2020年北京初三数学一模分类汇编: 二次函数汇总 26题 (学生版);

合集下载

北京16区初三一模数学分类汇编 题二次函数

北京16区初三一模数学分类汇编 题二次函数

(东城一模)27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)当m 取何值时,此方程有两个不相等的实数根;(2)当抛物线y =mx 2+(3m +1)x +3与x 轴两个交点的横坐标均为整数,且m 为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象直接写出实数a 的取值范围.(西城一模)27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE ∆的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.(海淀一模)27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线与图象G 有两个交点,结合函数的图象,求k 的取值范围.(朝阳一模)27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.xOy 224y mx mx m =-+-+(0)y kx b k =≠c bx x y ++=2c bx x y ++=2(丰台一模)27. 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答:当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.(石景山一模)27.在平面直角坐标系xOy 中,抛物线C :=mx y (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标;(2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m 的取值范围.(顺义一模)27.在平面直角坐标系xOy 中,抛物线22y ax x =-的对称轴为1x =-.(1)求a 的值及抛物线22y ax x =-与x 轴的交点坐标;(2)若抛物线22y ax x m =-+与x 轴有交点,且交点都在点A (-4,0),B (1,0)之间,求m 的取值范围.(怀柔一模)27.在平面直角坐标系中,二次函数y=x 2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H ,求此时函数的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴 翻折,图象H 的其余部分保持不变,得到一个新图象M .若直线y=x+b 与图象M 有三个公共点,求b 的取值范围. (平谷一模)27.已知:直线l :2y x =+与过点(0,﹣2),且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B . (1)求,A B 两点的坐标;(2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)若抛物线2y x bx c =-++的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.y(延庆一模)27. 已知:抛物线y=x ²+bx+c 经过点A (2,-3)和B (4,5). (1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G 1,求图象G 1的表达式;(3)设B 点关于对称轴的对称点为E ,抛物线G 2:y =ax 2(a≠0) 与线段EB 恰有一个公共点,结合函数图象,求a 的取值范围.(房山一模)27. 如图,二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等. (1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,在这条抛物线的对称轴上是否存在点D ,使得△DAC 的周长最小?如果存在,求出D 点的坐标;如果不存在,请说明理由.(3)设点M 在第二象限,且在抛物线上,如果△MBC 的面积最大,求此时点M 的坐标及△MBC 的面积.(通州一模)27.已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C .(1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;。

2020-2021九年级数学一模试题分类汇编——二次函数综合及答案解析

2020-2021九年级数学一模试题分类汇编——二次函数综合及答案解析

2020-2021九年级数学一模试题分类汇编——二次函数综合及答案解析一、二次函数1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【解析】【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2,∴y=2x-2, 则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6), ∵a <b ,即a <-2a ,∴a <0, 如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x xy x⎧=--+⎨=-⎩,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=94,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.3.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣2,23)55 4m-≤≤【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC 的解析式,再设P (t ,3﹣t ),即可得D (t ,﹣t 2+2t +3),即可求得PD 的长,然后分三种情况讨论,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣32)2﹣54,然后根据n 的取值得到最小值.【详解】解:(1)∵抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3), ∴103b c c --+=⎧⎨=⎩,解得b =2,c =3. 故该抛物线解析式为:y =﹣x 2+2x +3.(2)令﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,则330b k b ''=⎧⎨+=⎩, 解得:k=-1,b’=3故直线BC 的解析式为y =﹣x +3;∴设P (t ,3﹣t ),∴D (t ,﹣t 2+2t +3),∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t ,∵OB =OC =3,∴△BOC 是等腰直角三角形,∴∠OCB =45°,当CD =PC 时,则∠CPD =∠CDP ,∵PD ∥y 轴,∴∠CPD =∠OCB =45°,∴∠CDP =45°,∴∠PCD =90°,∴直线CD 的解析式为y =x +3,解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩∴D (1,4),此时P (1,2); 当CD =PD 时,则∠DCP =∠CPD =45°,∴∠CDP =90°,∴CD ∥x 轴,∴D 点的纵坐标为3,代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,解得x =0或x =2,此时P (2,1);当PC =PD 时,∵PC =2t , ∴2t =﹣t 2+3t ,解得t =0或t =3﹣2,此时P (3﹣2,2);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3﹣2,2) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (2m ,32), ∵∠MNC =90°, ∴NQ =12CM , ∴4NQ 2=CM 2, ∵NQ 2=(1﹣2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32)2]=m 2+9, 整理得,m =(n ﹣32)2﹣54, ∵0≤n ≤4,当n =32时,m 最小值=﹣54,n =4时,m =5, 综上,m 的取值范围为:﹣54≤m ≤5.【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000(2)商场销售该品牌玩具获得的最大利润是8640元.【解析】【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.【详解】解:(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65∴当44≤x≤46时,y随x的增大而增大∴当x=46时,w最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元.【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.6.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P 从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.【答案】(1) S=﹣2+0<t<5); (2) 307;(3)见解析.【解析】【分析】(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得,计算x的值,根据直角三角形30度角的性质可得AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,由题意得:AP=4t,∴PQ=2t,,∴S=S△ABC﹣S△APQ,=11··22AC OB PQ AQ-,=1110222t⨯⨯⨯⨯,=﹣2(0<t<5);(2)如图2,在Rt△APM中,AP=4t,∵点Q关于O的对称点为M,∴OM=OQ,设PM=x,则AM=2x,∴,∴∴∵AM=AO+OM,∴83t =103+103﹣23t , t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积,∴S △APN =S △PMN ,过M 作MG ⊥PN 于G , ∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH , ∴AH=HM=3t , ∵AM=AO+OM ,同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.7.如图1,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点,①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:12S S 的最大值; ②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是45;②点D 的坐标是(2,3)-【解析】【分析】(1)根据题意得到A (-4,0),C (0,2)代入y=-12x 2+bx+c ,于是得到结论; (2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,∠DCF=2∠BAC=∠DGC+∠CDG ,解直角三角形即可得到结论.【详解】解:(1)根据题意得A (-4,0),C (0,2), ∵抛物线y=-12x 2+bx+c 经过A .C 两点, ∴1016422b c c⎧-⨯-+⎪⎨⎪⎩==, ∴3b=-2c=2⎧⎪⎨⎪⎩, 抛物线解析式为:213222y x x =--+ ;(2)①令0y =, ∴2132022x x --+= 解得:14x =- ,21x =∴B (1,0) 过点D 作DM x ⊥轴交AC 于M ,过点B 作BN x ⊥轴交AC 于点N ,∴DM ∥BN∴DME BNE ∆∆∽∴12S DE DM S BE BN== 设:213222D a a a ⎛⎫--+ ⎪⎝⎭,∴122M a a ⎛⎫+ ⎪⎝⎭, ∵()10B , ∴51,2N ⎛⎫ ⎪⎝⎭∴()22121214225552a a S DM a S BN --===-++ ∴当2a =-时,12S S 的最大值是45; ②∵A (-4,0),B (1,0),C (0,2),∴55AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P (-32,0), ∴PA=PC=PB=52, ∴∠CPO=2∠BAC ,∴tan ∠CPO=tan (2∠BAC )=43, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG ,∴∠CDG=∠BAC ,∴tan ∠CDG=tan ∠BAC=12, 即RC :DR=12, 令D (a ,-12a 2-32a+2), ∴DR=-a ,RC=-12a 2-32a , ∴(-12a 2-32a ):(-a )=1:2, ∴a 1=0(舍去),a 2=-2,∴x D =-2,∴-12a 2-32a+2=3, ∴点D 的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.8.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=.设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.9.课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm ,4807mm ;(2)PN=60mm ,40PQ =mm . 【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x(mm),PN=y(mm),矩形面积为S ,则AE=80-x(mm)..由(1)知=∴=∴ y=则S=xy===∵∴ S有最大值∴当x=40时,S最大=2400(mm2)此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ、PN长分别是40 mm ,60 mm.考点:三角形相似的应用10.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,2,∴2或OP=PC ﹣2﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.11.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =.∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+. ∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形.12. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物923-2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN 323∴抛物线需要向下平移的距离=233923-. ②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA 2243-7,∴A ′F =47,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c )2=c 2,∴c 1647-∴P (41647-),∴直线OP 解析式为y 47-x ,∴N (2,873-),∴抛物线需要向下平移的距离=3﹣827-=127+ 923-127+OP 上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.13.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

