2020年中考数学试题分类汇编-二次函数
2020年中考数学试题分类汇编之13二次函数(试题+详细答案)

2020年中考数学试题分类汇编之13二次函数一、选择题1.(2020安徽)(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D .2.(2020福建)已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A. 若12|1||1|->-x x ,则12y y >B. 若12|1||1|->-x x ,则12y y <C. 若12|1||1|-=-x x ,则12y y =D. 若12y y =,则12x x =3.(2020陕西)在平面直角坐标系中,将抛物线y =x 2﹣(m ﹣1)x +m (m >1)沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020哈尔滨)(3分)将抛物线2y x =向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为( ) A .2(3)5y x =++ B .2(3)5y x =-+ C .2(5)3y x =++ D .2(5)3y x =-+5.(2020杭州)(3分)设函数y =a (x ﹣h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( ) A .若h =4,则a <0 B .若h =5,则a >0C .若h =6,则a <0D .若h =7,则a >06.(2020杭州)(3分)在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,( ) A .若M 1=2,M 2=2,则M 3=0 B .若M 1=1,M 2=0,则M 3=0 C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=07.(2020天津)已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >①关于x 的方程2ax bx c a ++=有两个不等的实数根; ①12a <-. 其中,正确结论的个数是( ) A .0B .1C .2D .38.(2020河北)如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下, 甲:若5b =,则点P 的个数为0; 乙:若4b =,则点P 的个数为1; 丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对9.(2020江西)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB ∆向右上方平移,得到'''Rt O A B ∆,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( ) A .y x = B .1y x =+ C .12y x =+D .2y x =+ 10.(2020四川绵阳)三孔桥横截面的三个孔都是呈抛物线形,两小孔形状、大小完全相同。
2020年-2020年全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.7.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO 并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).8.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D 的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M 为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.10.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.11.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c 经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.12.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.13.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.14.如图,四边形ABCD是边长为4的正方形,动点P、Q同时从A点出发,点P沿AB以每秒1个单位长度的速度向终点B运动.点Q沿折线ADC以每秒2个单位长度的速度向终点C 运动,设运动时间为t秒.(1)当t=2秒时,求证:PQ=CP;(2)当2<t≤4时,等式“PQ=CP”仍成立吗?试说明其理由;(3)设△CPQ的面积为S,那么S与t之间的函数关系如何?并问S的值能否大于正方形ABCD 面积的一半?为什么?15.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点D是线段BC中点,点E是BC上方抛物线上一动点,连接CE,DE.当△CDE的面积最大时,过点E作y轴垂线,垂足为F,点P为线段EF上一动点,将△CEF绕点C沿顺时针方向旋转90°,点F,P,E的对应点分别是F′,P′,E′,点Q从点P出发,先沿适当的路径运动到点F′处,再沿F′C运动到点C处,最后沿适当的路径运动到点P′处停止.求△CDE面积的最大值及点Q经过的最短路径的长;(3)如图2,直线BH经过点B与y轴交于点H(0,3)动点M从O出发沿OB方向以每秒1个单位长度向点B运动,同时动点N从B点沿BH方向以每秒2个单位长度的速度向点H 运动,当点N运动到H点时,点M,点N同时停止运动,设运动时间为t.运动过程中,过点N作OB的平行线交y轴于点I,连接MI,MN,将△MNI沿NI翻折得△M′NI,连接HM′,当△M′HN为等腰三角形时,求t的值.16.如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR 为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.17.已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P 从O出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A、B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;(3)在图2中以A为圆心,OA长为半径作⊙A,当0≤t≤20时,过点P作PQ⊥x轴(Q在P的上方),且线段PQ=t+12:①当t在什么范围内,线段PQ与⊙A只有一个公共点?当t在什么范围内,线段PQ与⊙A 有两个公共点?②请将①中求得的t的范围作为条件,证明:当t取该范围内任何值时,线段PQ与⊙A总有两个公共点.18.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为,线段OB的长=;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.19.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.20.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E 的坐标是多少时,点M在整个运动中用时最少?21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A (0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x 轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF ;(4)连接PE ,在x 轴上点Q 的右侧是否存在一点M ,使△CQM 与△CPE 全等?若存在,试求出点M 的坐标;若不存在,请说明理由.[注:3+2=(+1)2].22.阅读理解抛物线y=x 2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx +1与y 轴交于C 点,与函数y=x 2的图象交于A ,B 两点,分别过A ,B 两点作直线y=﹣1的垂线,交于E ,F 两点.(1)写出点C 的坐标,并说明∠ECF=90°;(2)在△PEF 中,M 为EF 中点,P 为动点.①求证:PE 2+PF 2=2(PM 2+EM 2);②已知PE=PF=3,以EF 为一条对角线作平行四边形CEDF ,若1<PD <2,试求CP 的取值范围.23.已知抛物线经过A (﹣3,0),B (1,0),C (2,)三点,其对称轴交x 轴于点H ,一次函数y=kx +b (k ≠0)的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)如图1,当S △EOC =S △EAB 时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k 的取值范围.24.如图1,已知直线EA 与x 轴、y 轴分别交于点E 和点A (0,2),过直线EA 上的两点F 、G 分别作x 轴的垂线段,垂足分别为M (m ,0)和N (n ,0),其中m <0,n >0.(1)如果m=﹣4,n=1,试判断△AMN 的形状;(2)如果mn=﹣4,(1)中有关△AMN 的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M 、A 、N 三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l 与线段AN 交于点P ,点Q 是对称轴上一动点,以点P 、Q 、N 为顶点的三角形和以点M 、A 、N 为顶点的三角形相似,求符合条件的点Q 的坐标.25.如图,二次函数与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动.设PQ 交直线AC 于点G .(1)求直线AC 的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形.直接写出所有满足条件的M 点的坐标;(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由.26.如图,在平面直角坐标系xOy 中,二次函数的图象与x 轴交于A (﹣1,0)、B (3,0)两点,顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :交BD 于点E ,过点B 作直线BK∥AD交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD 四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK和的最小值.27.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.28.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在直线CD的上方,y轴及y轴的右侧的平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的点G的坐标;(3)如图,抛物线的对称轴与x轴的交点M,过点M作一条直线交∠ADB于T,N两点,①当∠DNT=90°时,直接写出的值;②当直线TN绕点M旋转时,=DN•DT;试说明:△DNT的面积S△DNT并猜想:的值是否是定值?