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w =(x −10)×(−2x +100), 整理得:w =−2(x −30)2+800; ∵−2<0,∴当x =30时,w 有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.7.解:(1)设A 款纪念册每本的进价为a 元,B 款纪念册每本的进价为b 元,根据题意得:{5a +4b =1563a +5b =130,解得{a =20b =14, 答:A 款纪念册每本的进价为20元,B 款纪念册每本的进价为14元;(2)①根据题意,A 款纪念册每本降价m 元,可多售出2m 本A 款纪念册,∵两款纪念册每天销售总数不变,∴B 款纪念册每天的销售量为(80−2m)本;②设B 款纪念册每天的销售量与售价之间满足的一次函数关系是y =kx +b′,根据表格可得:{80=22k +b′78=23k +b′, 解得{k =−2b′=124, ∴y =−2x +124,当y =80−2m 时,x =22+m ,即B 款纪念册每天的销售量为(80−2m)本时,每本售价是(22+m)元,设该店每天所获利润是w 元,由已知可得w =(32−m −20)(40+2m)+(22+m −14)(80−2m)=−4m 2+48m +1120=−4(m −6)2+1264,∵−4<0,∴m =6时,w 取最大值,最大值为1264元,此时A 款纪念册售价为32−m =32−6=26(元),答:当A 款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元. 8.解:(1)根据题意得:y =8.2−0.2(x −1)=−0.2x +8.4,答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y =−0.2x +8.4;(2)设李大爷每天所获利润是w 元,由题意得:w =[12−0.5(x −1)−(−.02x +8.4)]×10x =−3x 2+41x =−3(x −416)2+168112,∵−3<0,x 为正整数,且|6−416|>|7−416|,∴x =7时,w 取最大值,最大值为−3×(7−416)2+168112=140(元),答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元. 9.2x +810.解:(1)根据题意得y=12−2(x−4)=−2x+20(4≤x≤5.5),所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=−2x+20,自变量x的取值范围是4≤x≤5.5;(2)设每天获得的利润为W元,根据题意得w=(−2x+20)(x−2)=−2x2+24x−40=−2(x−6)2+32,∵−2<0,∴当x<6,W随x的增大而增大.∵4≤x≤5.5,∴当x=5.5时,w有最大值,最大值为−2×(5.5−6)2+32=31.5,∴将批发价定为5.5元时,每天获得的利润w元最大,最大利润是31.5元.。
中考题分类汇编(一元二次方程的应用部分)

中考题分类汇编(一元二次方程的应用部分)一、选择题:1、(泰州市)以3 和-2为根的一元二次方程是______________________。
2、(湖南湘潭)已知72+-ax x 在有理数范围内能分解成两个因式的积,则正整数a 的值是 。
3、(甘肃省)已知二次三项式022=++c bx x 分解因式为)1)(3(2+-x x ,则b 、c 的值为( )A 、b =3,c =-1B 、b =-6 c =2C 、b =-6 c =-4D 、b =-4 c =-64、(福州市)已知α、β满足α+β=5且αβ=6,以α、β为两根的一元二次方程是( )(A )0652=++x x (B )0652=+-x x(C )0652=--x x (D )0652=-+x x5、(河南省)某专卖店在统计2003年第一季度的销售额时发现,二月份比一月份增加10%,三月份比二月份减少10%,那么三月份比一月份( )(A) 增加10% (B )减少10% (C )不增不减 (D )减少1%6、(安徽省)党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为( )A 、2)1(2=+xB 、4)1(2=+xC 、221=+xD 、4)1(2)1(=+++x x7、(广西桂林)如果关于x 的一元二次方程02=++q px x 的两根分别为1x =3、2x =1,那么这个一元二次方程是( )(A )0432=++x x (B )0342=+-x x(C )0342=-+x x (D )0432=-+x x二、解答题:1、(福建三明)已知两个数的和等于2,积等于-1,求这两个数。
2、(福州市)已知关于x 的方程()0141122=+++-k x k x 。
山东数学中考分类汇编--有关函数的应用题

有关函数的应用题1.(2022年东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?2.(2020济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?3.(2021)20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4.(2022)19. 某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B 两地,两种货车载重量及到A,B两地的运输成本如下表:(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?5.(2017年莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种6.(2018年莱芜)口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?7.(2019年莱芜)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?8.(2017临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?。
2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)

《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?16.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:=,解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:﹣=2,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤220,解得:m≥10.答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:﹣=10,经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元, 根据题意得:=2×,解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天, 依题意,得:+=, 整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m+)+2.4×≤127,解得:m≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B台灯每盏的进价为x元,则A台灯每盏的进价为(x+30)元,依题意,得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:A台灯每盏的进价为80元,B台灯每盏的进价为50元.(2)设购进A台灯m台,则购进B台灯(100﹣m)台,依题意,得:(120﹣80)m+(80﹣50)(100﹣m)≥3400,解得:m≥40.答:至少需购进A台灯40台.8.解:(1)设第一批饮料进货单价为x元,则第一批饮料进货单价为(x+2)元,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y元,依题意,得:(300+900)y﹣(1200+5400)≥5400,解得:y≥10.答:销售单价至少为10元.9.解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,依题意,得:1.2(x+10)+x≤34,解得:x≤10.答:购入的B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,依题意,得:=,解得:a=50,经检验,a=50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据题意得:×2=,解得:x=2,经检验:x=2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m元,根据题意得:×(3﹣2)+×(m﹣2.5)≥1500,解得:m≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:=,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m+1.2n=80,∴m=100﹣1.5n.