2020北京初三(上)期末数学汇编:二次函数

2020北京初三(上)期末数学汇编:二次函数

2020北京初三(上)期末数学汇编二次函数一、单选题1.(2020·北京平谷·九年级期末)如果抛物线()22y a x =+开口向下,那么a 的取值范围为( ) A .2a >B .2a <C .2a >-D .2a <-2.(2020·北京顺义·九年级期末)抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ①20a b +=;①9a-3b+c=0;①若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①①B .①①C .①①D .①①3.(2020·北京平谷·九年级期末)二次函数y =kx 2+2x +1的部分图象如图所示,则k 的取值范围是( )A .k ≤1B .k ≥1C .k <1D .0<k < 14.(2020·北京西城·九年级期末)11(,)2A y -,2(1,)B y ,3(4,)C y 三点都在二次函数2(2)y x k =--+的图象上,则1y ,2y ,3y 的大小关系为( ) A .123y y y <<B .132y y y <<C .312y y y <<D .321y y y <<5.(2020·北京东城·九年级期末)将抛物线221y x =-向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为( ) A .2(1)1y x x =-+B .22(1)3y x =+-C .2(1)3y x x =--D .22(1)1y x =++6.(2020·北京东城·九年级期末)抛物线y =223ax ax a --的对称轴是( ) A .直线 x a =B .直线2x a =C .直线1x =D .直线1x =-7.(2020·北京西城·九年级期末)在平面直角坐标系中,将抛物线2yx 向右平移2个单位长度,向上平移1个单位长度,得到抛物线( ) A .22()1y x =-+B .2(2)1y x =--C .2(2)1y x =+-D .2(2)1y x =++8.(2020·北京西城·九年级期末)下列关于抛物线22y x bx =+-的说法正确的是( ) A .抛物线的开口方向向下B .抛物线与y 轴交点的坐标为(0,2)C .当0b >时,抛物线的对称轴在y 轴右侧D .对于任意的实数b ,抛物线与x 轴总有两个公共点第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题9.(2020·北京石景山·九年级期末)请写出一个开口向上且过点(0,﹣2)的抛物线表达式为 ___. 10.(2020·北京西城·九年级期末)在关于x 的二次函数2y ax bx c =++中,自变量x 可以取任意实数,下表是自变量x 与函数y 的几组对应值: x (1)2 3 4 5 6 7 8 …2y ax bx c =++ …3.19-3.10-2.71-2.05-1.10-0.14 1.47 3.48 …根据以上信息,关于x 的一元二次方程20ax bx c ++=的两个实数根中,其中的一个实数根约等于_______(结果保留小数点后一位小数).11.(2020·北京石景山·九年级期末)若抛物线2+6y x x m =-与x 轴有且只有....一个公共点,则m 的值为________.12.(2020·北京平谷·九年级期末)已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.13.(2020·北京大兴·九年级期末)已知抛物线y=ax2+bx+c (a≠0)与x 轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.14.(2020·北京密云·九年级期末)二次函数223y x x =--的最小值是_________.15.(2020·北京东城·九年级期末)写出一个二次函数,其图象满足:①开口向下;①与y 轴交于点(0,2),这个二次函数的解析式可以是______. 三、解答题16.(2020·北京顺义·九年级期末)在平面直角坐标系xOy 中,抛物线21y x nx m m=+- 与y 轴交于点A ,将点A 向左平移3个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含m 的式子表示); (2)求抛物线的对称轴;(3)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围. 17.(2020·北京大兴·九年级期末)在平面直角坐标系xOy 中,已知P (a ,b ),R (c ,d )两点,且a c ≠,b d≠,若过点P 作x 轴的平行线,过点R 作y 轴的平行线,两平行线交于一点S ,连接PR ,则称△PRS 为点P,R,S的“坐标轴三角形”.若过点R作x轴的平行线,过点P作y轴的平行线,两平行线交于一点S',连接PR,则称△RP S'为点R,P,S'的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若O的半径为322,点M(m,4),若在O上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求m的取值范围.18.(2020·北京大兴·九年级期末)抛物线2y x bx c=-++过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?19.(2020·北京密云·九年级期末)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.20.(2020·北京密云·九年级期末)已知二次函数y = x2 -4x +3.(1)用配方法将y = x2 -4x +3化成y = a(x - h)2 + k的形式;(2)在平面直角坐标系xOy 中,画出该函数的图象.(3)结合函数图象,直接写出y <0时自变量x 的取值范围 .21.(2020·北京通州·九年级期末)在平面直角坐标系xOy 中,存在抛物线2y mx 2=+以及两点()A 3,m -和()B 1,m .(1)求该抛物线的顶点坐标;(2)若该抛物线经过点()A 3.m -,求此抛物线的表达式;(3)若该抛物线与线段AB 只有一个公共点,结合图象,求m 的取值范围.22.(2020·北京平谷·九年级期末)在平面直角坐标系xOy 中,抛物线2230y ax ax a与y 轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标; (3)已知点(4,0)P ,1(,0)Q a.若抛物线与线段PQ 恰有两个公共点,结合函数图象,求a 的取值范围.23.(2020·北京东城·九年级期末)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如下表:x… -2 -112 …y =ax 2+bx +c … tm -2 -2 n …根据以上列表,回答下列问题:(1)直接写出c 的值和该二次函数图象的对称轴; (2)写出关于x 的一元二次方程ax 2+bx +c =t 的根; (3)若m =-1,求此二次函数的解析式.24.(2020·北京石景山·九年级期末)为了在校运会中取得更好的成绩,小丁积极训练.在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A 距离地面的高度是85米,当铅球运行的水平距离为3米时,达到最大高度52的B 处.小丁此次投掷的成绩是多少米?25.(2020·北京石景山·九年级期末)在平面直角坐标系xOy 中,二次函数223y x x =--的图象与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,顶点为P. (1)直接写出点A ,C ,P 的坐标. (2)画出这个函数的图象.26.(2020·北京西城·九年级期末)在平面直角坐标系xOy 中,抛物线2222y x mx m =---. (1)若该抛物线与直线2y =交于A ,B 两点,点B 在y 轴上.求该抛物线的表达式及点A 的坐标; (2)横坐标为整数的点称为横整点.①将(1)中的抛物线在A ,B 两点之间的部分记作1G (不含A ,B 两点),直接写出1G 上的横整点的坐标;①抛物线2222y x mx m =---与直线2y x =--交于C ,D 两点,将抛物线在C ,D 两点之间的部分记作2G (不含C ,D两点),若2G 上恰有两个横整点,结合函数的图象,求m 的取值范围.27.(2020·北京西城·九年级期末)图1是一个倾斜角为α的斜坡的横截面,1tan 2α=.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.(1)求y 关于x 的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A 的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.28.(2020·北京东城·九年级期末)在平面直角坐标系xOy 中,抛物线y =a 2x -4ax 与x 轴交于A ,B 两点(A 在B 的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);①若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.29.(2020·北京东城·九年级期末)为迎接国庆节,某商店购进了一批成本为每件30元的纪念商品.经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x的函数关系式;(2)若商店按不低于成本价,且不高于60元的单价销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?30.(2020·北京大兴·九年级期末)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?参考答案1.D【分析】由抛物线的开口向下可得不等式20a +<,解不等式即可得出结论. 【详解】解:①抛物线()22y a x =+开口向下,①20a +<, ①2a <-. 故选D .【点睛】本题考查二次函数图象与系数的关系,解题的关键是牢记“0a >时,抛物线向上开口;当0a <时,抛物线向下开口.” 2.D【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ①根据抛物线的对称轴方程即可判断;①根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;①根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,①abc >0, 所以①错误;①①对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以①错误;①①抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ①抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以①正确; ①m >n >0, ①m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故①正确; 故选:D .【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征. 3.D【分析】由二次函数y=kx 2+2x+1的部分图象可知开口朝上以及顶点在x 轴下方进行分析. 【详解】解:由图象可知开口朝上即有0<k ,又因为顶点在x 轴下方,所以顶点纵坐标224420,44ac b k a k--=<从而解得k < 1,所以k 的取值范围是0<k < 1. 故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x 轴下方分别代入进行分析. 4.B【分析】根据二次函数2(2)y x k =--+的图象的对称轴和开口方向以及点A ,B ,C 与对称轴的相对位置,即可得到答案.【详解】①二次函数2(2)y x k =--+的图象的对称轴方程是:直线x=2,开口方向向下,11(,)2A y -,2(1,)B y ,3(4,)C y 三点都在二次函数2(2)y x k =--+的图象上,①点B 距离直线x=2最近,点A 距离直线x=2最远, ①132y y y <<, 故选B.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的开口方向和对称轴位置和图象上的点的坐标之间的联系,是解题的关键. 5.B【分析】按照“左加右减,上加下减”的规律平移则可.【详解】按照“左加右减,上加下减”的规律,y 将抛物线y =2x 2−1向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为y =2(x +1)2−1−2,即y =2(x +1)2−3, 故选:B .【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 6.C【分析】直接利用y =223ax ax a --图象的性质得出其对称轴. 【详解】解:抛物线y =223ax ax a --的对称轴是直线1x = 故选:C【点睛】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键. 7.A【分析】根据二次函数图象平移的规律:“左加右减,上加下减”,即可得到答案. 【详解】①抛物线2yx 的顶点坐标为:(0,0)①把点(0,0)向右平移2个单位,再向上平移1个单位,得到(2,1), 即:平移后的抛物线的解析式为:22()1y x =-+, 故选A.【点睛】本题主要考查二次函数图象的平移规律,掌握二次函数图象平移规律,是解题的关键. 8.D【分析】根据二次函数的系数的几何意义和判别式的意义,逐一判断选项,即可.【详解】①a=1>0, ①抛物线的开口方向向上, ①A 错误,①令x=0,代入22y x bx =+-,得:y=-2, ①抛物线与y 轴交点的坐标为(0,2), ①B 错误,①对称轴是:直线x=2ba -=21b -⨯=2b -, ①当0b >时,抛物线的对称轴在y 轴左侧, ①C 错误,①222441(2)80b ac b b ∆=-=-⨯⨯-=+>,①对于任意的实数b ,抛物线与x 轴总有两个公共点, ①D 正确 故选D.【点睛】本题主要考查二次函数图象和性质,理解二次函数的系数的几何意义,是解题的关键. 9.22y x =-【分析】令抛物线的对称轴为y 轴,二次项系数为1,则抛物线的解析式可设为2y x m =+,然后把已知点的坐标代入求出m 即可.【详解】解:设抛物线的解析式为2y x m =+, 把(0,2)-代入得2m =-,所以满足条件的抛物线解析式为22y x =-. 故答案为:22y x =-(答案不唯一)【点睛】本题考查了待定系数法求二次函数的解析式,解题的关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解. 10.5.8【分析】根据表格的x ,y 的值,当y 的值为0或接近0时,对应的x 的值就是方程20ax bx c ++=的一个实数根的近似值.【详解】由表格可知:当x=5时,y=-1.10;x=6时,y=-0.14; ①方程20ax bx c ++=的一个实数根大约是5.8. 故答案是:5.8【点睛】本题主要考查利用表格的数据,根据二次函数和一元二次方程的关系得出方程的近似根是解题关键. 11.-9【分析】根据2+60x x m -=的判别式①=0求解即可.【详解】解:因为抛物线2+6y x x m =-与x 轴有且只有....一个公共点,所以对应的方程2+60x x m -=的判别式①=0,即()2640m -⨯-=,解得:9m =-.故答案为-9.【点睛】本题考查了二次函数和一元二次方程的关系,难度不大,熟练掌握二次函数和对应的一元二次方程的关系是求解的关键. 12.2y x =-等【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b =0,c =0,所以解析式满足a <0,b =0,c =0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b =0,c =0, 例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义. 13..x 1=-3,x 2=2【详解】解:①抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标分别是(−3,0),(2,0), ①当x =−3或x =2时,y =0,即方程20ax bx c ++=的解为123 2.x x =-=, 故答案为:123 2.x x =-=, 14.4-【分析】求开口向上的抛物线的最小值即求其顶点的纵坐标,再由二次函数的顶点式解答即可. 