说明理由.29.如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D (0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.30.如图,已知直线l:y=x+2与y轴交于点D,过直线l上一点E作EC丄y轴于点C,且C 点坐标为(0,4),过C、E两点的抛物线y=﹣x2+bx+c交x轴于A、B两点(点A在点B的左侧).(1)求抛物线的解析式:(2)动点Q从点C出发沿线段CE以1单位/秒的速度向终点E运动,过点Q作QF⊥ED于点F,交BD于点H,设点Q运动时间为t秒,△DFH的面积为S,求出S与t的函数关系式(并直接写出自变量t的取值范围);(3)若动点P为直线CE上方抛物线上一点,连接PE,过点E作EM⊥PE交线段BD于点M,当△PEM是等腰直角三角形时,求四边形PMBE的面积.31.已知在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0,且a,b,c为常数)的对称轴为:直线x=,与x轴分别交于点A、点B,与y轴交于点C(0,﹣),且过点(3,﹣5),D为x轴正半轴上的动点,E为y轴负半轴上的动点.(1)求该抛物线的表达式;(2)如图1,当点D为(3,0)时,DE交该抛物线于点M,若∠ADC=∠CDM,求点M的坐标;(3)如图2,把(1)中抛物线平移使其顶点与原点重合,若直线ED与新抛物线仅有唯一交点Q时,y轴上是否存在一个定点P使PE=PQ?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共31小题)1.(2017秋•上杭县期中)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】151:代数综合题;32 :分类讨论.【分析】(1)根据AC=BC,求出BC的长,进而得到点A,B的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB的解析式,用含m的式表示出E,F的坐标,求出EF的长度最大时m的值,即可求得E,F的坐标;(3)分两种情况:∠E﹣90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,∴BC=5,∴A(﹣1,0),B(4,5),抛物线y=x2+bx+c经过A,B两点,∴,解得:,∴y=x2﹣2x﹣3;(2)设直线AB解析式为:y=kx+b,直线经过点A,B两点,∴,解得:,∴直线AB的解析式为:y=x+1,设点E的坐标为(m,m+1),则点F(m,m2﹣2m﹣3),∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,∴当EF最大时,m=,∴点E(,),F(,);(3)存在.①当∠FEP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=,∴点P1(,),P2(,),②当∠EFP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=(舍去),∴点P3(,),综上所述,P1(,),P2(,),P3(,).【点评】本题主要考查二次函数的综合题,其中第(3)小题要注意分类讨论,分∠E=90°和∠F=90°两种情况.2.(2017秋•鄂城区期中)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N 在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.【点评】本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.3.(2017•泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(4﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出D点的位置是解题的关键,在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.4.(2017•南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O (0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.5.(2017•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2020年全国各地数学中考试题精选之二次函数(含答案)

2020年全国各地数学中考试题精选之二次函数一、单选题1.(2020·辽阳模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③4a﹣2b+c<0;④8a+c>0.其中正确的有()A. 4个B. 3个C. 2个D. 1个2.(2020·杭州模拟)在平面直角坐标系中,已知m≠n,函数y=x²+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx²+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是()A. a=bB. a=b-1C. a=b或a=b+1D. a=b或a=b-13.(2020·广西模拟)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①2a+b=0;②b2−4ac<0;③当y>0时,x的取值范围是−1<x<3;④当x>0时,y随x增大而增大;⑤若t为任意实数,则有a+b≥at2+ bt,其中结论正确的个数是( )A. 4个B. 3个C. 2个D. 1个4.(2020·铁岭模拟)二次函数y=ax2+bx+c的图象如图所示,在下列说法中:①abc>0;②a+b+c>0;③4a−2b+c>0;④当x>1时,y随着y的增大而增大.正确的说法个数是()A. 1B. 2C. 3D. 45.(2020·东城模拟)若点A(1,y1),B(2,y2)在抛物线y=a(x+1)2+2(a<0)上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>26.(2020·长丰模拟)若(−2,0)是二次函数y=ax2+bx(a>0)图象上一点,则抛物线y=a(x−2)2+ bx−2b的图象可能是()A. B.C. D.7.(2020·南山模拟)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②4a−2b+c<0;③若A(−12,y1)、B(32,y2)、C(−2,y3)是抛物线上的三点,则有y3<y1<y2;④若m,n(m<n)为方程a(x−3)(x+1)−2=0的两个根,则m>−1且n<3,以上说法正确的有()A. ①②③④B. ②③④C. ①②④D. ①②③8.(2020·萧山模拟)已知二次函数y=a(x-2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1-2|>|x2-2|,则下列表达式正确的是()A. y1+y2>0B. y1-y2>0C. a(y1-y2)>0D. a(y1+y2)>09.(2020·西安模拟)二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )A. 有最小值9B. 有最大值9C. 有最小值8D. 有最大值810.(2020·广水模拟)二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a−b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠ x2,则x1+x2=2.其中正确的有()A. ①②③B. ②④C. ②⑤D. ②③⑤11.(2020·铜川模拟)若一个二次函数y=ax2−4ax+3(x≠0)的图像经过两点A(m+2,y1)、B(2−m,y2),则下列关系正确的是()A. y1=y2B. y1<y2C. y1>y2D. y1≥y212.(2020·连云模拟)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t2+mt+25 8,若小球经过74秒落地,则小球在上抛过程中,第()秒离地面最高.A. 37B. 47C. 34D. 4313.(2020·红花岗模拟)如图,抛物线y=﹣x2+2x+c+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①抛物线的对称轴是直线x=1;②若OC=OB,则c=2;③若M(x0,y0)是x轴上方抛物线上一点,则(x0﹣a)(x0﹣b)<0;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中真命题个数是()A. 1B. 2C. 3D. 414.(2020·柯桥模拟)在同一平面直角坐标系中,先将抛物线A:y=x2﹣2通过左右平移得到抛物线B,再将抛物线B通过上下平移得到抛物线C:y=x2﹣2x+2,则抛物线B的顶点坐标为()A. (﹣1,2)B. (1,2)C. (1,﹣2)D. (﹣1,﹣2)15.(2020·台州模拟)抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c ﹣2=0有两个相等的实数根.其中正确的结论是()A. ③④B. ②④C. ②③D. ①④16.(2020·绍兴模拟)抛物线y=﹣x2+bx+c与x轴的两个交点坐标如图所示,下列说法中错误的是()A. 一元二次方程﹣x2+bx+c=0的解是x1=﹣2,x2=1B. 抛物线的对称轴是x=−12C. 当x>1时,y随x的增大而增大D. 抛物线的顶点坐标是(−12,9 4 )17.(2020·湖州模拟)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac >0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A. 1B. 2C. 3D. 418.(2020·南充模拟)将抛物线y=x(x+2)向左平移1个单位后的解析式为()A. y=x(x+1)B. y=x(x+3)C. y=(x−1)(x+1)D. y=(x+1)(x+3)19.(2020·沙湾模拟)二次函数y=−x2−1的图象是一条抛物线,下列关于该抛物线的说法正确的是()A. 开口向上B. 对称轴是x=1C. 当x=0时,函数的最大值是-1D. 抛物线与x轴有两个交点20.(2020·峨眉山模拟)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图像与x轴有M个交点,函数y=(ax+1)(bx+1)的图像与x轴有N个交点,则()A. M=N−1或M=N+1B. M=N−1或M=N+2C. M=N或M=N+1D. M=N或M=N−121.(2020·峨眉山模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(−2,0),对称轴为直线x= 1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;3⑤若方程a(x+2)(4−x)=−2的两根为x1,x2,且x1<x2,则﹣2≤ x1<x2<4.其中正确结论的序号是()A. ①②④B. ①③④C. ①③⑤D. ①②③⑤22.(2020·旌阳模拟)已知y关于x的函数表达式是y=ax2−4x−a,下列结论错误的是()A. 