∵甲种配件要比乙种配件至少要多22件,∴m﹣n≥22,即100﹣1.5n﹣n≥22,解得:n≤31.2,∵m,n均为非负整数,∴n的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm2,则乙队每天可绿化面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是所列分式方程的解,∴2x=100.答:甲队每天可绿化面积为50m2,乙队每天可绿化面积为100m2.(2)设应安排乙队绿化m天,则安排甲队绿化天,根据题意得:0.25×+0.4m≤8,解得:m≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:=,解得:m=18,经检验,m=18是原方程的解,且符合题意.∴m=值为18.(2)设购买A型污水处理设备x台,则购买B型污水处理设备(10﹣x)台,依题意得:18x+15(10﹣x)≤156,解得:x≤2,∵x是整数,∴有3种方案.当x=0时,y=10,月处理污水量为180×10=1800吨,当x=1时,y=9,月处理污水量为220+180×9=1840吨,当x=2时,y=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≥200×120,解得:y≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,依题意,得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,依题意,得:﹣=50,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×=,解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,依题意,得:﹣=4,解得:x=40,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作天,依题意,得:3m+2.4×≤66,解得:m≥10.答:至少安排甲队工作10天.。
2020年中考数学一轮复习题型05方案型应用题(原卷版)

题型05 方案型应用题一、单选题1.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种2.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)A.方案1 B.方案2C.方案3 D.三个方案费用相同3.小明去商店购买A B、两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种4.某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是()A.月通话时间低于200分钟选B方案划算B.月通话时间超过300分钟且少于400分钟选A方案划算C.月通话费用为70元时,A方案比B方案的通话时间长D.月通话时间在400分钟内,B方案通话费用始终是50元5.图为歌神KTV的两种计费方案说明.若嘉淇和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务员试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们同一间包厢里欢唱的人数至少有( )A.6人B.7人C.8人D.9人6.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买()瓶矿泉水时,第二种方案更便宜.A.5 B.6 C.7 D.87.某种肥皂零售价每块2元,当购买数量不少于2块时,商场有两种优惠方案:第一种,一块肥皂按原价,其余按原价的七折销售;第二种,全部按原价的八折优惠,在购买相同数量的肥皂的情况下,要使第一种方案比第二种方案合算,最少需要购买肥皂()A.3块B.4块C.5块D.6块8.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()9.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款()A.288元B.332元C.288元或316元D.332元或363元二、填空题11.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.12.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.13.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种14.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有______种.15.为丰富学生的体育活动,某校计划使用资金2000元购买篮球和足球(两种球都买且钱全部花光).若每个篮球80元,每个足球50元,则该校的购买方案个数为_________.16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同. 三个房间的粉刷面积和三种颜色的涂料费用如下表:17.现有边长相等的正三角形、正方形、正六边形的地砖,要求至少用两种不同的地砖作平面镶嵌(两种地砖的不同拼法视作为同一种组合),则共有组合方案_____种.18.如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案是________.19.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.20.某地突发地震期间,为了紧急安置房屋倒塌的30名灾民,需要搭建可容纳6人或4人的帐篷若干个,若所搭建的帐篷恰好(既不多也不少)能容纳这30名灾民,则不同的搭建方案有__种.三、解答题21.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.22.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B 型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?23.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?24.某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.25.某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?26.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?27.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.28.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x . (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1元,在乙批发店花费2元,分别求1,2关于的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为____________kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.29.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?30.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.。
山东数学中考分类汇编--有关分式方程的应用题

有关分式方程的应用题1.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?2.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?3.(2019•泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?4.(2018年东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.4.(2018年泰安)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)(2022•菏泽)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元?(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?5(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.6.(2018•菏泽)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?7(2019济南)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?8济南2021.24.(10分)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?9(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?10.(2019年青岛市)(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?11.(2017年青岛市)(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元日总收入(元)(2)今年旺季来临,豪华间的间数不变。