【详解】①二次函数y=x 2-2x-3可化为y=(x-1)2-4, ①最小值是-4.【点睛】本题考查二次函数的最值问题,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法. 15.22y x =-+(答案不唯一)【分析】根据抛物线开口方向得出a 的符号,进而得出c 的值,即可得出二次函数表达式. 【详解】解:①图象为开口向下,并且与y 轴交于点(0,2), ①a <0,c=2,①二次函数表达式为:y=-x 2+2(答案不唯一). 故答案为y=-x 2+2(答案不唯一).【点睛】本题考查了二次函数的图像特征及性质,掌握二次函数的图像特征及性质是解题的关键. 16.(1)B(-3,-m);(2)x =32-;(3)-1≤m <0【分析】(1)根据抛物线21y x nx m m=+-与y 轴交于点A ,将点A 向左平移3个单位长度,得到点B ,可以先求得点A 的坐标,再根据平移的性质得到点B 的坐标;(2)根据题目中的点A 的坐标和(1)中求得的点B 的坐标关于对称轴对称,可以求得该抛物线的对称轴;(3)根据题意,可以画出相应的函数图象,然后利用分类讨论的方法即可得到m 的取值范围.【详解】解:(1)依题意得:A (0,-m )①B (-3,-m )(2)①点A ,B 关于抛物线的对称轴对称,①抛物线的对称轴为x =32-; (3)当m >0时,点A (0,-m )在y 轴负半轴,此时,点P ,Q 位于抛物线内部(如图).所以,抛物线与线段PQ 无交点.当m <0时,点A (0,-m )在y 轴正半轴,当AQ 与x 轴平行,即A (0,1)时(如图2),抛物线与线段PQ 恰有一个交点Q (-3,1).此时,m=-1.当m >-1时(如图3),结合图象,抛物线与线段PQ 无交点.当-1<m <0时(如图4),结合图象,抛物线与线段PQ 恰有一个交点.综上,m 的取值范围是-1≤m <0【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答. 17.(1)(3,4);(2)4e =或0e =;(3)m 的取值范围是17m ≤≤或71m ≤≤--.【分析】(1)根据点C 到x 轴、y 轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF 和EF ,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN 应为y=x+b 或y =-x +b .①当直线MN 为y=x+b 时,结合图形可得直线MN 平移至与①O 相切,且切点在第四象限时,b 取得最小值,根据等腰直角三角形的性质和勾股定理可求得b 的最小值,进而可得m 的最大值;当直线MN 平移至与①O 相切,且切点在第二象限时,b 取得最大值,根据等腰直角三角形的性质和勾股定理可求得b 的最大值,进而可得m 的最小值,可得m 的取值范围;①当直线MN 为y =-x+b 时,同①的方法可得m 的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C 到x 轴距离为4,到y 轴距离为3,①C (3,4);故答案为:(3,4);(2) ①点D (2,1),点E (e ,4),点D ,E ,F 的“坐标轴三角形”的面积为3, ①2DF e =-,312EF =-=,①12332DEF S e =-⨯=,即2e -=2,解得:e =4或e =0; (3)由点N ,M , G 的“坐标轴三角形”为等腰三角形可得:直线MN 为y=x+b 或y =-x +b .①当直线MN 为y=x+b 时,由于点M 的坐标为(m ,4),可得m =4-b ,由图可知:当直线MN 平移至与①O 相切,且切点在第四象限时,b 取得最小值.此时直线MN 记为M 1 N 1,其中N 1为切点,T 1为直线M 1 N 1与y 轴的交点.①①O N 1T 1为等腰直角三角形,ON 322①2213232()()322OT +=, ①b 的最小值为-3,①m 的最大值为m =4-b =7;当直线MN 平移至与①O 相切,且切点在第二象限时,b 取得最大值.此时直线MN 记为M 2 N 2,其中N 2为切点,T 2为直线M 2 N 2与y 轴的交点.①①ON 2T 为等腰直角三角形,ON 2322①2223232()()322OT +=, ①b 的最大值为3,①m 的最小值为m =4-b =1,①m 的取值范围是17m ≤≤;①当直线MN 为y =-x+b 时,同理可得,m =b -4,当b =3时,m =-1;当b =-3时,m =-7;①m 的取值范围是71m ≤≤--.综上所述,m 的取值范围是17m ≤≤或71m ≤≤--.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.18.(1)b, c 的值分别为5, -5;(2)当52x =时y 有最大值【分析】(1)把点代入2y x bx c =-++求解即可得到b,c 的值;(2)代入二次函数一般式中顶点坐标的横坐标求解公式进行求解即可.【详解】解:(1)①抛物线2y x bx c =-++过点(0,-5)和(2,1), ①5421c b c =-⎧⎨-++=⎩, 解得 55b c =⎧⎨=-⎩, ①b, c 的值分别为5, -5.(2)a= -1 ,b=5,①当x=522b a -=时y 有最大值. 【点睛】本题考查了利用待定系数法求解析式,熟记二次函数的图象和性质是解题的关键.19.y = -0.4x 2+4【分析】根据题意设抛物线的表达式为y=ax 2+4 (0a ≠),代入(-2,2.4),即可求出a .【详解】解:设y=ax 2+4 (0a ≠)① 图象经过(-2,2.4)① 4a+4=2.4a= -0.4① 表达式为y= -0.4x 2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.20.(1) 2(2)1y x =--;(2)见解析;(3) 1 < x < 3【分析】(1)运用配方法把一般式化为顶点式;(2)根据函数图象的画法画出二次函数图象即可;(3)运用数形结合思想解答即可.【详解】(1) 2(2)1y x =--(2)在平面直角坐标系xOy 中,画出该函数的图象如下:(3)y <0即在x 轴下方的点,由图形可以看出自变量x 的取值范围为: 1 < x < 3【点睛】本题考查的是二次函数的三种形式、二次函数的性质,掌握配方法把一般式化为顶点式是解题的关键.21.(1)(0,2);(2)21y x 24=-+;(3)m=2或1m 4≤-. 【分析】(1)2mx 2y =+是顶点式,可得到结论;(2)把A 点坐标代入2mx 2y =+得方程,于是得到结论;(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m 的值,再进行分析变化趋势可得到结论.【详解】(1)2mx 2y =+是顶点式,顶点坐标为,2(0);(2)①抛物线经过点()3.A m -,①m=9m +2,解得: 1m 4=- , ①21y x 24=-+ (3)如图1,当抛物线开口向上时,抛物线顶点在线段AB 上时,m 2= ;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点A 时,1m 4=- ; 直线x=-3交抛物线于点(-3,9m+2),当1m<4-时,9m+2<m ,交点位于点A 下方,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有且只有一个交点,符合题意;综上所述,当m 2=或1m 4≤- 时,抛物线与线段AB 只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.22.(1)(0,-3);(2)B(2,-3);(3) 318a≤≤或3a<-【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴对称,求出对称轴从而即可求点B的坐标;(3)结合函数图象,抛物线与线段PQ恰有两个公共点,分别对有两个公共点的情况进行讨论求解.【详解】解:(1)由题意抛物线2230y ax ax a与y轴交于点A ,将x=0代入求出坐标为(0,3)-;(2)①212b axa a-=-=-=;①(2,3)B-.(3)当抛物线过点P(4,0)时,38a=,①8(,0)3Q-.此时,抛物线与线段PQ有两个公共点.当抛物线过点1(,0)Qa时,a=1,此时,抛物线与线段PQ有两个公共点.①抛物线与线段PQ恰有两个公共点,①318a≤≤.当抛物线开口向下时,3a<-.综上所述,当318a≤≤或3a<-时,抛物线与线段PQ恰有两个公共点.【点睛】本题考查二次函数图像相关性质,熟练掌握二次函数图像相关性质是解题的关键.23.(1)c=-2,对称轴为直线12x=;(2)-2,3是关于x的一元二次方程ax2+bx+c=t的根;(3)211 2.22y x x =-- 【分析】(1)根据表格中对应值可知对称轴的值和抛物线与y 轴的交点,即可求得c 的值;(2)根据二次函数的对称性即可求得;(3)根据待定系数法求得即可.【详解】(1)c =-2,对称轴为直线12x =. (2)由对称性可知,-2,3是关于x 的一元二次方程ax 2+bx +c =t 的根.(3) 由题意知,二次函数的图象经过点(-1,-1),(0,-2),(1,-2).①-1=2,2 2.a b a b --⎧⎨-=+-⎩解得 1,21.2a b ⎧=⎪⎪⎨⎪=-⎪⎩① 二次函数的解析式为211 2.22y x x =-- 【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求解函数对称轴是解题的关键.24.小丁此次投掷的成绩是8米.【分析】如图建立直角坐标系,可得顶点坐标为(3,52),A 点坐标为(0,85)根据顶点坐标设二次函数解析式为y=a(x-3)2+52,把A 点坐标代入即可求出a 值,可得二次函数解析式,令y=0,求出x 的正值即为铅球投掷的成绩.【详解】如图建立直角坐标系,①铅球出手处距离地面的高度是85米,当铅球运行的水平距离为3米时,最大高度为52米, ①A (0,85),B (3,52), 设二次函数的解析式为y=a(x-3)2+52, ①(0-3)2a+52=85, 解得:a=110-, ①二次函数的解析式为y=110-(x-3)2+52, 当y=0时,110-(x-3)2+52=0,解得:x1=8,x2=-2(舍去),①小丁此次投掷的成绩是8米.【点睛】本题考查了二次函数在实际生活中的应用,如知道二次函数的顶点可设二次函数解析式为顶点式,求出二次函数解析式是解题的关键.25.(1)A(-1,0),C(0,-3),P(1,-4);(2)画图见解析.【分析】(1)把二次函数的一般形式变形为交点式和顶点式,即可得出点A、点B坐标和顶点P的坐标,当x=0时,y=-3,可得C点坐标;(2)根据点C坐标和对称轴可得点C关于对称轴对称的点的坐标,利用描点法画出二次函数图象即可.【详解】(1)①y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,①图象与x轴交点为(-1,0)和(3,0),顶点P坐标为(1,-4),①点A在点B左侧,①A(-1,0),①当x=0时,y=-3,①点C坐标为(0,-3).(2)①C(0,-3),对称轴为x=1,①点C关于直线x=1的对称点为(2,-3),①二次函数图象如图所示:【点睛】本题考查二次函数的性质及利用描点法画二次函数图象,熟练掌握二次函数的3种形式是解题关键.26.(1)2++2,A坐标为(-4,2);(2)①(-3,-1),(-2,-2),(-1,-1);y x x4①112m <≤或322m -≤<-. 【分析】(1)根据题意,得B 坐标为(0,2),把B 的坐标代入2222y x mx m =---,即可求解; (2)①把x=-3,x=-2,x=-1,代入2222y x mx m =---,即可;①联立2222y x mx m =---与2y x =--,得:22222y x mx m y x ⎧=---⎨=--⎩ ,得C ,D 点坐标分别是:(-1,-1),(2m ,-2m-2),进而可求得m 的范围.【详解】(1)①抛物线与直线2y =交于A ,B 两点,点B 在y 轴上,①B 坐标为(0,2),把B (0,2)代入2222y x mx m =---,得:222m =--,解得:m=-2,①抛物线得解析式为:2++24y x x =,当y=2时,22+4+2=x x ,解得:1204,x x ==-,①A 坐标为(-4,2),(2)①①A 坐标为(-4,2),B 坐标为(0,2),①当x=-3时,2+4(3)3+2=()1y ⨯=---,当x=-2时,2+4(2)2+2=()2y ⨯=---,当x=-1时,2+4(1)1+2=()1y ⨯=---,1G 上的横整点的坐标是:(-3,-1),(-2,-2),(-1,-1)①联立2222y x mx m =---与2y x =--,得:22222y x mx m y x ⎧=---⎨=--⎩ , ①22222=x mx m x -----,即:2(21)2=0x m x m ---,①(2)(1)=0x m x -+,解得:122,1x m x ==-,①C ,D 点坐标分别是:(-1,-1),(2m ,-2m-2),①2G 上恰有两个横整点,①两个横整点的横坐标为:x=0,x=1或x=-2,x=-3,①2122m m >⎧⎨≤⎩或2324m m <-⎧⎨≥-⎩ ①112m <≤或322m -≤<-. 【点睛】本题主要考查二次函数的图象和性质与二次方程以及不等式的综合,根据题意把二次函数问题化为二次方程和一元一次不等式组,是解题的关键.27.(1)2124y x x =-+,(2)从A 喷出的水珠能越过这棵树. 【分析】(1)根据待定系数法,即可求得二次函数的解析式,(2)先求出树顶离底面的高度,再求出当x=2时,二次函数的值,进行二者的大小关系,即可得到答案.【详解】(1)①1tan 2α=,BC=3, ①AC=6,即:点B 坐标是:(6,3),把(4,4)(6,3)代入:2y ax bx =+,得:16443663a b a b +=⎧⎨+=⎩ ,解得:142a b ⎧=-⎪⎨⎪=⎩, ①二次函数的解析式是:2124y x x =-+ (2)树顶离底面高度为:1.8+2×tan α=1.8+2×12=2.8, 当x=2,代入2124y x x =-+,得:212224y =-⨯+⨯=3>2.8, ①从A 喷出的水珠能越过这棵树.【点睛】本题主要考查二次函数的待定系数法和二次函数的实际应用,求出二次函数的解析式,是解题的关键.28.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,①符合题意的a 的取值范围是 -1≤a <0.【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k ab a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ①当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==① A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k a b a =+=-- ①y=(1+32a)x-1-3a. ①点Q 在直线PC 上,且Q 点的横坐标为4,①Q 点的纵坐标为3+3a①当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.①a≥-1.①符合题意的a 的取值范围是 -1≤a <0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.29.(1)2160y x =-+;(2)销售单价定为55元时,该商店每天获得的利润最大,最大利润是1250元.【分析】(1)将点(30,100)、(45,700)代入--次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+ ,即可求解.【详解】(1)设销售量y 与销售单价x 之间的函数关系式为y kx b =+,将点(30,100)、(45,70)代入,得100307045k b k b =+⎧⎨=+⎩. 解得2160k b =-⎧⎨=⎩. ①函数的关系式为:2160y x =-+(2)由题意得 2(30)(2160)2(55)1250w x x x =--+=--+20-<,且30≤x≤60.∴当55x =时,w 取得最大值,此时1250w =.①销售单价定为55元时,该商店每天获得的利润最大,最大利润是1250元.【点睛】此题主要考查了二次函数的应用、待定系数法求一次函数解析式等知识, 解答时求出函数的解析式是关键.30.26【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为2y ax =(a≠0).①图象经过点(2,-2),①-2=4a ,。