若a=−1,函数的最大值是5B. 若a=1,当x≥2时,y随x的增大而增大C. 无论a为何值时,函数图象一定经过点(1,−4)D. 无论a为何值时,函数图象与x轴都有两个交点23.(2020·新都模拟)关于二次函数y=x2−kx+k−1,以下结论:①抛物线交x轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交x轴于A、B两点,若AB=1,则k=4;④抛物线的顶点在y=−(x−1)2图象上;⑤抛物线交y轴于C点,若△ABC是等腰三角形,则k=−√2,0,1.其中正确的序号是()A. ①②⑤B. ②③④C. ①④⑤D. ②④24.(2020·武侯模拟)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=1,且与x轴的一个交点为A(3,0),下列说法错误的是()A. b2>4acB. abc<0C. 4a﹣2b+c>0D. 当x<﹣1时,y随x的增大而增大25.(2020·青白江模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+ b+c<0;②b2-4ac<0;③b+2a<0;④c<0.其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②26.(2020·大邑模拟)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−2,与x轴的一个交点坐标为(−4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=−4;④当−4<x<0时,ax2+bx+ c>0;⑤a−b+c<0.其中结论错误的...个数有()个A. 1B. 2C. 3D. 427.(2020·永州模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②2a+b=0;③3a+c>0;④4a﹣2b+c<0:⑤9a+3b+c<0.其中结论正确的个数有()A. 1个B. 2个C. 3个D. 4个28.(2020·怀化模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=−1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A. ①②B. 只有①C. ③④D. ①④29.(2020·黄石模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A. a>0B. 当﹣1<x<3时,y>0C. c<0D. 当x≥1时,y随x的增大而增大30.(2020·乾县模拟)已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A. −14B. 14C. −15D. 15二、填空题31.(2020·海淀模拟)如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,−2),C(−2,4),D(4,−2),E(7,0),将二次函数y=a(x−2)2+m(m≠0)的图象记为W.下列的判断中①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是________.32.(2020·长丰模拟)若抛物线y=x2−2kx+k2+1在−1≤x≤1时,始终在直线y=2的上方,则k的取值范围是________.33.(2020·新疆模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(−12,0),对称轴为直线x=1,下列5个结论:①abc<0;②a−2b+4c=0;③2a+b>0;④2c−3b<0;⑤a+b≤m(am+b).其中正确的结论为________. (注:只填写正确结论的序号)34.(2020·昌吉模拟)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(12,0),有下列结论:①abc<0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c<0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是________.(填写正确结论的序号)35.(2020·立山模拟)若二次函数y=mx2+(m−2)x+m的顶点在x轴上,则m=________.36.(2020·立山模拟)在同一平面直角坐标系中,若抛物线y=x2+(2m−1)x+2m−4与y=x2−(3m+n)x+n关于y轴对称,则符合条件的m=________;n=________.37.(2020·铁西模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大.⑤4a+2b≥am2−bm(m为任意实数)其中正确的结论有________.(填序号)38.(2020·梧州模拟)已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是________39.(2020·南充模拟)如图,抛物线y=x2+ax+2经过点P(−2,2),Q(m,n).若点Q到y轴的距离小于2,则n的取值范围是________.40.(2020·海曙模拟)如图,已知△ABC中,∠ACB=90°,D是斜边AB上一点,BD=2AD,CD=4,则S△ACD 的最大值为________.三、综合题41.如图,已知二次函数y=-x2+bx+c的图像经过点A(4,-5),点B(0,3)。
2020年中考数学二次函数真题汇编(带答案)

2020年中考数学二次函数真题汇编(名师精选全国真题,值得下载练习)一、单选题1.如图,一段抛物线y=﹣x 2+4(﹣2≤x≤2)为C 1 , 与x 轴交于A 0 , A 1两点,顶点为D 1;将C 1绕点A 1旋转180°得到C 2 , 顶点为D 2;C 1与C 2组成一个新的图象,垂直于y 轴的直线l 与新图象交于点P 1(x 1 , y 1),P 2(x 2 , y 2),与线段D 1D 2交于点P 3(x 3 , y 3),设x 1 , x 2 , x 3均为正数,t=x 1+x 2+x 3 , 则t 的取值范围是( )A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12 【答案】D【解析】【解答】解:翻折后的抛物线的解析式为y=(x ﹣4)2﹣4=x 2﹣8x+12, ∵设x 1 , x 2 , x 3均为正数,∴点P 1(x 1 , y 1),P 2(x 2 , y 2)在第四象限, 根据对称性可知:x 1+x 2=8, ∵2≤x 3≤4,∴10≤x 1+x 2+x 3≤12即10≤t≤12, 故答案为:D .【分析】根据题意可求出翻折后的抛物线的解析式,设x 1 , x 2 , x 3均为正数,可得出点P 1(x 1 , y 1),P 2(x 2 , y 2)在第四象限,根据对称性可求出x 1+x 2=8,由2≤x 3≤4,可得出x 1+x 2+x 3的取值范围,从而得出t 的取值范围。
2.已知,平面直角坐标系中,直线y 1=x+3与抛物线y=-x x 的图象如图,点P 是y 2上的一个动点,则点P 到直线y 1的最短距离为( )A.B.C. D.【答案】D【解析】【解答】解、∵点P 到直线y 1的距离最短, ∴点P 是直线与抛物线相切时的交点。
设直线y 1平移k 个单位长度,则此时的解析式为 =x+3+k , 把 =x+3+k 代入y=-x 2+2x 整理得,-x 2+x-3-k=0,△=b 2-4ac=1-4 (-) (-3-k)=0,解得k=-,即直线y 1向下平移个单位长度与抛物线相切, 把k=-代入解析式解方程组可求得点P 的坐标为(1,);过点P 作PD ⊥直线y 1于点D ,则直线PD 的解析式可设为y 3=-x+b ,把点P (1,)代入可求得b=,即直线PD 的解析式为y 3=-x+,将y 1和y 3的解析式联立解方程组可求得点D 的坐标为(-,);若直线PD与x轴相较于点C,直线y1=x+3与x、y轴分别相较于点A、B,易得点A (-3,0)、B(0,3),∴∠BAC==∠DCA,由勾股定理可得:CD=,CP=,∴PD=CD-CP=。
2020-2021全国中考数学二次函数的综合中考真题分类汇总及详细答案

2020-2021全国中考数学二次函数的综合中考真题分类汇总及详细答案一、二次函数1.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=﹣2;S=12;(4)F(﹣4,﹣5)或(1,0).【解析】【分析】(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=12AM×EM=12.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC∵FG=,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m表示出矩形PMNQ的周长.2.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x +3;y =﹣x +1;(2)当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154);(3)在对称轴上存在一点M (﹣1,2),使△ANM 的周长最小,△ANM 周长的最小值为102 【解析】 【分析】(1)根据点A ,C 的坐标,利用待定系数法即可求出抛物线及直线AC 的函数关系式;(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),进而可得出PF 的值,由点C 的坐标可得出点Q 的坐标,进而可得出AQ 的值,利用三角形的面积公式可得出S △APC =﹣32x 2﹣32x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N 的坐标,利用配方法可找出抛物线的对称轴,由点C ,N 的坐标可得出点C ,N 关于抛物线的对称轴对称,令直线AC 与抛物线的对称轴的交点为点M ,则此时△ANM 周长取最小值,再利用一次函数图象上点的坐标特征求出点M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论. 【详解】(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=12AQ•PF=﹣32x2﹣32x+3=﹣32(x+12)2+278.∵﹣32<0,∴当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC=,AN,∴C△ANM=AM+MN+AN=AC+AN=.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为+【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3 (2)运动1秒使△PBQ 的面积最大,最大面积是910(3)K 1(1,﹣278),K 2(3,﹣158)【解析】 【详解】试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158).解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以该抛物线的解析式为:y=38x 2﹣34x ﹣3;(2)设运动时间为t 秒,则AP=3t ,BQ=t . ∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,. 