2020年中考数学一轮复习题型03一次函数的综合应用题(原卷版)

题型03 一次函数的综合应用题一、单选题1.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )A .B .C .D .2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m3.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+C .1y x =+D .5342y x =+ 4.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .05.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢6.一条公路旁依次有,,A B C 三个村庄,甲乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲乙之间的距离()s km 与骑行时间t(h)之间的函数关系如图所示,下列结论:①,A B 两村相距10km ;②出发1.25h 后两人相遇;③甲每小时比乙多骑行8km ;④相遇后,乙又骑行了15min 或65min 时两人相距2km .其中正确的个数是( )A .1个B .2个C .3个D .4个7.一个装有进水管和出水管的空容器,从某时刻开始4min 内只进水不出水,容器内存水8L ,在随后的8min 内既进水又出水,容器内存水12L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )A .B .C .D .8.在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从,A B 两地同时出发,相向而行.快车到达B 地后,停留3秒卸货,然后原路返回A 地,慢车到达A 地即停运休息,如图表示的是两车之间的距离y (米)与行驶时间x (秒)的函数图象,根据图象信息,计算,a b 的值分别为( )A .39,26B .39,26.4C .38,26D .38,26.49.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战 士们离营地的距离S 与时间t 之间函数关系的是( )A .B .C .D .10.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A.B.C.D.二、填空题11.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是______.12.已知函数22(0)(0)x x xyx x⎧-+>=⎨≤⎩的图象如图所示,若直线y x m=+与该图象恰有两个不同的交点,则m的取值范围为_____.13.如图,在平面直角坐标系中,Rt ABC∆的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且2AC=.将ABC∆先绕点C逆时针旋转90o,再向左平移3个单位,则变换后点A的对应点的坐标为______.14.如图,点A ,C 分别是正比例函数=y x 的图象与反比例函数4y x=的图象的交点,过A 点作AD x ⊥轴于点D ,过C 点作CB x ⊥轴于点B ,则四边形ABCD 的面积为___.15.边长为1的8个正方形如图摆放在直角坐标系中,直线1y k x =平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A ,B 两点,过B 点的双曲线2k y x=的一支交其中两个正方形的边于C ,D 两点,连接OC ,OD ,CD ,则OCD S ∆=__________.16.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (a ,2),则关于x 的不等式x +1≤mx +n 的解集为______.17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.18.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.19.如图,在平面直角坐标系中,一次函数21y x =-的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45︒,交x 轴于点C ,则直线BC 的函数表达式是__________.20.如图,已知在平面直角坐标系xOy 中,直线112y x =-分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()10,0k y k x x =>>,()220ky x x=<的图象于点C 和点D ,过点C 作CE x ⊥轴于点E ,连结,OC OD . 若COE ∆的面积与DOB ∆的面积相等,则k 的值是_____.三、解答题21.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程;(2)当150200x ≤≤时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.22.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离()y km 与小王的行驶时间()x h 之间的函数关系. 请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC 所表示的y 与x 之间的函数解析式,并写出自变量x 的取值范围.23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.24.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示. (1)乙车的速度为 千米/时,a = ,b = . (2)求甲、乙两车相遇后y 与x 之间的函数关系式.(3)当甲车到达距B 地70千米处时,求甲、乙两车之间的路程.25.一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.()1直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;()2若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?26.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从人口处到达塔林所蓄的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聘聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)27.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米. 甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校. 已知甲步行的速度比乙步行的速度每分钟快5米. 设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题: (1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象. (温馨提示:请画在答题卷相对应的图上)28.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑车前往乙地,她与乙地之间的距离y (km )与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离S (km )与出发时间x (h )之间的函数关系式如图2中折线段CD -DE -EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.29.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出x时,甲、发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发min乙两人与点A的距离分别为1y m、2y m.已知1y、2y与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?30.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t值为_______.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2020年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。