2020-2021初三数学一模试题分类汇编——二次函数综合含详细答案

2020-2021初三数学一模试题分类汇编——二次函数综合含详细答案

2020-2021初三数学一模试题分类汇编——二次函数综合含详细答案一、二次函数1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值, ∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.2.如图,在平面直角坐标系中,点O 为坐标原点,直线y=﹣x+n 与x 轴、y 轴分别交于B 、C 两点,抛物线y=ax 2+bx+3(a≠0)过C 、B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3.(1)求抛物线的解析式;(2)若点P 是射线CB 上一点,过点P 作x 轴的垂线,垂足为H ,交抛物线于Q ,设P 点横坐标为t ,线段PQ 的长为d ,求出d 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)在(2)的条件下,当点P 在线段BC 上时,设PH=e ,已知d ,e 是以y 为未知数的一元二次方程:y 2-(m+3)y+14(5m 2-2m+13)="0" (m 为常数)的两个实数根,点M 在抛物线上,连接MQ 、MH 、PM ,且.MP 平分∠QMH ,求出t 值及点M 的坐标.【答案】(1) y=-x 2+2x+3;(2)223(03){3(3)d t t t d t t t =-+<<=->;(3)t=1,2,2)和(12,2).【解析】【分析】(1)当x=0时代入抛物线y=ax 2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的解析式,就可以求出B 的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA 的值,得出A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P 在线段CB 上时,和如图3点P 在射线BN 上时,就有P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3),就可以得出d 与t 之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m 的值,就可以求出方程的解而求得PQ 和PH 的值,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,延长MP 至L ,使LP=MP ,连接LQ 、LH ,就可以得出四边形LQMH 是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=,解得:1 {2 ab=-=∴抛物线的解析式:y=-x2+2x+3;(2) 如图1,∵P点的横坐标为t 且PQ垂直于x轴∴P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3).∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |∴223(03) {3(3)d t t td t t t=-+<<=->;∵d,e是y2-(m+3)y+14(5m2-2m+13)=0(m为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×14(5m2-2m+13)≥0整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,∴△=0,m=1,∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+2,x2=1-2综上:t值为1,M点坐标为(1+2,2)和(1-2,2).3.如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】(1)二次函数的解析式为:y=-x2-x+2;;(2)最大值为1,此时N(-1,2);(3)M的坐标为(-1,0)或(50)或(-32,0);(4)点P的坐标为:(-1,2)或(-73,-109).【解析】【分析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(-32,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.【详解】(1)∵二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x-1),把C(0,2)代入得:2=a(0+2)(0-1),a=-1,∴y=-(x+2)(x-1)=-x2-x+2,∴二次函数的解析式为:y=-x2-x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,-n2-n+2),设直线AC的解析式为:y=kx+b,把A(-2,0)、C(0,2)代入得:202k bb-+⎧⎨⎩==,解得:12 kb⎧⎨⎩==,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(-n2-n+2)-(n+2)=-n2-2n,∴S△ANC=12×2×[-n2-2n]=-n2-2n=-(n+1)2+1,∴当n=-1时,△ANC的面积有最大值为1,此时N(-1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(-1,0);②如图2,由勾股定理得:BC=22251=,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=5,此时,M2(1-5,0),M3(1+5,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=32,∵M4在x轴的负半轴上,∴M4(-32,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(-1,0)或(1±5,0)或(-32,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(-1,2),②如图5,由(3)知:当M(-32,0)时,MB=MC ,设CM 与抛物线交于点P 2, 过P 2作P 2Q ⊥BC ,此时,△CP 2Q ∽△BCO ,易得直线CM 的解析式为:y=43x+2, 则24232y x y x x ⎧=+⎪⎨⎪=--+⎩, 解得:P 2(-73,-109), 综上所述,点P 的坐标为:(-1,2)或(-73,-109). 【点睛】 本题是二次函数的综合题,计算量大,考查了利用待定系数法求函数的解析式、利用函数解析式求其交点坐标、三角形相似的性质和判定、等腰三角形的性质和判定,是一个不错的二次函数与几何图形的综合题,采用了分类讨论的思想,第三问和第四问要考虑周全,不要丢解.4.如图,直线y =-12x-3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B(2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34(m+3)2+274;△ADC 的面积最大值为274;此时D(﹣3,﹣154);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】【分析】 (1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线A D′的解析式为y =32x+9,解方程组求出函数图像交点坐标.【详解】 解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得: 366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F.∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m ,∴S △ADC =S △ADF +S △DFC =12DF•AE+12•DF•OE =12DF•OA =12×(﹣14m 2﹣32m)×6 =﹣34m 2﹣92m =﹣34(m+3)2+274, ∵a =﹣34<0, ∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=﹣154, ∴存在点D(﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =32x+9, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD ′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..5.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根.(1)求k 的取值范围;(2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k=2. 【解析】【分析】 (1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可.【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1∵△≥0∴4k +1≥0∴k ≥﹣14; (2)∵x 1,x 2是方程两根,∴x 1+x 2=2k +1x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k == 又∵k ≥﹣14 , 即:k【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于ba,两根之积等于ca”是解题的关键.6.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

北京市各区中考数学一模试卷精选汇编 二次函数综合专题

北京市各区中考数学一模试卷精选汇编 二次函数综合专题

二次函数综合专题东城区26.在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y 与x 轴交于A ,B 两点(点A 在点B 左侧). (1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分 (2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时, 依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分西城区26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线:1(0)y mx m m =+-≠.(1)当1m =时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x【解析】(1)当1m =时,抛物线G 的函数表达式为22y x x =+,直线的函数表达式为y x =,直线被抛物线Gx(2)∵抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C , ∴点C 的坐标为(0,1)C m -,∵2221(1)1y mx mx m m x =++-=+-, ∴抛物线G 的顶点D 的坐标为(1,1)--, 对于直线:1(0)y mx m m =+-≠, 当0x =时,1y m =-,当1x =-时,(1)11y m m =⨯-+-=-, ∴无论m 取何值,点C ,D 都在直线上.(3)m 的取值范围是m ≤m . 海淀区26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26.解:抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a =,1b ∴=.∴抛物线的解析式为221y x x =-+.①1m b ==,2211x x ∴-+=,解得10x =,22x =. ………………2分②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分 丰台区26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.54411231213xOy687654327654326526.解:(1)∵抛物线()22432y ax ax a a x a =-+=--,∴对称轴为x = 2.………………………………………1分 ∵抛物线最高点的纵坐标是2,∴a = -2. ………………………………………2分∴抛物线的表达式为2286y x x =-+-. ……………3分(2)由图象可知,2b = 或-6≤b <0. ………………6分由图象的对称性可得:x 1+x 2=2. ……………… 7分xy石景山区26.在平面直角坐标系xOy中,将抛物线21G y mx =+:(0m ≠位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式; ②若60120BAC <∠<°°,直接写出m 的取值范围.26.解:(1)()A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =-+,如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为. ∵点B 在抛物线2G 上,可得3m =-.∴抛物线2G的表达式为23y x =-+,即223y x x =+………………… 5分②m <<-. ………………… 7分 朝阳区26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.26.解:(1)44)2(4422---=--=a x a ax ax y .∴A (0,-4),B (2,0).……………………………………2分 (2)当抛物线经过点(1,0)时,34-=a .…………………… 4分 当抛物线经过点(2,0)时,1-=a . …………………………6分 结合函数图象可知,a 的取值范围为134<≤-a .……………… 7分燕山区24.如图,在平面直角坐标系中,直线l : y=kx+k (k ≠0)与x 轴,y 轴分别交于A,B 两点,且点B(0,2),点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y=t . (1)求 k 的值和点A 的坐标;(2)当t=4时,直线y=t 与直线l 交于点M ,反比例函数xny =(n ≠0)的图象经过点M ,求反比例函数的解析式;(3)当t<4时,若直线y=t与直线l和(2)反比例函数的图象分别交于点C,D,当CD间时,求距离大于等于2t 的取值范围.24.解:(1)∵直线l :y=kx+k 经过点B(0,2),∴k=2∴ y=2x+2∴A(-1,0) ……………………….2′(2)当t=4时,将y=4代入y=2x+2得,x=1∴M(1,4)代入xny =得,n=4 ∴xy 4=……………………….2′ (3)当t=2时,B(0,2) 即C(0,2),而D(2,2)如图,CD=2,当y=t 向下运动但是不超过x 轴时,符合要求∴ t 的取值范围是 0 <t ≤2 ……………………….5′ 门头沟区26.有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =; ③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”, 平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.26. (本小题满分7分)(1)解:有上述信息可知该函数图象的顶点坐标为: (3,2)- 设二次函数表达式为:2(3)2y a x =-- ……………1分 ∵该图象过(1,0)A∴20(13)2a =--,解得12a =……………2分 ∴表达式为21(3)22y x =-- (2)图象正确………………………………………………………3分 由已知条件可知直线与图形“G ”要有三个交点① 当直线与x 轴重合时,有2个交点,由二次函数的轴对称性可求 346x x += ……………………………………4分 ∴34511x x x ++> ……………………………………5分 ②当直线过21(3)22y x =--的图象顶点时,有2个交点, 由翻折可以得到翻折后的函数图象为21(3)22y x =--+ ∴令21(3)222x --+=-时,解得3x =±3x =-6分∴345922x x x +++<综上所述3452x x x ++11<<9+2…………7分 大兴区26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分 2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分平谷区26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2. (1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.26.解:(1)∵抛物线223y x bx =-+-的对称轴为直线x =2,∴b =2. (1)(2)①∴抛物线的表达式为243y x x =-+-.∵A (x 1,y ),B (x 2 ,y ),∴直线AB 平行x 轴.∵213x x -=,∴AB =3.∵对称轴为x =2,∴AC =12. (2)∴当12x =时,54y m ==-. (3)②当y =m =-4时,0≤x ≤5时,41y -≤≤; · 4当y =m =-2时,0≤x ≤5 时,24y -≤≤; 5∴m 的取值范围为42m -≤≤-. (6)怀柔区26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .(1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围. yx –1–2–3–4–512345–1–2–3–4–512345O26.(1)M(2,-1); ………………………………………………………………………………2分(2)B(4,3); …………………………………………………………………………………3分(3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3),∴4n -1=3.∴n=1. ……………………………………………………………………………………4分∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m . ∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分延庆区26.在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧).(1)求抛物线的对称轴及点A ,B 的坐标;(2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点D .①当CD AD =时,求此时抛物线的表达式;②当CD AD >时,求t 的取值范围.26.(1)对称轴:x =2 ……1分A (1,0)或B (3,0) ……1分(2)①如图1,∵AD =CD∴AD =3∴C 点坐标为(4,3) ……3分将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分②34t << ……6分过程略顺义区26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.26.解:(1)依题意12-=-b ,b =2, 由B (0,-1),得c=-1,∴抛物线的表达式是221=+-y x x .…………………… 2分y x O4(2)向下平移4个单位得到225=+-y x x ,……………………… 3分 ∵OP =OQ ,∴P 、Q 两点横坐标相同,纵坐标互为相反数.∴2221250+-++-=x x x x .∴13=-x ,21=x .………………………………………………… 5分 把13=-x ,21=x 分别代入225=+-y x x .得出Q 1(-3,-2),Q 2(1,-2).………………………………… 7分欢迎您的下载,资料仅供参考!。