如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO , ∴△BHQ ∽△BOC , ∴HB OC BGBC=,即Hb 35t=,∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910.当△PBQ 存在时,0<t <2 ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0). 把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上.∴设点K 的坐标为(m ,38m 2﹣34m ﹣3).如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100, 解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000 =﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.5.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到△A 1O 1C 1,点A 、O 、C 的对应点分别是点A 、O 1、C 1、若△A 1O 1C 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A 1的横坐标. 【答案】(1)y=-21x 2+32x+2;(2)存在,Q (3,2)或Q (-1,0);(3)两个和谐点,A 1的横坐标是1,12. 【解析】(1)把点A (1,0)、B (4,0)、C (0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q 点的坐标. (3)(3)两个和谐点;AO=1,OC=2,设A 1(x ,y ),则C 1(x+2,y-1),O 1(x ,y-1),①当A 1、C 1在抛物线上时,A 1的横坐标是1; 当O 1、C 1在抛物线上时,A 1的横坐标是2; 【详解】解:(1)设抛物线解析式为y=ax 2+bx+c ,将点A (-1,0),B (4,0),C (0,2)代入解析式,∴0a b c 016a 4b c 2c =-+⎧⎪=++⎨⎪=⎩, ∴1a 23b 2⎧=-⎪⎪⎨⎪=⎪⎩,∴y=-21x 2+32x+2; (2)∵点C 与点D 关于x 轴对称, ∴D (0,-2).设直线BD 的解析式为y=kx-2. ∵将(4,0)代入得:4k-2=0, ∴k=12. ∴直线BD 的解析式为y=12x-2. 当P 点与A 点重合时,△BQM 是直角三角形,此时Q (-1,0);当BQ ⊥BD 时,△BQM 是直角三角形,则直线BQ 的直线解析式为y=-2x+8,∴-2x+8=-21x 2+32x+2,可求x=3或x=4(舍) ∴x=3;∴Q (3,2)或Q (-1,0);(3)两个和谐点;AO=1,OC=2,设A 1(x ,y ),则C 1(x+2,y-1),O 1(x ,y-1),①当A 1、C 1在抛物线上时, ∴()2213y x x 22213y 1(x 2)x 2222⎧=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴x 1y 3=⎧⎨=⎩, ∴A 1的横坐标是1;当O 1、C 1在抛物线上时,()2213y 1x x 22213y 1(x 2)x 2222⎧-=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴1x 221y 8⎧=⎪⎪⎨⎪=⎪⎩, ∴A 1的横坐标是12;【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.6.如图,直线y=-12x-3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.【答案】(1)y=14x2+x﹣3;(2)S△ADC=﹣34(m+3)2+274;△ADC的面积最大值为274;此时D(﹣3,﹣154);(3)满足条件的点D坐标为(﹣4,﹣3)或(8,21).【解析】【分析】(1)求出A坐标,再用待定系数法求解析式;(2)设DE与AC的交点为点F.设点D的坐标为:(m,14m2+m﹣3),则点F的坐标为:(m,﹣12m﹣3),根据S△ADC=S△ADF+S△DFC求出解析式,再求最值;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =32x+9,解方程组求出函数图像交点坐标.【详解】解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6,即点A 的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3;(2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),设DE 与AC 的交点为点F.∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m ,∴S △ADC =S △ADF +S △DFC =12DF•AE+12•DF•OE =12DF•OA =12×(﹣14m 2﹣32m)×6 =﹣34m 2﹣92m =﹣34(m+3)2+274,∵a =﹣34<0,∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274,又∵当m =﹣3时,14m 2+m ﹣3=﹣154,∴存在点D(﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =32x+9, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..7.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3. 【解析】【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标,由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式.【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0),则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx ,将直线OP 和CD 表达式联立得122n y x m y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-) 则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338; (4)直线CD 的表达式为:y =﹣1m (x+3), 令x =0,则y =﹣3m,令y =0,则x =﹣3, 故点C 、D 的坐标为(﹣3,0)、(0,﹣3m ),则点H (﹣32,﹣32m ), 同理可得:点G (﹣32m ,32), 则GH 2=(32+32m )2+(32﹣32m)22, 解得:m =﹣3(正值已舍去),则点A 、B 、C 的坐标分别为(1,0)、(0,3)、(﹣3,0),则“母线”函数的表达式为:y =a (x ﹣1)(x+3)=a (x 2﹣2x ﹣3),即:﹣3a =﹣3,解得:a =1,故:“母线”函数的表达式为:y =x 2﹣2x ﹣3.【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.8.已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6).【解析】 【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩,解得:16kb=-⎧⎨=⎩,则直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6)其中0<t<6,则N(t,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.9.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【解析】【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论.【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b ,将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩, 解得:3300m n =-⎧⎨=⎩, ∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩; (2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105, ∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600,当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65, ∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.10.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值. (3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m 2=-或1m =-时,△BDM 为直角三角形.11.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,②当PQ ∥AB ,DB=DP 时,DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =, 9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DN DB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时, 35DB =, DP DN DA DC∴=, 245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.12.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小10131;(3)12(4,5),(8,45)P P --【解析】【分析】(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S△PCB:S△PCA=12EB×(y C-y P):12AE×(y C-y P)=BE:AE,即可求解.【详解】(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3…①;对称轴为:直线1x(2)ACDE的周长=AC+DE+CD+AE,其中AC=10、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(-1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+A′D+DC′=10+1+A′C′=10+1+13;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C-y P):12AE×(y C-y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.13.