求这个月的石油价格相对上个月的增长率。
20.(2020年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?河北周建杰分类(2020年泰州市)15.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.tan)(2020年泰州市)24.如图某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即 为1︰1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1︰1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分)第24题图(2020年南京市)25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当2(第25题)(2020年遵义市)26.(12分)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.应用;(2)问主要考查一元一次不等式组的应用.以下是江西康海芯的分类:1. (2020年郴州市)我国政府从2020年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2020年职业中专在校生人数是2020年的1.2倍,且要在2020年的基础上增加投入600万元.2020年该市职业中专在校生有多少万人,补贴多少万元?辽宁省岳伟分类2020年桂林市1.某校在教学楼前铺设小广场地面,其图案设计如图。
所示,矩形地面的长50米,宽32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小矩形花坛,图中阴影处铺设广场地砖。
(1)求阴影部分的面积S(π取3)(2)某人承包铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,问原计划每天铺多少平方米?(2020年郴州市)2.我国政府从2020年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2020年职业中专在校生人数是2020年的1.2倍,且要在2020年的基础上增加投入600万元.2020年该市职业中专在校生有多少万人,补贴多少万元?以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2020年·东莞市)(本题满分7分)在2020年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。
19.(08年宁夏回族自治区)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?以下是辽宁省高希斌的分类1.(2020年湖北省咸宁市)A、B两种机器人都被用来搬运化工原料,A型机器人比B 型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?3.(2020年湖北省荆州市)甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D. 乙或丙4.(2020年湖北省鞥仙桃市潜江市江汉油田)“五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了元.10(2020乌鲁木齐).乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2020年市政府对农牧区校舍改造的投入资金是5786万元,2020年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意可列方程为.17(2020乌鲁木齐).2020年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?以下是山东任梦送的分类(茂名)依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2020年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是 元.(茂名)2020年5月12日14时28分我国四川汶川发生了8.0级大地震,地震发生后,我市某中学全体师生踊跃捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的1.2倍,乙班比甲班多2人,那么这两个班各有多少人?以下是江苏省赣榆县罗阳中学李金光分类:1.(2020年大连市)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同. 已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.2.(2020年大连市)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.3.(2020年南昌市)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?21.(2020年义乌市)义乌市是一个“车轮上的城市”,截止2020年底全市汽车拥有量为114508辆.己知2020年底全市汽车拥有量为72983辆.请解答如下问题:(1)2020年底至2020年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2020年底汽车拥有量不超过158000辆,据估计从2020年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)22.(2020嘉兴市)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A (元)和“辅助员工个人奖金”B (元)两种标准发放,其中800A B ≥≥,并且A B ,都是100的整数倍.注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.(2020年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。
求这个月的石油价格相对上个月的增长率。
解:设这个月的石油价格相对上个月的增长率为x 。
根据题意得(1+x )(1-5%)=1+14%解得x=20% 答这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题。
本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格。
设出未知数,分别表示出每一个数量,列出方程进行求解。
列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答。
(2020年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?21.(2020年义乌市)义乌市是一个“车轮上的城市”,截止2020年底全市汽车拥有量为114508辆.己知2020年底全市汽车拥有量为72983辆.请解答如下问题:(1)2020年底至2020年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2020年底汽车拥有量不超过158000辆,据估计从2020年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)22.(2020嘉兴市)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A (元)和“辅助员工个人奖金”B (元)两种标准发放,其中800A B ≥≥,并且A B ,都是100的整数倍.注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.以下是江苏董耀波的分类(2020恩施自治州)手牵着手,心连着心.2020年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?(2020襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?以下是山西省王旭亮分类(2020年重庆市)为支持四川抗震救灾,重庆市A 、B 、C 三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D 、E 两县。