2020-2021九年级数学一模试题分类汇编——二次函数综合附答案解析

2020-2021九年级数学一模试题分类汇编——二次函数综合附答案解析

2020-2021九年级数学一模试题分类汇编——二次函数综合附答案解析一、二次函数1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--.【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+. ∵对称轴为1x =-,且抛物线经过()1,0A , ∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.(6分)(2015•牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.3.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x =﹣2,则y =1, ∴E(﹣2,1), ∴EM =1,AM =1, ∴S =12AM×EM =12. (4)∵M(﹣2,0),抛物线的对称轴为x =﹣l , ∴N 应与原点重合,Q 点与C 点重合, ∴DQ =DC ,把x =﹣1代入y =﹣x 2﹣2x+3,解得y =4, ∴D(﹣1,4), ∴DQ =DC∵FG =, ∴FG =4.设F(n ,﹣n 2﹣2n+3),则G(n ,n+3), ∵点G 在点F 的上方且FG =4, ∴(n+3)﹣(﹣n 2﹣2n+3)=4. 解得n =﹣4或n =1, ∴F(﹣4,﹣5)或(1,0). 【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.5.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m : (1)①直接写出a 的值;②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①求PDDD的值; ②直接写出L 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1;②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩…; (3)h =±3 【解析】 【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值. 【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭,2222322m 22,PG m 22m 2422FH PH PF ===-+-=-+ ∵DD ′∥EGEG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG2212242222m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)2L ⎧+<⎪∴=⎨+-+++<<⎪⎩…;(3)如图3,∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,23PA = 23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.6.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表: 时间(天) 1 3 6 10 36 … 日销售量(件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围.详解:(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.7.已知点A(﹣1,2)、B(3,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【答案】(1)抛物线的解析式为y=x2﹣x;(2)证明见解析;(3)当运动时间为或秒时,QM=2PM.【解析】【分析】(1)(1)A,B的坐标代入抛物线y=ax2+bx中确定解析式;(2)把A点坐标代入所设的AF的解析式,与抛物线的解析式构成方程组,解得G点坐标,再通过证明三角形相似,得到同位角相等,两直线平行;(3)具体见详解.【详解】.解:(1)将点A(﹣1,2)、B(3,6)代入中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直线AF的解析式为y=(m﹣2)x+m.联立直线AF和抛物线解析式成方程组,,解得:或,∴点G的坐标为(m,m2﹣m).∵GH⊥x轴,∴点H的坐标为(m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).过点A作AA′⊥x轴,垂足为点A′,如图1所示.∵点A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,2)、B(3,6)代入y=k0x+b0中,得,解得:,∴直线AB的解析式为y=x+3,当运动时间为t秒时,点P的坐标为(t﹣3,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示,∵QM=2PM,∴ =,∴QM′=QP'=2,MM′=PP'=t,∴点M的坐标为(t﹣2, t).又∵点M在抛物线y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣6,2t),∵点M在抛物线y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.综上所述:当运动时间秒或时,QM=2PM.【点睛】本题考查二次函数综合运用,综合能力是解题关键.8.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.9.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=32列出关于a、c的方程组求解即可;(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】 (1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩,解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a . 又∵PE=3PF , ∴PC PBPF PE=. ∴∠FPC=∠EPB . ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a , ∴OF=20﹣3a . ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.10.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少? 【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论. 【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b , 将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩,解得:3300m n =-⎧⎨=⎩,∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105,∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600, 当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65,∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675, ∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.11.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3(2)运动1秒使△PBQ 的面积最大,最大面积是910(3)K 1(1,﹣278),K 2(3,﹣158)【解析】 【详解】试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158).解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3;(2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO ,∴△BHQ ∽△BOC , ∴HB OC BG BC=,即Hb 35t =, ∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910. 当△PBQ 存在时,0<t <2∴当t=1时, S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0).把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上. ∴设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.12.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标. (2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到, ∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+. 连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩. 解得32x t y t=-⎧⎨=⎩, ∴()3,2F t t -. 111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.13.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x 2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E 点坐标为(,)时,△CBE 的面积最大.【解析】试题分析:(1)由直线解析式可求得B 、C 坐标,利用待定系数法可求得抛物线解析式; (2)由抛物线解析式可求得P 点坐标及对称轴,可设出M 点坐标,表示出MC 、MP 和PC 的长,分MC=MP 、MC=PC 和MP=PC 三种情况,可分别得到关于M 点坐标的方程,可求得M 点的坐标;(3)过E 作EF ⊥x 轴,交直线BC 于点F ,交x 轴于点D ,可设出E 点坐标,表示出F 点的坐标,表示出EF 的长,进一步可表示出△CBE 的面积,利用二次函数的性质可求得其取得最大值时E 点的坐标.试题解析:(1)∵直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,∴B (3,0),C (0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.14.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【解析】试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.试题解析:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×ADOC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.15.如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC 上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析【解析】【分析】 (1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标:设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8),∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形.∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8). (2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10a x 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b , ∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.。

2020北京各区一模数学试题分类汇编--函数与导数(解析版)