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值2254. 【解析】【分析】(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125MH CM == 得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值【详解】(1)5÷2.5=2/cm s;(7.5-2.5)×2=10cm(2)①解:在C点相遇得到方程57.5v=在B点相遇得到方程152.5v=∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得23=5vv⎧=⎪⎨⎪⎩∵在边BC上相遇,且不包含C点∴2/6/3cm s v cm s≤<②如下图12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形()()5152525751022x x⨯-⨯-=---=15过M点做MH⊥AC,则125MH CM==∴112152S MH AP x=⋅=-+∴22S x=()122152S S x x⋅=-+⋅=2430x x-+=215225444x⎛⎫--+⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254. 【点睛】本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S 1和S 214.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩,解得:2383 ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得15129±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3 CF P O,即523=103t,解得:t=49,∴t的值为49、15129±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH=OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN22D H NH'+2246+13点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.15.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
2020年上海16区中考数学二模分类汇编-专题13 二次函数(解答题24题压轴题)(逐题详解板)

2020年上海市16区中考数学二模汇编专题13 二次函数(解答题24题压轴题)1. (2020闵行二模)2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模) 13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)在平面直角坐标系xOy 中,我们把以抛物线2y x 上的动点A 为顶点的抛物线叫做这条抛物线的“子抛物线”.如图,已知某条“子抛物线”的二次项系数为32,且与y 轴交于点C .设点A 的横坐标为m (m >0),过点A 作y 轴的垂线交y 轴于点B .(1)当m=1时,求这条“子抛物线”的解析式; (2)用含m 的代数式表示∠ACB 的余切值; (3)如果∠OAC=135°,求m 的值.2.(2020松江二模) 如图,在平面直角坐标系xOy 中,抛物线与x 轴和y 轴的正半轴分别交于A 、B 两点,且OA=OB ,又抛物线的顶点为M ,联结AB 、AM . (1)求这条抛物线的表达式和点M 的坐标; (2)求的值;(3)如果Q 是线段OB 上一点,满足∠MAQ=45°,求点Q 的坐标.23y x bx =-++sin BAM ∠3.(2020宝山二模)如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B 、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示) (2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.4.(2020奉贤二模) 如图7,在平面直角坐标系中,抛物线2yx bx 经过点A (2,0).直线xOy122y x =-与x 轴交于点B ,与y 轴交于点C . (1)求这条抛物线的表达式和顶点的坐标; (2)将抛物线2y x bx 向右平移,使平移后的抛物线经过点B ,求平移后抛物线的表达式;(3)将抛物线2yx bx 向下平移,使平移后的抛物线交y 轴于点D ,交线段BC 于点P 、Q ,(点P 在点Q 右侧),平移后抛物线的顶点为M ,如果DP ∥x 轴,求∠MCP 的正弦值.5.(2020金山二模)在平面直角坐标系xOy 中(如图),已知抛物线2y x bx c =-++经过点A (3,0)和点B (0,3),其顶点为C .(1)求抛物线的解析式和顶点C 的坐标;(2)我们把坐标为(n ,m )的点叫做坐标为(m ,n )的点的反射点,已知点M 在这条抛物线上,它的反射点在抛物线的对称轴上,求点M 的坐标;(3)点P 是抛物线在第一象限部分上的一点,如果∠POA =∠ACB ,求点P 的坐标.6.(2020静安二模)在平面直角坐标系xOy 中(如图9),已知抛物线c bx x y ++-=221(其中b 、c 是常数)经过点A (-2,-2)与点B (0,4),顶点为M . (1)求该抛物线的表达式与点M 的坐标;(2)平移这条抛物线,得到的新抛物线与y 轴交于点C (点C 在点B 的下方),且△BCM 的面积为3.新抛物线的对称轴l 经过点A ,直线l 与x 轴交于点D .①求点A 随抛物线平移后的对应点坐标;②点E 、G 在新抛物线上,且关于直线l 对称,如果正方形DEFG 的顶点F 在第二象限内,求点F 的坐标.7.(2020嘉定二模)在平面直角坐标系xOy 中(如图7),已知经过点)0,3(-A 的抛物线322-+=ax ax y与y 轴交于点C ,点B 与点A 关于该抛物线的对称轴对称,D 为该抛物线的顶点. (1)直接写出该抛物线的对称轴以及点B 的坐标、点C 的坐标、点D 的坐标; (2)联结AD 、DC 、CB ,求四边形ABCD 的面积;(3)联结AC .如果点E 在该抛物线上,过点E 作x 轴的垂线, 垂足为H ,线段EH 交线段AC 于点F.当FH EF 2=时,求点E 的坐标.8(2020长宁二模)如图7,在平面直角坐标系xOy 中,已知抛物线n mx x y ++=2经过点)2-2(,A ,对称轴是直线1=x ,顶点为点B ,抛物线与y 轴交于点C .(1)求抛物线的表达式和点B 的坐标;(2)将上述抛物线向下平移1个单位, 平移后的抛物线与x 轴正半轴交于点D ,求BCD ∆的面积; (3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,51=PQ BQ ,求点P 的坐标.y x-3-3-2-2-1-11AO19.(2020崇明二模)已知抛物线24y ax bx =+-经过点(1,0),(4,0)A B -,与y 轴交于点C ,点D 是该抛物线上一点,且在第四象限内,连接AC BC CD BD 、、、.(1)求抛物线的函数解析式,并写出对称轴; (2)当4BCD AOC S S ∆∆=时,求点D 的坐标;(3)在(2)的条件下,如果点E 是x 轴上一点,点F 是抛物线上一点,当以点A D E F 、、、为顶点的四边形是平行四边形时,请直接写出点E 的坐标.10.(2020浦东二模)在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点(0,3)C ,对称轴是直线1x =.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且34MN AB =,点C 关于直线MN 的对称点为E ,求线段OE 的长;(3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当:1:2CPF CEF S S =△△时,求点P 的坐标.11.(2020徐汇二模) .如图,已知直线22y x =+与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数my x=图像上,过点B 作BF ⊥OC ,垂足为F ,设OF=t .(1)求∠ACO 的正切值;(2)求点B 的坐标(用含t 的式子表示); (3)已知直线22y x =+与反比例函数my x=图像都经过第一象限的点D ,联结DE ,如果DE x ⊥轴,求m 的值.12.(2020青浦二模)如图7,在平面直角坐标系xOy 中,二次函数243y a x a x =-+ 的图像与x 轴正半轴交于点A 、B ,与y 轴相交于点C ,顶点为D ,且tan 3∠=CAO .(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDFFDPS S=时,求点P 的坐标;(3)在(2)的条件下,将△PCD 沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交轴于点M ,交轴于点N ,求OM ON的值.x y13. (2020•虹口区二模)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (﹣1,0)和点B (3,0),该抛物线对称轴上的点P 在x 轴上方,线段PB 绕着点P 逆时针旋转90°至PC (点B 对应点C ),点C 恰好落在抛物线上.(1)求抛物线的表达式并写出抛物线的对称轴; (2)求点P 的坐标;(3)点Q 在抛物线上,联结AC ,如果∠QAC =∠ABC ,求点Q 的坐标.14(2020杨浦二模)如图,已知在平面直角坐标系xOy 中,抛物线y =ax 2+bx +4经过点A (-3,0)和点B (3,2),与y 轴相交于点C .(1)求这条抛物线的表达式;(2)点P 是抛物线在第一象限内一点,联结AP ,如果点C 关于直线AP 的对称点D 恰好落在x 轴上,求直线AP 的截距;(3)在第(2)小题的条件下,如果点E 是y 轴正半轴上一点,点F 是直线AP 上一点.当△EAO 与△EAFyx DO CBAyxDO CBA全等时,求点E 的纵坐标.15(2020黄浦二模)在平面直角坐标系xOy 中,已知抛物线y=21x 2+bx+c 经过点A (﹣4,0)和B (2,6),其顶点为D .(1)求此抛物线的表达式; (2)求△ABD 的面积;(3)设C 为该抛物线上一点,且位于第二象限,过点C 作CH ⊥x 轴,垂足为点H ,如果△OCH 与△ABD 相似,求点C 的坐标.16.(2020普陀二模)2020年上海市16区中考数学二模汇编专题13 二次函数(解答题24题压轴题)2.(2020闵行二模) 2.(2020松江二模)3.(2020宝山二模)4.(2020奉贤二模)5.(2020金山二模)6.(2020静安二模)7.(2020嘉定二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)在平面直角坐标系xOy中,我们把以抛物线2y x上的动点A为顶点的抛物线叫做这条抛物线的“子抛物线”.如图,已知某条“子抛物线”的二次项系数为32,且与y轴交于点C.设点A的横坐标为m(m>0),过点A作y轴的垂线交y轴于点B.(1)当m=1时,求这条“子抛物线”的解析式;(2)用含m的代数式表示∠ACB的余切值;(3)如果∠OAC=135°,求m的值.