1 / 312020北京各区一模数学试题分类汇编--函数与导数(2020海淀一模)已知函数f (x )=|x -m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A. [-1,+∞) B. (-∞,-1]C. [-2,+∞)D. (-∞,-2]【答案】D【解析】函数()f x x m =-与函数()g x 的图象关于y 轴对称,()=()g x f x x m \-=+,()g x 在区间(12),内单调递减, 则22m m -砛?,, 故选:D .(2020西城一模)设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( ) A. (]0101, B. (]099,C. (]0100, D. ()0+∞,2 / 31【答案】B【解析】()21010lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示:根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .(2020西城一模)下列函数中,值域为R 且为奇函数的是( )3 / 31A. 2y x =+B. y sinx =C. 3y x x =-D. 2x y =【答案】C【解析】A. 2y x =+,值域为R ,非奇非偶函数,排除; B. y sinx =,值域为[]1,1-,奇函数,排除;C. 3y x x =-,值域为R ,奇函数,满足;D. 2x y =,值域为()0,∞+,非奇非偶函数,排除; 故选:C .(2020东城一模)设函数()()120f x x x x=+-<,则()f x ( ) A. 有最大值 B. 有最小值C. 是增函数D. 是减函数【答案】A【解析】0x <Q ,()()112224f x x x x x ⎡⎤∴=+=--+-≤--=-⎢⎥-⎣⎦,当且仅当1x x -=-,即 1x =-时取等号,()f x ∴有最大值,又由对勾函数的图象可知()f x 在(),0-∞上不具单调性. 故选:A.(2020丰台一模)已知函数()e 1,0,,0.x x f x kx x ⎧-≥=⎨<⎩若存在非零实数0x ,使得()()00f x f x -=成立,则实数k 的取值范围是( ) A. (),1-∞-B. (],1-∞-C. ()1,0-D. [)1,0-4 / 31【答案】A【解析】不妨设00x >当0k ≥时,()00=e 10xf x ->,()000f x kx -=-≤,不存在非零实数0x ,使得()()00f x f x -=成立,则0k ≥不满足题意当k 0<时,若存在非零实数0x ,使得()()00f x f x -=成立,则方程00e 1xkx -=-有非零的正根,即函数()e 1,0x y x =->与(),0y kx x =->有交点先考虑函数()e 1,0xy x =-≥与直线y kx =-相切的情形设切点为11(,)x y ,则11111e 1x x k e y kx y ⎧-=⎪=-⎨⎪=-⎩,整理得()111e 10xx -+=令()()1e 1,0xg x x x =-+≥,则()0e xg x x '=≥,即函数()g x 在[)0,+∞上单调递增则()(0)0g x g ≥=,所以方程()111e 10xx -+=的根只有一个,且10x =,即1k -=则函数()e 1,0xy x =-≥与直线y kx =-相切时,切点为原点所以要使得函数()e 1,0xy x =->与(),0y kx x =->有交点,则1k ->,即1k <-所以实数k 的取值范围是(),1-∞- 故选:A(2020丰台一模)已知132a =,123b =,31log 2c =,则( ) A. a b c >> B. a c b >>C. b a c >>D. b c a >>【答案】C5 / 31【解析】66121342372⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭Q ,0a b ∴<<331log log 021c =<=Q b a c ∴>>故选:C(2020朝阳区一模)下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A. 3y x = B. 21y x =-+C. 2log y x =D. ||2x y =【答案】D【解析】函数3y x =是奇函数,不符合;函数21y x =-+是偶函数,但是在(0,)+∞上单调递减,不符合;函数2log y x =不是偶函数,不符合;函数||2x y =既是偶函数又在区间(0,)+∞上单调递增,符合. 故选:D(2020朝阳区一模)已知函数222,1,()2ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()2af x ≥在R 上恒成立,则实数a 的取值范围为( )A. (-∞B. 3[0,]2C. [0,2]D.【答案】C【解析】(1)当1x ≤时,由()2a f x ≥得23(2)2x a x ≥-,6 / 31当314x <≤时,2322x a x ≤-232()4x x =-恒成立,因为222333933()()()42416443332()2()2()444x x x x x x x -+-+-+==---913316()32442()4x x =-++- 令34t x =-,则104t <≤,令193()2164y t t =++,则219(1)216y t'=-0<, 所以193()2164y t t =++在1(0,]4上递减,所以11938()212444164y ≥++==⨯, 即913316()32442()4x x -++-的最小值为2, 所以此时2a ≤,当34x ≤时,2322x a x ≥-913316()32442()4x x =-++-1393[()]324416()4x x =--++-恒成立, 因为1393[()]324416()4x x --++-1324≤-⨯0=,当且仅当0x =时取等, 所以0a ≥,(2)当1x >时,由()2a f x ≥得21ln 2xa x ≤+恒成立, 令21ln 2x y x =+(1)x >,则22ln 11(ln )2x y x -'=+,7 / 31由0y '>得12x e >,由0y '<得121x e <<,所以函数21ln 2x y x =+12(1,)e 上递减,在12(,)e +∞上递增,所以x =min 22y ==+a ≤ 综上所述:02a ≤≤. 故选:C(2020石景山一模)下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( )A. 22y x =-+B. 2x y -=C. ln y x =D. 1y x=【答案】D【解析】由基本函数的性质得:22y x =-+为偶函数,2xy -=为非奇非偶函数,ln y x =为非奇非偶函数,1y x=为奇函数,且在区间()0,∞+上单调递减. 故选:D(2020石景山一模)设()f x 是定义在R 上的函数,若存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫= ⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;8 / 31③()21f x x =-;具有性质P 的函数的个数为( ) A. 0 B. 1C. 2D. 3【答案】C【解析】对于①:取121,1x x ==-,则 12()1,()1f x f x ==-此时,12(0)02x x f f +⎛⎫==⎪⎝⎭,()()121(1)022f x f x ++-==. 所以()()121222f x f x x x f ++⎛⎫=⎪⎝⎭故函数①具有性质P .对于②:假设存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭, 则222121211222224x x x x x x x x f +++⋅+⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. ()()22121222f x f x x x ++=. 所以22112224x x x x +⋅+22122x x +=,化简得:2221212122()0044x x x x x x +--=⇒=即:12x x =.与“存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭” 矛盾.9 / 31故函数②不具有性质P .对于③:取12x x = 12()1,()1f x f x ==此时,12(0)12x x f f +⎛⎫==⎪⎝⎭,()()1211122f x f x ++== 所以()()121222f x f x x x f ++⎛⎫=⎪⎝⎭故函数③具有性质P . 故选:C.(2020怀柔一模)若函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减,则实数a 的取值范围是___________.【答案】)+∞. 【解析】由题可知:函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减 等价于'()0f x ≤在(,)22ππ-恒成立 即()'()cos sin 0=--≤xf x ex x a 在(,)22ππ-恒成立则cos sin 4π⎛⎫≥-=+ ⎪⎝⎭a x x x 在(,)22ππ-恒成立所以max4π⎤⎛⎫≥+⎪⎥⎝⎭⎦a x ,10 / 31由(,)22x ππ∈-,所以3,444πππ⎛⎫+∈- ⎪⎝⎭x故cos 42π⎛⎤⎛⎫+∈- ⎥ ⎪ ⎝⎭⎝⎦x(4π⎛⎫+∈- ⎪⎝⎭x所以a ≥)∈+∞a故答案为:)+∞(2020怀柔一模)函数f(x)=|log 2x|的图象是( )A. B.C. D.【答案】A【解析】易知函数值恒大于等于零,同时在(0,1)上单调递减且此时的图像是对数函数的图像关于x 轴的对称图形,在单调递增.故选A .(2020密云一模)已知函数21,0()(2),0x x f x f x x -⎧-≤=⎨->⎩,若关于x 的方程3()2f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是_______________.11 / 31【答案】(,3)-∞【解析】函数()f x 的图象如图所示:因为方程3()2f x x a =+有且只有两个不相等的实数根, 所以()y f x =图象与直线32y x a =+有且只有两个交点即可, 当过(0,3)点时两个函数有一个交点,即3a =时,32y x a =+与函数()f x 有一个交点, 由图象可知,直线向下平移后有两个交点, 可得3a <, 故答案为:(,3)-∞.(2020顺义区一模)11.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点, 则令()10y f x =-=,即()1f x =,12 / 31又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩, ①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =综上所以,函数()1y f x =-的零点是0或.故答案为:0(2020顺义区一模)当[]0,1x ∈时,若函数()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点,则正实数m 的取值范围是( )A. [)2,+∞B. (]50,2,+2U ⎡⎫∞⎪⎢⎣⎭C. 5,2⎡⎫+∞⎪⎢⎣⎭D. (][)20,1,+U ∞【答案】B【解析】当[]0,1x ∈时,又因为m 为正实数,函数()()21f x mx =-的图象二次函数,在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间[1m ,1)为增函数; 函数()22m mg x x x =+=+,是斜率为1的一次函数.13 / 31最小值为()min 2m g x =,最大值为()max 12m g x =+; ①当11m≥时,即01m <≤时, 函数()()21f x mx =-在区间[]0,1 为减函数,()2mg x x =+在区间[]0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥,()()max min 00f g ≥即()2012mm ⨯-≥,解得2m ≤, 所以01m <≤ ②当101m<<时,即1m >时, 函数()()21f x mx =-在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间[1m ,1)为增函数,()2mg x x =+在区间[]0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max minf xg x ≥()()max min 00f g ≥即()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点 ,14 / 31()()()()10011m f g f g ⎧>⎪≥⎨⎪<⎩,()()2201021112m m m m ⎧⨯-≥+⎪⎪⎨⎪⨯-≥+⎪⎩ 解得12m <≤或52m >综上所述:正实数m 的取值范围为(]50,2,+2U ⎡⎫∞⎪⎢⎣⎭.故选:B(2020顺义区一模)若3log 0.2a =,0.22b =,20.2c =,则( ) A. a c b << B. a b c <<C. c a b <<D. b c a <<【答案】A【解析】33log 0.2log 10a =<=,0.20221b =>=, 2000.20.21c <<==,所以01a c b <<<<,即a c b <<. 故选:A(2020延庆一模)下列函数中,是奇函数且在其定义域上是增函数的是( )A. 1y x=B. y tanx =C. x x y e e -=-D. 2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间,15 / 31对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()xxf x e e -=-知()xx f x ee --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增,所以函数x xy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数. 故选:C(2020海淀一模)已知函数()x f x e ax =+. (I )当a =-1时,①求曲线y = f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点. 【解析】 (I)当1a =-时,①函数()xf x e x =-,0(0)=1f e ∴=,()1x f x e =-',即0(0)1=0f e -'=,16 / 31∴曲线()y f x =在点()(0)0f ,处的切线方程为1y =.②令()1>0x f x e -'=,得0x >,令()1<0x f x e -'=,得0x <, 所以()f x 在(0,+)∞上单增,在(,0)-∞单减,∴函数()f x 的最小值为min ()(0)1f x f ==.(II) 当()2,0a ∈-时,曲线() y f x =与1ln y x =-有且只有一个交点. 等价于()()ln 10xg x e ax x x =++->有且只有一个零点.()()10x g x e a x x'=++>, 当()0,1x ∈时,11,1xe x>>, ()2,0a ∈-Q ,则()10x g x e a x'=++>, 当[)1,x ∈+∞时,12,0xe e x>>>, ()2,0a ∈-Q ,则()10x g x e a x'=++>, ()g x ∴在()0,∞+上单增,又1121()220e a g e e e e=+-<-<Q , ()220e g e e ae e e =+>->,由零点存在性定理得()g x 有唯一零点,即曲线() y f x =与1ln y x =-有且只有一个交点. (2020西城一模)设函数()()22f x alnx x a x =+-+,其中.a R ∈17 / 31(Ⅰ)若曲线()y f x =在点()()22f ,处切线的倾斜角为4π,求a 的值; (Ⅱ)已知导函数()'f x 在区间()1e ,上存在零点,证明:当()1x e ∈,时,()2f x e >-. 【解析】 (Ⅰ)()()2ln 2f x a x x a x =+-+,故()()'22af x x a x=+-+, ()()'42tan 1242a f a π=+-+==,故2a =. (Ⅱ) ()()()()12'220x x a af x x a x x--=+-+==,即()22,a x e =∈,存在唯一零点, 设零点为0x ,故()()000'220af x x a x =+-+=,即02a x =, ()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+==200002ln 2x x x x =--,设()22ln 2g x x x x x =--,则()'2ln 2g x x x =-,设()()'2ln 2h x g x x x ==-,则()2'20h x x=-<,()h x 单调递减, ()()1'12h g ==-,故()'2ln 20g x x x =-<恒成立,故()g x 单调递减. ()()2min g x g e e >=-,故当()1x e ∈,时,()2f x e >-.(2020东城一模)已知函数()ln 1a f x x x=--. (1)若曲线()y f x =存在斜率为-1的切线,求实数a 的取值范围;18 / 31(2)求()f x 的单调区间;(3)设函数()ln x ag x x+=,求证:当10a -<<时, ()g x 在()1,+∞上存在极小值. 【解析】(1)由()ln 1a f x x x =--得()221'(0)a x af x x x x x+=+=>. 由已知曲线()y f x =存在斜率为-1的切线,所以()'1f x =-存在大于零的实数根,即20x x a ++=存在大于零的实数根,因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围(),0-∞. (2)由()2',0,x af x x a R x+=>∈可得 当0a ≥时, ()'0f x >,所以函数()f x 的增区间为()0,∞+; 当0a <时,若(),x a ∈-+∞, ()'0f x >,若()0,x a ∈-, ()'0f x <, 所以此时函数()f x 的增区间为(),a -+∞,减区间为()0,a -.(3)由()ln x ag x x+=及题设得()()()()22ln 1'ln ln ax f x x g x x x --==, 由10a -<<可得01a <-<,由(2)可知函数()f x 在(),a -+∞上递增, 所以()110f a =--<,取x e =,显然1e >,()ln 10a af e e e e=--=->,所以存在()01,x e ∈满足()00f x =,即存在()01,x e ∈满足()0'0g x =,所以()g x , ()'g x 在区间(1,+∞)上情况如下:x 0(1,x ) 0x 0(+x ,)∞19 / 31()'g x - 0 + ()g x ↘ 极小 ↗所以当-1<a<0时,g (x )在(1,+∞)上存在极小值. (2020丰台一模)已知函数()()ln 1f x a x x x =+-+.(1)若曲线()y f x =在点()()e,e f 处的切线斜率为1,求实数a 的值; (2)当0a =时,求证:()0f x ≥; (3)若函数()f x 在区间()1,+?上存在极值点,求实数a 的取值范围.【解析】(1)因为()()ln 1f x a x x x =+-+, 所以()ln a f x xx '=+.由题知()e ln e 1eaf '=+=, 解得0a =.(2)当0a =时,()ln 1f x x x x =-+, 所以()ln f x x '=.当()0,1x ∈时,()0f x ¢<,()f x 在区间()0,1上单调递减;当()1,x ∈+∞时,()0f x ¢>,()f x 在区间()1,+?上单调递增;所以()10f =是()f x 在区间()0,+?上的最小值.20 / 31所以()0f x ≥.(3)由(1)知,()ln ln a x x af x xxx +'=+=.若0a ≥,则当()1,x ∈+∞时,()0f x ¢>,()f x 在区间()1,+?上单调递增,此时无极值.若0a <,令()()g x f x '=, 则()21a g x x x '=-. 因为当()1,x ∈+∞时,()0g x ¢>,所以()g x 在()1,+?上单调递增.因为()10g a =<,而()()eee 10aaa g a a a -=-+=->,所以存在()01,eax -∈,使得()00g x =.()f x ¢和()f x 的情况如下:因此,当0x x =时,()f x 有极小值()0f x . 综上,a 的取值范围是(,0)-∞.21 / 31(2020朝阳区一模)已知函数()11xx f x e x +=--. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)判断函数()f x 的零点的个数,并说明理由;(3)设0x 是()f x 的一个零点,证明曲线xy e =在点00(,)x x e 处的切线也是曲线ln y x =的切线.【解析】(1)因为()11xx f x e x +=--, 所以001010)2(e f -=+=-,()2(1)2e xx f x -'=+,02(01)203e ()f -'==+.所以曲线()y f x =在点(0,(0))f 处的切线的方程为320x y -+=. (2)函数()f x 有且仅有两个零点.理由如下: ()f x 的定义域为{|,1}x x R x ∈≠.因为22()e 0(1)xf 'x x =+>-,所以()f x 在(,1)-∞和(1,)+∞上均单调递增.因为(0)20f =>,21(2)3e 0f --=-<,所以()f x 在(,1)-∞上有唯一零点1x .因为2e (2)30f =->,545()e 904f =-<,所以()f x 在(1,)+∞上有唯一零点2x . 综上,()f x 有且仅有两个零点.(3)曲线xy e =在点00(,)x x e 处的切线方程为00()-=-x x y e e x x ,即0000e e e x x x y x x =-+.22 / 31设曲线ln y x =在点33(,)x y 处的切线斜率为0e x ,则031e xx =,031e x x =,30y x =-,即切点为001(,)ex x -. 所以曲线ln y x =在点001(,)e x x -处的切线方程为 0001e ()ex x y x x +=-,即00e 1x y x x =--. 因为0x 是()f x 的一个零点,所以00011x x ex +=-. 所以00000000011e e e (1)(1)1x x xx x x x x x -+-+=-=-=--.所以这两条切线重合所以结论成立.(2020石景山一模)已知函数()2f x x =(0x >),()lng x a x =(0a >).(1)若()()f x g x >恒成立,求实数a 的取值范围;(2)当1a =时,过()f x 上一点()1,1作()g x 的切线,判断:可以作出多少条切线,并说明理由. 【解析】(1)令()()()2ln h x f x g x x a x =-=-(0x >)所以()2222a x a x x h x x='-=-令()2220x x xh a -'==,解得x =. 当x 变化时,()h x ',()h x 的变化情况如下表: .23 / 31所以在()0,∞+的最小值为ln ln 2222a a a ah a =-=- 令0h >,解得02e a <<. 所以当02e a <<时,()0h x >恒成立,即()()f x g x >恒成立. (2)可作出2条切线.理由如下:当1a =时,()ln g x x =.设过点()1,1的直线l 与()ln g x x =相切于点()00,P x y ,则()00011y g x x -'=-即000ln 111x x x -=-整理得000ln 210x x x -+=令()ln 21x x m x x -=+,则()m x 在()0,∞+上的零点个数与切点P 的个数一一对应.()ln 1m x x '=-,令()ln 10x m x '=-=解得x e =.24 / 31当x 变化时,()m x ',()m x 的变化情况如下表:所以()m x 在()0,e 上单调递减,在(),e +∞上单调递增.且2222211124ln 110m e e e e e ⎛⎫=⨯-+=-+>⎪⎝⎭()ln 2110m e e e e e =⨯-+=-+<()2222ln 2110m e e e e =⨯-+=>所以()m x 在21,e e ⎛⎫⎪⎝⎭和()2,e e 上各有一个零点,即ln 210x x x -+=有两个不同的解. 所以过点()1,1可作出ln y x=2条切线.(2020怀柔一模)已知函数()ln ,()xf x xg x e ==.(1)求()y f x =在点(1,(1))f 处的切线方程; (2)当0x >时,证明:()()f x x g x <<;(3)判断曲线()f x 与()g x 是否存在公切线,若存在,说明有几条,若不存在,说明理由.25 / 31【解析】(1)()ln f x x =的定义域(0,)+∞1()(1)1f x k f x=⇒'='=由 又(1)0f =所以()y f x =在点(1,(1))f 处的切线方程为:1y x =-. (2)设()()ln (0)h x f x x x x x =-=->,11'()101x h x x x x-=-==⇒=由, '(),()h x h x x 随变化如下:max ()(1)ln1110h x h ∴==-=-< ()f x x ∴<设()(),=-=-xs x x g x x e 则'()1e 0xs x =-<在(0,)x ∈+∞上恒成立(0,())x s x ∈+∴∞在上单调递减()(0)10()∴<=-<⇒<s x s x g x综上()()f x x g x <<(3)曲线()f x 与()g x 存在公切线,且有2条,理由如下:26 / 31由(2)知曲线()f x 与()g x 无公共点,设12,l l 分别切曲线()f x 与()g x 于2112(,ln ),(,)xx x x e ,则22112211:ln 1;:(1)x x l y x x l y e x e x x =⋅+-=⋅+-, 若12l l =,即曲线()f x 与()g x 有公切线,则222122121(1)10ln 1(1)x x x ex e x x x e x ⎧=⎪⇒-++=⎨⎪-=-⎩ 令()(1)1xh x e x x =-++,则曲线()f x 与()g x 有公切线,当且仅当()h x 有零点,'()1x h x xe =-+Q ,当0x ≤时,'()0h x >,()h x 在(),0-∞单调递增,当0x >时,()''()10=-+<xh x x e ,'()h x 在()0,∞+单调递减'(0)10,'(1)10h h e =>=-<又,所以存在0(0,1)x ∈,使得000'()10=-+=xh x x e 且当0(0,)x x ∈时,'()0,()h x h x >单调递增, 当0(,)x x ∈+∞时,'()0,()h x h x <单调递减0max 0000001()()(1)1(1)10x h x h x e x x x x x ∴==-++=-++>,27 / 31又22(2)310,(2)30--=-<=-+<h eh e所以()h x 在00(2,),(,2)-x x 内各存在有一个零点故曲线()f x 与()g x 存在2条公切线.(2020密云一模)已知函数()()1xf x e ax =+,a R ∈.(1)求曲线()y f x =在点()()0,0M f 处的切线方程; (2)求函数()f x 的单调区间; (3)判断函数()f x 的零点个数.【解析】(1)()(1)x f x e ax =+Q ,()(1)(1)x x x f x e ax ae e ax a ∴'=++=++,设曲线()y f x =在点(0M ,(0))f 处的切线的斜率为k , 则0(0)(1)(1)1x x k f e ax ae e a a ='=++=+=+, 又(0)1f =,∴曲线()y f x =在点(0M ,(0))f 处的切线方程为:1(1)y a x -=+,即(1)10a x y +-+=;(2)由(1)知,()(1)x f x e ax a '=++,故当0a =时,()0x f x e '=>,所以()f x 在R 上单调递增;当0a >时,1(,)a x a +∈-∞-,()0f x '<;1(a x a+∈-,)+∞,()0f x '>;28 / 31()f x ∴的递减区间为1(,)a a +-∞-,递增区间为1(a a+-,)+∞; 当0a <时,同理可得()f x 的递增区间为1(,)a a +-∞-,递减区间为1(a a+-,)+∞; 综上所述,0a =时,()f x 单调递增为(,)-∞+∞,无递减区间; 当0a >时,()f x 的递减区间为1(,)a a +-∞-,递增区间为1(a a+-,)+∞; 当0a <时,()f x 的递增区间为1(,)a a +-∞-,递减区间为1(a a+-,)+∞; (3)当0a =时,()0xf x e =>恒成立,所以()f x 无零点;当0a ≠时,由()(1)0x f x e ax =+=,得:1x a=-,只有一个零点. (2020顺义区一模)已知函数2()2ln f x x a x =-,其中a R ∈ (1)当2a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若函数()f x 存在最小值Q ,求证:1Q ≤.【解析】(1)2a =时,22()4ln ,(1)1f x x x f =-=4()2f x x x'=-切线斜率(1)242k f '==-=-曲线()y f x =在点(1,(1))A f 处的切线方程为:12(1)y x -=--即:230x y +-=(2)()222()2(0)x a a f x x x x x-'=-=>29 / 31①当0a ≤时,()0f x '≥恒成立()f x 在(0,)+∞单调递增,()f x 无最小值②当0a >时,由()0f x '=得x =x =(x ∈时,()0f x '<,()f x在(单调递减)x ∈+∞时,()0f x '>,()f x在)+∞单调递增所以()f x 存在最小值,ln Q fa a a ==-下面证明1Q ≤.设函数()ln (0),()1(ln 1)ln g a a a a a g a a a '=->=-+=-由()0g a '=得1a =,易知()g a 在(0,1)单调递增,在(1,)+∞单调递减 所以()g a 的最大值为(1)1g = 所以()1g a ≤恒成立,1Q ≤得证.(2020延庆一模)已知函数()2221,1ax a f x x +-=+其中0a ≠ (1)当1a =时,求曲线()y f x =在原点处的切线方程;(2)若函数()f x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.【解析】(1)2222(1)1()(1)x a f x x -'==+当时,. 所以切线的斜率(0)2k f '==;又(0)0f =.30 / 31所以曲线()y f x =在原点处的切线方程为:2y x =.(2)22222(1)(21)2()(1)a x ax a xf x x +-'+-=+()()22222222221()(1)(1)ax a x a ax x a x x -+-+--+==++ 当0a >时,()0f x '=解得 121,x a x a=-=则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的最大值为21()f a a=,若()f x 存在最小值,则()0x ∈+∞,时, 2()(0)1f x f a ≥=-恒成立,即2222111ax a a x +-≥-+, 所以()2221ax a x ≥-即2112a a x-≤在(0,)x ∈+∞恒成立,31 / 31 所以2102a a -≤.又因为 0a >,所以210a -≤,则01a <≤. 当0a <时,()0f x '=解得 121,x a x a =-=则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在()0,a -上单调递减,在(),a -+∞上单调递增, 所以()f x 的最小值为1-,若()f x 存在最大值,则()0x ∈+∞,时,2()(0)1f x f a ≤=-恒成立,即2222111ax a a x +-≤-+,所以()2221ax a x ≤-即2112a a x -≤在(0,)x ∈+∞恒成立,所以2102a a -≤.又因为 0a <,所以210a -≥,则1a ≤-. 综上所述,a 的取值范围为(,1](0,1]-∞-⋃.。