【分析】(1)先求出m=1时点A的坐标,进而可得到这条“子抛物线”的解析式;(2)先根据A点坐标求出“子抛物线”的解析式和AB,OB的长度,然后令x = 0求出y值即可得到C点坐标,进而可求出BC的长度,最后利用cotBCACBAB∠=即可求解;(3)过O点作OD⊥CA的延长线于点D,过点D作y轴的平行线分别交BA的延长线于点E,交x轴于点F, 首先证明△AED≌△DFO,则有AE=DF,DE=OF,设AE=n,那么DF=n,BE= m + n=OF=ED,通过OB=EF得到22m m n=+,然后再通过cotDEADEAE∠=得到32m nmn+=,将两个关于m,n的方程联立即可求出m 的值.【详解】解:(1)∵点A 在2y x 上,点A 的横坐标为m ,∴A (m ,m 2),当m =1时,21m = ,∴A (1,1),∴这条“子抛物线”的解析式为23(1)12y x =-+. (2)由A (m ,m 2),且AB ⊥y 轴,可得AB =m ,OB = m 2.∴“子抛物线”的解析式为223()2y x m m =-+. 令x = 0,252y m =, ∴点C 的坐标(0,252m ),252OC m =, ∴232BC OC OB m =-=. 在Rt △ABC 中,2332cot 2m BC ACB m AB m ∠===.(3)如图,过O 点作OD ⊥CA 的延长线于点D ,过点D 作y 轴的平行线分别交BA 的延长线于点E ,交x 轴于点F .∵∠OAC=135°,∴∠OAD=45°.又∵OD ⊥CA ,90ADO ∴=︒∴∠AOD=∠OAD=45°,∴AD=OD ,90,90EAD ADE ODF ADE ∠+∠=︒∠+∠=︒ ,EAD ODF ∴∠=∠.90DEA DFO ∠=∠=︒,∴△AED ≌△DFO ,∴AE=DF ,DE=OF .设AE=n ,那么DF=n ,BE= m + n=OF=ED .又∵OB=EF ,∴22m m n =+.又//EF OC ∴,∴∠BCA=∠ADE , ∴3cot 2DE m n ADE m AE n +∠===. 解方程组2232m m n m n m n⎧=+⎪⎨+=⎪⎩,得12m =,213m =-(舍去) , m 的值为2.【点睛】本题主要考查全等三角形的判定及性质,锐角三角函数的应用,子抛物线的定义,掌握全等三角形的判定及性质,锐角三角函数的定义是解题的关键.2.(2020松江二模) 如图,在平面直角坐标系xOy 中,抛物线与x 轴和y 轴的正半轴分别交于A 、B 两点,且OA=OB ,又抛物线的顶点为M ,联结AB 、AM .(1)求这条抛物线的表达式和点M 的坐标;(2)求的值;(3)如果Q 是线段OB 上一点,满足∠MAQ=45°,求点Q 的坐标.23y x bx =-++sin BAM ∠解:(1)∵抛物线23y x bx =-++与y 轴交于B 点令x=0得y=3,∴B (0,3) ………………………………………………………………1分∵AO=BO,∴A (3,0) …………………………………………………………………1分把A (3,0)代入23y x bx =-++,得9330b -++=解得b=2,∴这条抛物线的表达式y =-x 2+2x +3 ………………………………………1分顶点M (1,4) ……………………………………………………………………………1分(2)∵ A (3,0),B (0,3) M (1,4),∴22BM =,218AB =,220AM =∴∠MBC =90°………………………………………………………………………2分 ∴210sin =1025BM BAM AM ∠==………………………………………………………2分 (3)∵OA=OB,∴∠OAB =45°∵∠MAQ=45°,∴∠BAM=∠OAQ ………………………………………………1分由(2)得10sin 10BAM ∠=,∴10sin 10OAQ ∠= ∴1tan 3OAQ ∠= ……………………………………………………………………1分 ∴133OQ OQ OA ==,∴1OQ = …………………………………………………………1分 ∴Q (0,1) ………………………………………………………………………………1分(3)另解∵OA=OB,∴∠OAB =45°∵∠MAQ=45°,∴∠BAM=∠OAQ ………………… ………………………………1分由(2)可知1tan 3BAM ∠=,∴1tan 3OAQ ∠= ……………………………………1分∴133OQ OQ OA ==,∴1OQ = ……………………………………………………………1分 ∴Q (0,1) ………………………………………………………………………………1分3.(2020宝山二模)如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B 、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示)(2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.【解答】解:(1)当y =ax 2﹣2ax ﹣3a =a (x +1)(x ﹣3),得A (﹣1,0),B (3,0),∵直线l :y =kx +b 过A (﹣1,0),∴0=﹣k +b ,即k =b ,∴直线l :y =kx +k ,∵抛物线与直线l 交于点A ,D ,∴ax 2﹣2ax ﹣3a =kx +k ,即ax 2﹣(2a +k )x ﹣3a ﹣k =0,∵CD =4AC ,∴点D的横坐标为4,∴﹣3−ka=−1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(2)如图1,过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=12(ax2﹣3ax﹣4a)(x+1)−12(ax2﹣3ax﹣4a)x=12(ax2﹣3ax﹣4a)=12a(x−32)2−258a,∴△ACE的面积的最大值═258 a,∵△ACE的面积的最大值为5 4,∴−258a=54,解得a=−2 5;(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①如图2,若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),∴m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=1 7,∵a<0,∴a=−√7 7∴P(1,−26√7 7);②如图3,若AD是矩形APDQ的对角线,则易得Q (2,﹣3a ),∴m =5a ﹣(﹣3a )=8a ,则P (1,8a ),∵四边形APDQ 是矩形,∴∠APD =90°,∴AP 2+PD 2=AD 2,∴(﹣1﹣1)2+(8a )2+(1﹣4)2+(8a ﹣5a )2=52+(5a )2,即a 2=14,∵a <0,∴a =−12,∴P (1,﹣4),综上所述,点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P (1,−26√77)或(1,﹣4).4.(2020奉贤二模)如图7,在平面直角坐标系中,抛物线2y x bx 经过点A (2,0).直线122y x =-与x 轴交于点B ,与y 轴交于点C . (1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线2y x bx 向右平移,使平移后的抛物线经过点B ,求平移后抛物线的表达式;xOy(3)将抛物线2y x bx 向下平移,使平移后的抛物线交y 轴于点D ,交线段BC 于点P 、Q ,(点P 在点Q 右侧),平移后抛物线的顶点为M ,如果DP ∥x 轴,求∠MCP 的正弦值.解:(1)由题意,抛物线2yx bx 经过点A (2,0), 得042b , 解得 2b ···················································································· (2分) ∴抛物线的表达式是22y x x =-. ··················································································· (1分) 它的顶点C 的坐标是(1,-1). ························································································· (1分)(2)∵直线122y x =-与x 轴交于点B , ∴点B 的坐标是(4,0) . ···························· (1分) ①将抛物线22y x x =-向右平移2个单位,使得点A 与点B 重合,此时平移后的抛物线表达式是231()y x =--. ································································ (2分) ②将抛物线22y x x =-向右平移4个单位,使得点O 与点B 重合,此时平移后的抛物线表达式是251()y x =--. ································································ (1分) (3)设向下平移后的抛物线表达式是:22y x x n =-+,得点D (0,n ).∵DP ∥x 轴,∴点D 、P 关于抛物线的对称轴直线1x对称,∴P (2,n ).∵点P 在直线BC 上,∴12212n =⨯-=-. ∴平移后的抛物线表达式是:222y x x =--. ································································ (2分) ∴新抛物线的顶点M 的坐标是(1,-2). ······································································· (1分)B CA xyo∴MC //OB ,∴∠MCP =∠OBC .在Rt △OBC 中,sin OC OBC BC , 由题意得:OC =2,25BC, ∴5sin sin 25MCP OBC . ·············································································· (1分) 即∠MCP 的正弦值是5. 5.(2020金山二模)在平面直角坐标系xOy 中(如图),已知抛物线2y x bx c =-++经过点A (3,0)和点B (0,3),其顶点为C .(1)求抛物线的解析式和顶点C 的坐标;(2)我们把坐标为(n ,m )的点叫做坐标为(m ,n )的点的反射点,已知点M 在这条抛物线上,它的反射点在抛物线的对称轴上,求点M 的坐标;(3)点P 是抛物线在第一象限部分上的一点,如果∠POA =∠ACB ,求点P 的坐标.解:(1),抛物线2y x bx c =-++经过点A (3,0)和点B (0,3),,23303b c c ⎧-++=⎨=⎩,--------------------------------------------------------------------------------(1分) ,b =2,c =3,抛物线的解析式为223y x x =-++,--------------------------------------(2分) 顶点C 的坐标为(1,4).---------------------------------------------------------------------------(1分)(2)设点M 的坐标为(t ,223t t -++),点M 的反射点为(223t t -++,t ),------------------------------------------------------------(1分) 由抛物线的对称轴为直线x =1,得223=1t t -++,----------------------------------------(1分)解得:1t 2=1t ,∴M 的坐标为(1)或(1-,1).--------(2分) (3)过点P 作PH ,x 轴,垂足为点H ,由A (3,0)、点B (0,3)、点C (1,4),得AB=AC =BC ,,222AB BC AC +=,∴∠ABC =90°,tan 3AB ACB BC ∠===,----(1分) ∵∠POA =∠ACB ,∴tan 3POH ∠=,∵∠PHO =90°,∴tan 3PHPOH OH∠==, 设PH =3s ,OH =s ,由点P 在第一象限得点P 的坐标是(s ,3s ),∴2233s s s -++=--------------------------------------------------------------------------(1分)解得11=2s -+,21=2s --(不合题意,舍去),∴1=2s -+,--(1分)点P ).-----------------------------------------------(1分)6.(2020静安二模)在平面直角坐标系xOy 中(如图9),已知抛物线c bx x y ++-=221(其中b 、c 是常数)经过点A (-2,-2)与点B (0,4),顶点为M . (1)求该抛物线的表达式与点M 的坐标;(2)平移这条抛物线,得到的新抛物线与y 轴交于点C (点C 在点B 的下方),且△BCM 的面积为3.新抛物线的对称轴l 经过点A ,直线l 与x 轴交于点D .①求点A 随抛物线平移后的对应点坐标;②点E 、G 在新抛物线上,且关于直线l 对称,如果正方形DEFG 的顶点F 在第二象限内,求点F 的坐标..解:(1)将A (-2,-2)、B (0,4)代入c bx x y ++-=221得,21(2)22200 4.b c c ⎧-⨯--+=-⎪⎨⎪++=⎩,·············································································· (2分) 解得⎩⎨⎧==.42c b ,∴该抛物线的表达式为:42212++-=x x y ; ···················································· (1分) 顶点M 的坐标是:(2,6). ···················································································· (1分) (2)①∵平移后抛物线的对称轴经过点A (-2,-2),∴可设平移后的抛物线表达式为:k x y ++-=2)221(. ····································· (1分) ∴C (0,-2+ k ).∴32)]2(4[21221=⋅+--=⋅=∆k BC S BCM ,························································· (1分) 解得k=3. ∴3)2212++-=x y (. ······································································· (1分)即原抛物线向左平移4个单位,向下平移3个单位可以得到新的抛物线.∴点A 对应点的坐标为(-6,-5). ········································································· (1分) ②设EG 与DF 的交点为H . 在正方形DEFG 中,EG ⊥DF ,EG =DF =2EH =2DH .∵点E 、G 是这条抛物线上的一对对称点,∴EG //x 轴. ∴DF ⊥x 轴,由此可设F (-2,2a ).∵点F 在第二象限内,∴a >0.∴EG =DF =2EH =2DH =2a .不妨设点E 在点G 的右侧,那么E (-2 +a ,a ). ··················································· (1分) 将点E 代入3)2212++-=x y (得:a a =+-3212. ············································· (1分) 解得171-=a ,172--=a (不合题意,舍去).········································· (1分)∴F (-2,272-). ································································································ (1分)7.(2020嘉定二模)在平面直角坐标系xOy 中(如图7),已知经过点)0,3(-A 的抛物线322-+=ax ax y 与y 轴交于点C ,点B 与点A 关于该抛物线的对称轴对称,D 为该抛物线的顶点. (1)直接写出该抛物线的对称轴以及点B 的坐标、点C 的坐标、点D 的坐标; (2)联结AD 、DC 、CB ,求四边形ABCD 的面积;(3)联结AC .如果点E 在该抛物线上,过点E 作x 轴的垂线, 垂足为H ,线段EH 交线段AC 于点F.当FH EF 2=时,求点E 的坐标.解:(1)该抛物线的对称轴为直线1-=x ······································································ 1分点B 的坐标为(1,0). ················································································· 1分 点C 的坐标为(0,-3). ················································································ 1分 点D 的坐标为(-1,-4). ··············································································· 1分(2)过点D 作AB DM ⊥,垂足为M ,易得:1=OM ,4=DM ,2=AM ,1=OB .4422121=⨯⨯=⋅=DM AM S ADM △, ·································································· 1分 271432121=⨯+=⋅+=)((梯形OM )DM OC S OCDM , ············································ 1分 23312121=⨯⨯=⋅=OC OB S OBC △, ······································································ 1分 所以923274=++=++=OBC OCDM ADM ABCD S S S S △梯形△四边形 ································ 1分 y x-3-3-2-2-1-11AO1(3)设直线AC 的表达式为b kx y +=,∵)0,3(-A ,)3,0(-C 在直线b kx y +=上,∴⎩⎨⎧-=+-=330b b k .解得⎩⎨⎧-=-=31b k ,故直线AC 的表达式为3--=x y . ····························· 1分方法1.∵点F 在直线3--=x y 上,所以可设)3,(--x x F .∵AB EH ⊥,点F 在线段EH 上,且HF EF 2=,可得)93,(--x x E . ································ 1分 ∵)93,(--x x E 在抛物线322-+=x x y 上,∴32932-+=--x x x . ································· 1分 整理,得 0652=++x x .解得 21-=x ,32-=x (不符合题意,应舍去).8(2020长宁二模)如图7,在平面直角坐标系xOy 中,已知抛物线n mx x y ++=2经过点)2-2(,A ,对称轴是直线1=x ,顶点为点B ,抛物线与y 轴交于点C .(1)求抛物线的表达式和点B 的坐标;(2)将上述抛物线向下平移1个单位, 平移后的抛物线与x 轴正半轴交于点D ,求BCD ∆的面积; (3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,51=PQ BQ ,求点P 的坐标.x解:(1) 抛物线n mx x y ++=2经过点)2,2(-A ,对称轴是直线1=x∴42212m n m ++=-⎧⎪⎨-=⎪⎩,解得22m n =-⎧⎨=-⎩ (2分)∴抛物线的解析式为222y x x =--,顶点B 的坐标是(1,3)- (2分) (2)抛物线222y x x =--与y 轴交于点),(2-0C 平移后的抛物线表达式为: 223y x x =-- ,点D 的坐标是(3,0) (2分) 过点B 做y BH ⊥轴,垂足为点H ∴=S S S BCD BCH COD BHOD S ∆∆∆--梯形1111=(13)31123=22222⨯+⨯-⨯⨯-⨯⨯ (2分) (3)∵直线OA 经过点00O (,)、)2,2(-A ,∴直线OA 的表达式为:y x =- 设对称轴与直线OA 相交于点E ,则11E (,-) ∵ (1,3)B - ∴2BE = (1分) 过点P 作PF//BE ,交直线OA 于点F设点)(22,2--t t t P 1t >(),则)(t t F -, ∴22PF t t =-- (1分) ∵ PF//BE ∴15BE BQ PF PQ == ∴22125t t =-- ∴2120t t --= ∴3t =- (舍去)或4t = (1分) ∴)6,4(P (1分)9.(2020崇明二模)已知抛物线24y ax bx =+-经过点(1,0),(4,0)A B -,与y 轴交于点C ,点D 是该抛物线上一点,且在第四象限内,连接AC BC CD BD 、、、.(1)求抛物线的函数解析式,并写出对称轴; (2)当4BCD AOC S S ∆∆=时,求点D 的坐标;(3)在(2)的条件下,如果点E 是x 轴上一点,点F 是抛物线上一点,当以点A D E F 、、、为顶点的四边形是平行四边形时,请直接写出点E 的坐标.【整体分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式,即可写出对称轴;(2)连接OD ,求出C 点坐标,根据A 、B 、C 点坐标求出8BCD S ∆=,设2(,34)D x x x --,根据=16OCD OBD OBC BCD OCDB S S S S S ∆∆∆∆=++=四边形,列出关于x 的方程,解方程即可求出D 点坐标;(3)分两种情形:如图2中,当AE 为平行四边形的边时,根据DF=AE=1,求解即可.如图3中,当AE ,DF 是平行四边形的对角线时,根据点F 的纵坐标为6,求出点F 的坐标,再根据中点坐标公式求解即可. 