2020年北京市初三一模分类汇编(全)之二次函数汇编

2020年北京市初三一模分类汇编(全)二次函数专项1、海淀26.在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+m的顶点为A.(1)当m=1时,直接写出抛物线的对称轴;(2)若点A在第一象限,且OA=√2,求抛物线的解析式;,m+1),C(2,2).若抛物线与线段BC有公共点,结合函数图象,直接写出m的取值范围.(3)已知点B(m−122、丰台26.已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤ x≤3 时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3 时,均满足y1 ≥y2,请结合函数图象,直接写出t 的取值范围.3、西城4、朝阳25.在平面直角坐标系xOy 中,直线y =1与一次函数y =-x +m 的图象交于点P,与反比例函数y =m的图象交于点Q,点A(1,1)与点B 关于y 轴对称.x(1)直接写出点B 的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q 两点中只有一个点在线段AB 上,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,已知抛物线y =ax2 +bx -1交y 轴于点P .(1)过点P 作与x 轴平行的直线,交抛物线于点Q ,PQ = 4,求b的值;a(2)横纵坐标都是整数的点叫做整点. 在(1)的条件下,记抛物线与x 轴所围成的封闭区域(不含边界)为W . 若区域W 内恰有4 个整点,结合函数图象,求a 的取值范围.26. 在平面直角坐标系xOy 中,已知抛物线y=ax2-4ax+1(a>0).(1)抛物线的对称轴为;(2)若当1≤x≤5时,y 的最小值是-1,求当1≤x≤5 时,y 的最大值;(3)已知直线y=-x+3 与抛物线y=ax2-4ax+1(a>0)存在两个交点,设左侧的交点为点P (x1,y1),当-2≤x1<-1时,求a的取值范围.26.在平面直角坐标系x O y中,二次函数y=ax2+bx+c的图象经过点A(0,-4)和B(-2,2).(1)求c 的值,并用含a 的式子表示b;(2)当-2<x<0 时,若二次函数满足y 随x 的增大而减小,求a 的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD 只有一个公共点,求a 的取值范围.26.在平面直角坐标系xOy 中,抛物线y =ax2 +bx+3a (a≠0)过点A(1,0).(1)求抛物线的对称轴;(2)直线y=-x+4 与y 轴交于点B,与该抛物线的对称轴交于点C,现将点B 向左平移一个单位到点D,如果该抛物线与线段CD 有交点,结合函数的图象,求a 的取值范围.26.在平面直角坐标系xOy 中,抛物线y =ax2 +bx - 3a(a ≠ 0) 经过点A(-1,0).(1)求抛物线的顶点坐标;(用含a的式子表示)(2)已知点B(3,4),将点B向左平移3 个单位长度,得到点C.若抛物线与线段BC恰有一个公共点,结合函数的图象,求a的取值范围.11、通州12.东城26.在平面直角坐标系xOy 中,抛物线24(0)y ax ax b a =++>的顶点A 在x 轴上,与y轴交于点B .(1)用含a 的代数式表示b ;(2)若45BAO ∠=°,求a 的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a 的取值范围.14.大兴26.在平面直角坐标系xO y 中,抛物线224y x mx m =-+-与 x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3).(1) 求m 的值;(2) 若一次函数5y kx =+(0k ≠)的图象过点A ,求k 的值;(3) 将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线5y kx =+(0k ≠)向上平移n 个单位, 当平移后的直线与图象G 有公共点时,请结合图象直接写出n 的取值范围.26.在平面直角坐标系xOy中,一次函数3=-+的图象与y轴交于点A,与抛物线y ax()2230y ax ax a a=--≠的对称轴交于点B,将点A向右平移5个单位得到点C,连接AB,AC得到的折线段记为图形G.(1)求出抛物线的对称轴和点C坐标;(2)①当1a=-时,直接写出抛物线223=--与图形G的公共点个数.y ax ax a②如果抛物线223=--与图形G有且只有一个公共点,求出a的取值范围.y ax ax a备用图。

2020 初三一模二次函数汇总【Word版】

2020北京一模二次函数【2020、朝阳一模】在平面直角坐标系xOy中,抛物线231=-++与y轴交于点A.y ax ax a(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(-2,-a-2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.【2020、丰台一模】26.已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t ≤x1 ≤t+1,x2≥3时,均满足y1 ≥y2,请结合函数图象,直接写出t的取值范围.【2020、房山一模】在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-交y 轴于点P . (1)过点P 作与x 轴平行的直线,交抛物线于点Q ,4PQ =,求b a的值;(2)横纵坐标都是整数的点叫做整点. 在(1)的条件下,记抛物线与x 轴所围成的封闭区域(不含边界)为W . 若区域W 内恰有4个整点,结合函数图象,求a 的取值范围.【2020、海淀一模】26.在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+m的顶点为A.(1)当m=1时,直接写出抛物线的对称轴;(2)若点A在第一象限,且OA=√2,求抛物线的解析式;,m+1),C(2,2).若抛物线与线段BC有公共点,结合函数图象,直接(3)已知点B(m−12写出m的取值范围.26. 在平面直角坐标系xOy中,已知抛物线y=ax2-4ax+1(a>0).(1)抛物线的对称轴为;(2)若当1≤x≤5时,y的最小值是-1,求当1≤x≤5时,y的最大值;(3)已知直线y=-x+3与抛物线y=ax2-4ax+1(a>0)存在两个交点,设左侧的交点为点P(x1,y1),当-2≤x1<-1时,求a的取值范围.在平面直角坐标系 xOy 中,二次函数 y = x2 - 2mx + 1 图象与 y 轴的交点为 A,将点 A 向右平移 4 个单位长度得到点 B.(1)直接写出点 A 与点 B 的坐标;(2)求出抛物线的对称轴(用含 m 的式子表示);(3)若函数 y = x2 - 2mx + 1 的图象与线段AB恰有一个公共点,求 m 的取值范围.在平面直角坐标系x O y中,二次函数y=ax2+bx+c的图象经过点A(0,-4)和B(-2,2). (1)求c的值,并用含a的式子表示b;(2)当-2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD只有一个公共点,求a的取值范围.已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B 的左侧),抛物线的对称轴为直线x=-1.(1)若点A的坐标为(-3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为-2,若抛物线恰好经过点C,直接写出x2的取值范围;=45。

2020-2021初三数学一模试题分类汇编——二次函数综合及答案解析

2020-2021初三数学一模试题分类汇编——二次函数综合及答案解析一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.如图,在平面直角坐标系中,点O 为坐标原点,直线y=﹣x+n 与x 轴、y 轴分别交于B 、C 两点,抛物线y=ax 2+bx+3(a≠0)过C 、B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3.(1)求抛物线的解析式;(2)若点P 是射线CB 上一点,过点P 作x 轴的垂线,垂足为H ,交抛物线于Q ,设P 点横坐标为t ,线段PQ 的长为d ,求出d 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)在(2)的条件下,当点P 在线段BC 上时,设PH=e ,已知d ,e 是以y 为未知数的一元二次方程:y 2-(m+3)y+14(5m 2-2m+13)="0" (m 为常数)的两个实数根,点M 在抛物线上,连接MQ 、MH 、PM ,且.MP 平分∠QMH ,求出t 值及点M 的坐标.【答案】(1) y=-x 2+2x+3;(2)223(03){3(3)d t t t d t t t =-+<<=->;(3)t=1,,2)和(1,2).【解析】【分析】(1)当x=0时代入抛物线y=ax 2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的解析式,就可以求出B 的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA 的值,得出A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P 在线段CB 上时,和如图3点P 在射线BN 上时,就有P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3),就可以得出d 与t 之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m 的值,就可以求出方程的解而求得PQ 和PH 的值,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,延长MP 至L ,使LP=MP ,连接LQ 、LH ,就可以得出四边形LQMH 是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=, 解得:1{2a b =-= ∴抛物线的解析式:y=-x 2+2x+3;(2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|="|" t 2-3t |∴223(03){3(3)d t t t d t t t =-+<<=->; ∵d ,e 是y 2-(m+3)y+14(5m 2-2m+13)=0(m 为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×14(5m2-2m+13)≥0整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,∴△=0,m=1,∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1,x2=1综上:t值为1,M点坐标为,2)和(1,2).3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴∴Q(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒12个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC 于点N.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)20 20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C(3, 0),可得a=-1.∴y =-(x -1)2+4=-x 2+2x +3.(2)∵P (112t +,4), 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -, ∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:, 将112x t =+代入得, ∴N (112t +,), ∴MN, ∴, ∴当t =2时,△A MC 面积的最大值为1.(3)①如图1,当点H在N点上方时, ∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ , 又∵PN ∥CQ , ∴四边形PNCQ 为平行四边形,∴当PQ =CQ 时,四边形FECQ 为菱形,PQ 2=PD 2+DQ 2 =, ∴,整理,得240800t t -+=.解得120t =-,220t =+②如图2当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.5.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩== 解得1814a b ⎧⎪⎪⎨⎪-⎪⎩== ∴抛物线解析式为:y=18x 2−14x−1 ∴抛物线对称轴为直线x=-141228b a -=-⨯=1 (2)存在 使四边形ACPO 的周长最小,只需PC+PO 最小∴取点C (0,-1)关于直线x=1的对称点C′(2,-1),连C′O 与直线x=1的交点即为P 点.设过点C′、O 直线解析式为:y=kx∴k=-12∴y=-12x 则P 点坐标为(1,-12) (3)当△AOC ∽△MNC 时,如图,延长MN 交y 轴于点D ,过点N 作NE ⊥y 轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC ∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.6.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000(2)商场销售该品牌玩具获得的最大利润是8640元.【解析】【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.【详解】 解:(1)依题意,易得销售量y (件)与销售单价x (元)之间的函数关系:y =600﹣10(x ﹣40)=﹣10x+1000获得利润w (元)与销售单价x (元)之间的函数关系为:w =y•(x ﹣30)=(1000﹣10x )(x ﹣30)=﹣10x 2+1300x ﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46 w =﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+12250 ∵a =﹣10<0,对称轴x =65 ∴当44≤x≤46时,y 随x 的增大而增大 ∴当x =46时,w 最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元. 【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.7.如图,抛物线22y ax bx =++交x 轴于A (1,0)-,(4,0)B 两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点221(6)()82x x -+=,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出此时点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;点D 坐标为(32),; (2)P 1(0,2); P 2(2,-2);P 3(32-,-2) ; (3)满足条件的点P),(). 【解析】 【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D 的坐标(2)分两种情况进行讨论,①当AE 为一边时,AE ∥PD,②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P 坐标(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),分情况讨论,①当P 点在y 轴右侧时,②当P 点在y 轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可 【详解】解:(1)∵抛物线22y ax bx =++经过A (10)-,,B (40),两点, ∴2016420a b a b -+=⎧⎨++=⎩,解得:12a =-,32b =,∴抛物线解析式为:213222y x x =-++; 当2y =时,2132222x x -++=,解得:13x =,20x =(舍),即:点D 坐标为(32),.(2)∵A ,E 两点都在x 轴上,∴AE 有两种可能:①当AE 为一边时,AE ∥PD ,此时点P 与点C 重合(如图1),∴1(0,2)P , ②当AE 为对角线时,P 点、D 点到直线AE (即x 轴)的距离相等, ∴P 点的纵坐标为2-(如图2),把2y =-代入抛物线的解析式,得:2132222x x -++=-,解得:132x =,2x =,∴P点的坐标为(2)2-,3(2)2-, 综上所述:1(0,2)P ; 2P (2)2-;3P 3(2)2- . (3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,213222a a -++), ①当P 点在y 轴右侧时(如图3),p CQ x a ==,2132(2)22c p PQ y y a a =-=--++=21322a a -,又∵CQ O FQ P ''∠+∠=18018090CQ P PQC '︒-∠=︒-∠=︒, 90CQ O OCQ ''∠+∠=︒∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒,∴COQ Q FP ''V :V ,∴'''Q C Q PCO Q F=, ∵Q C CQ a '==,2CO =,Q P PQ '==21322a a -,∴213222'a a a Q F-=,∴'3Q F a =-,∴(3)OQ OF Q F a a ''=-=--3=,CQ =CQ '==即a =,∴点p92-), ②当p 点在y 轴左侧时(如图4),此时0a <,2132022a a -++<,CQ =P x =a -, PQ =2-(213222a a -++)=21322a a -,又∵90CQ O FQ P CQ P PQC '''∠+∠=∠=∠=︒,90CQ O OCQ ''∠+∠=︒,∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒ ∴COQ Q FP ''V :V ,∴'''Q C Q PCO Q F=, ∵Q C CQ a '==-,2CO =,Q P PQ '==21322a a -, ∴213222'a aa Q F--=,∴'3Q F a =-, ∴3()3OQ Q F OF a a ''=-=---=,CQ =CQ '==此时a =P的坐标为(92-). 综上所述,满足条件的点P),(). 【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大8.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=2PG,PF,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣t2,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC 于G ,如图2,△EPG 、△PHF 都为等腰直角三角形,PE PG ,PF PH ,设P(t ,t 2﹣4t +3)(1<t <3),则G (t ,﹣t +3),∴PF t ,PG =﹣t +3﹣(t 2﹣4t +3)=﹣t 2+3t ,∴PE =t 2,∴PE +EF =PE +PE +PF =2PE +PF =﹣t 2=2t =(t ﹣2)2,当t =2时,PE +EF 的最大值为.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.9.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2). (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴,.∴△PBC 的周长最小是:.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S最大,最大值为1,此时点E的坐标为(﹣2,2).10.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB ′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.11.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少; (2)OE 的长是否与a 值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE 的长与a 值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m ﹣1(m <1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,∴﹣∴a=,∴45°≤β≤60°,a≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN ,∴△DPM ≌△EPN ,∴PM=PN ,PM=EN ,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m ,∴n=﹣m ﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1,∵抛物线的顶点在第二象限,∴m <1.∴n=﹣m ﹣1(m <1).故答案为:(1)(﹣1,4),3;(2)OE 的长与a 值无关;(3)﹣1;(4)n=﹣m ﹣1(m <1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020北京一模二次函数
1、【2020海淀一模】26.在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+m的顶点为A.
(1)当m=1时,直接写出抛物线的对称轴;
(2)若点A在第一象限,且OA=√2,求抛物线的解析式;
,m+1),C(2,2).若抛物线与线段BC有公共点,结合函数图象,直接写
(3)已知点B(m−1
2
出m的取值范围.
已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=-1.
(1)若点A的坐标为(-3,0),求抛物线的表达式及点B的坐标;
(2)C是第三象限的点,且点C的横坐标为-2,若抛物线恰好经过点C,直接写出x2的取值范围;
=45。

,若抛物线上满足条(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且DOP
件的点P恰有4个,结合函数图像,求a的取值范围
26.在平面直角坐标系xOy 中,横,纵坐标都是整数的点叫做整点.直线y =ax 与
抛物线y =ax 2 -2ax -1(a ≠0)围成的封闭区域(不包含边界)为W . (1) 求抛物线顶点坐标(用含a 的式子表示);
(2) 当a =21
时,写出区域W 内的所有整点坐标;
(3) 若区域W 内有3个整点,求a 的取值范围.
4、【2020朝阳一模】在平面直角坐标系xOy中,抛物线231
=-++与y轴交于点A.
y ax ax a
(1)求点A的坐标(用含a的式子表示);
(2)求抛物线的对称轴;
(3)已知点M(-2,-a-2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.
5、【2020石景山一模】
26.在平面直角坐标系xOy中,抛物线24(0)
=++>的顶点A在x轴上,与y
y ax ax b a
轴交于点B.
(1)用含a的代数式表示b;
(2)若45
∠=°,求a的值;
BAO
(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB 所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a的
取值范围.
6、【2020丰台一模】26.已知二次函数y=ax2﹣2ax.
(1)二次函数图象的对称轴是直线x=;
(2)当0≤ x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;
(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t ≤x1 ≤ t+1,x2≥3时,均满足y1 ≥y2,请结合函数图象,直接写出t的取值范围.
7、【2020房山一模】在平面直角坐标系xOy中,已知抛物线21
y ax bx
=+-交y轴于点P.
(1)过点P作与x轴平行的直线,交抛物线于点Q,4
PQ=,求b
a
的值;
(2)横纵坐标都是整数的点叫做整点. 在(1)的条件下,记抛物线与x轴所围成的封闭区域(不含边界)为W. 若区域W内恰有4个整点,结合函数图象,求a的取值范围.
8、【2020密云一模】26. 在平面直角坐标系xOy中,已知抛物线y=ax2-4ax+1(a>0). (1)抛物线的对称轴为;
(2)若当1≤x≤5时,y的最小值是-1,求当1≤x≤5时,y的最大值;
(3)已知直线y=-x+3与抛物线y=ax2-4ax+1(a>0)存在两个交点,设左侧的交点为点P(x1,y1),当-2≤x1<-1时,求a的取值范围.
在平面直角坐标系xOy中,二次函数y = x2 - 2mx + 1 图象与y轴的交点为A,将点A向右平移 4 个单位长度得到点B.
(1)直接写出点A与点B的坐标;
(2)求出抛物线的对称轴(用含m的式子表示);
(3)若函数y = x2 - 2mx + 1 的图象与线段AB恰有一个公共点,求m的取值范围.
在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,-4)和B(-2,2). (1)求c的值,并用含a的式子表示b;
(2)当-2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;
(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD只有一个公共点,求a的取值范围.
26.在平面直角坐标系xOy 中,抛物线(a ≠0)过点A (1,0). (1)求抛物线的对称轴;
(2)直线y=-x+4与y 轴交于点B ,与该抛物线的对称轴交于点C ,现将点B 向左平移一个
单位到点D ,如果该抛物线与线段CD 有交点,结合
函数的图象,求的取值范围.
2+3y ax bx a =+a
在平面直角坐标系xOy 中,抛物线23(0)=+-≠y ax bx a a 经过点A (-1,0). (1) 求抛物线的顶点坐标;(用含a 的式子表示)
(2) 已知点B (3,4),将点B 向左平移3个单位长度,得到点C .若抛物线与线段BC 恰有一个公共点,结合函数的图象,求a
在平面直角坐标系xOy 中,存在抛物线12y 2+++=m x x 以及两点A (m ,m +1)和B (m ,m +3). (1)求该抛物线的顶点坐标;(用含m 的代数式表示) (2)若该抛物线经过点A (m ,m +1),求此抛物线的表达式;
(3)若该抛物线与线段AB 有公共点,结合函数图像,求m 的取值范围。

相关文档
最新文档