【满分解答】(1)∵24y ax bx =+-经过点(1,0),(4,0)A B -,4016440a b a b --=⎧∴⎨+-=⎩,13a b =⎧∴⎨=-⎩, ,,,,,,,,,234y x x =--, 对称轴为直线32x =. (2)连接OD ,,,,,234y x x =--经过点C ,(0,4)C ∴-, (10),(4,0)A B -,, 1,4OA OB OC ∴===,又90AOC BOC ∠=∠=︒,11142,44822AOC BOC S S ∆∆∴=⨯⨯==⨯⨯=,4BCD AOC S S ∆∆=, 8BCD S ∆∴=,设2(,34)D x x x --, ,,D 在第四象限,20340x x x ∴>--<,, OCD OBD OCDB S S S ∆∆∴=+四边形=21144(34)22x x x ⨯+⨯-++ =2288x x -++,88=16OBC BCD OCDB S S S ∆∆=+=+四边形,228816x x∴-++=,122x x∴==,(2,6)D∴-.(3)如图2中,当AE为平行四边形的边时,∵DF∥AE,D(2,-6)∴F(1,-6),∴DF=1,∴AE=1,∴E(0,0),或E′(-2,0).如图3中,当AE,DF是平行四边形的对角线时,∵点D与点F到x轴的距离相等,∴点F 的纵坐标为6, 当y=6时,6=x 2-3x-4, 解得x=-2或5,∴F(-2,6)或(5,6), 设E (n ,0),则有12222n -+-+=或21522n -++=, 解得n=1或8,∴E(1,0)或(8,0),综上所述,满足条件的点E 的坐标为(0,0)或(1,0)或(8,0)或(-2,0).【点睛】本题属于二次函数综合题,考查了待定系数法,平行四边形的判定和性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.10.(2020浦东二模)在平面直角坐标系xOy 中,已知抛物线2y x bx c =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点(0,3)C ,对称轴是直线1x =.(1)求抛物线的表达式;(2)直线MN 平行于x 轴,与抛物线交于M 、N 两点(点M 在点N 的左侧),且34MN AB =,点C 关于直线MN 的对称点为E ,求线段OE 的长;(3)点P 是该抛物线上一点,且在第一象限内,联结CP 、EP ,EP 交线段BC 于点F ,当:1:2CPF CEF S S =△△时,求点P 的坐标.【整体分析】(1)根据抛物线与y 轴交于点(0,3)C 可得出c 的值,然后由对称轴是直线1x =可得出b 的值,从而可求出抛物线的解析式;(2)令y=0得出关于x 的一元二次方程,求出x ,可得出点A 、B 的坐标,从而得到AB 的长,再求出MN 的长,根据抛物线的对称性求出点M 的横坐标,再代入抛物线解析式求出点M 的纵坐标,再根据点的对称可求出OE 的长;(3)过点E 作x 轴的平行线EH ,分别过点F ,P 作EH 的垂线,垂足分别为G ,Q ,则FG ∥PQ ,先证明△EGF ∽△EQP ,可得E E QF EG FG EP PQ ==,设点F 的坐标为(a ,-a+3),则EG=a ,FG=-a+3-12=-a+52,可用含a 的式子表示P 点的坐标,根据P 在抛物线的图象上,可得关于a 的方程,把a 的值代入P 点坐标,可得答案. 【满分解答】解:(1)将点C (0,3)代入2y x bx c =-++得c=3, 又抛物线的对称轴为直线x=1, ∴-2b-=1,解得b=2, ∴抛物线的表达式为y=-x 2+2x+3;(2)如图,令y=0,则-x 2+2x+3=0,解得x 1=-1,x 2=3, ∴点A (-1,0),B (3,0),∴AB=3-(-1)=4, ∵34MN AB =,∴MN=34×4=3, 根据二次函数的对称性,点M 的横坐标为31122-=-, 代入二次函数表达式得,y=22()3211724⎛⎫--⨯-++= ⎪⎝⎭, ∴点M 的坐标为17,24⎛⎫-⎪⎝⎭,。
2020年江苏省中考数学试题分类汇编(4)——二次函数(含答案)

2020年江苏省中考数学试题分类(4)——二次函数一.二次函数的性质(共4小题)1.(2020•镇江)点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( )A .154B .4C .−154D .−174 2.(2020•无锡)请写出一个函数表达式,使其图象的对称轴为y 轴: .3.(2020•无锡)二次函数y =ax 2﹣3ax +3的图象过点A (6,0),且与y 轴交于点B ,点M 在该抛物线的对称轴上,若△ABM 是以AB 为直角边的直角三角形,则点M 的坐标为 .4.(2020•淮安)二次函数y =﹣x 2﹣2x +3的图象的顶点坐标为 .二.二次函数图象与几何变换(共2小题)5.(2020•宿迁)将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( )A .y =(x +2)2﹣2B .y =(x ﹣4)2+2C .y =(x ﹣1)2﹣1D .y =(x ﹣1)2+56.(2020•南京)下列关于二次函数y =﹣(x ﹣m )2+m 2+1(m 为常数)的结论:①该函数的图象与函数y =﹣x 2的图象形状相同;②该函数的图象一定经过点(0,1);③当x >0时,y 随x 的增大而减小;④该函数的图象的顶点在函数y =x 2+1的图象上.其中所有正确结论的序号是 .三.抛物线与x 轴的交点(共3小题)7.(2020•南通)已知抛物线y =ax 2+bx +c 经过A (2,0),B (3n ﹣4,y 1),C (5n +6,y 2)三点,对称轴是直线x =1.关于x 的方程ax 2+bx +c =x 有两个相等的实数根.(1)求抛物线的解析式;(2)若n <﹣5,试比较y 1与y 2的大小;(3)若B ,C 两点在直线x =1的两侧,且y 1>y 2,求n 的取值范围.8.(2020•盐城)若二次函数y =ax 2+bx +c 的图象与x 轴有两个交点M (x 1,0),N (x 2,0)(0<x 1<x 2),且经过点A (0,2).过点A 的直线l 与x 轴交于点C ,与该函数的图象交于点B (异于点A ).满足△ACN 是等腰直角三角形,记△AMN 的面积为S 1,△BMN 的面积为S 2,且S 2=52S 1.(1)抛物线的开口方向 (填“上”或“下”);(2)求直线l 相应的函数表达式;(3)求该二次函数的表达式. 9.(2020•苏州)如图,二次函数y =x 2+bx 的图象与x 轴正半轴交于点A ,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点D (2,﹣3).(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点P '(x 1,y 1)、Q '(x 2,y 2).若|y 1﹣y 2|=2,求x 1、x 2的值.四.二次函数的应用(共4小题)10.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.11.(2020•宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55 60 65 70销售单价x(元/千克)销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?12.(2020•南京)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B 地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?13.(2020•无锡)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD 和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.五.二次函数综合题(共8小题)14.(2020•镇江)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a <0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.(1)当a =﹣1时,求点N 的坐标及AA AA 的值; (2)随着a 的变化,AA AA 的值是否发生变化?请说明理由;(3)如图②,E 是x 轴上位于点B 右侧的点,BC =2BE ,DE 交抛物线于点F .若FB =FE ,求此时的二次函数表达式.15.(2020•宿迁)二次函数y =ax 2+bx +3的图象与x 轴交于A (2,0),B (6,0)两点,与y 轴交于点C ,顶点为E ..(1)求这个二次函数的表达式,并写出点E 的坐标;(2)如图①,D 是该二次函数图象的对称轴上一个动点,当BD 的垂直平分线恰好经过点C 时,求点D 的坐标;(3)如图②,P 是该二次函数图象上的一个动点,连接OP ,取OP 中点Q ,连接QC ,QE ,CE ,当△CEQ 的面积为12时,求点P 的坐标. 16.(2020•徐州)如图,在平面直角坐标系中,函数y =﹣ax 2+2ax +3a (a >0)的图象交x 轴于点A 、B ,交y 轴于点C ,它的对称轴交x 轴于点E .过点C 作CD ∥x 轴交抛物线于点D ,连接DE 并延长交y 轴于点F ,交抛物线于点G .直线AF 交CD 于点H ,交抛物线于点K ,连接HE 、GK .(1)点E 的坐标为: ;(2)当△HEF 是直角三角形时,求a 的值;(3)HE 与GK 有怎样的位置关系?请说明理由.17.(2020•淮安)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P 是x轴上的一个动点,过点P作x轴的垂线交直线l于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.18.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.19.(2020•泰州)如图,二次函数y 1=a (x ﹣m )2+n ,y 2=6ax 2+n (a <0,m >0,n >0)的图象分别为C 1、C 2,C 1交y 轴于点P ,点A 在C 1上,且位于y 轴右侧,直线P A 与C 2在y 轴左侧的交点为B .(1)若P 点的坐标为(0,2),C 1的顶点坐标为(2,4),求a 的值;(2)设直线P A 与y 轴所夹的角为α.①当α=45°,且A 为C 1的顶点时,求am 的值;②若α=90°,试说明:当a 、m 、n 各自取不同的值时,AA AA 的值不变;(3)若P A =2PB ,试判断点A 是否为C 1的顶点?请说明理由.20.(2020•连云港)在平面直角坐标系xOy 中,把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L 1:y =12x 2−32x ﹣2的顶点为D ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C .抛物线L 2与L 1是“共根抛物线”,其顶点为P .(1)若抛物线L 2经过点(2,﹣12),求L 2对应的函数表达式;(2)当BP ﹣CP 的值最大时,求点P 的坐标;(3)设点Q 是抛物线L 1上的一个动点,且位于其对称轴的右侧.若△DPQ 与△ABC 相似,求其“共根抛物线”L 2的顶点P 的坐标. 21.(2020•无锡)在平面直角坐标系中,O 为坐标原点,直线OA 交二次函数y =14x 2的图象于点A ,∠AOB=90°,点B 在该二次函数的图象上,设过点(0,m )(其中m >0)且平行于x 轴的直线交直线OA 于点M ,交直线OB 于点N ,以线段OM 、ON 为邻边作矩形OMPN .(1)若点A 的横坐标为8.①用含m的代数式表示M的坐标;②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.2020年江苏省中考数学试题分类(4)——二次函数参考答案与试题解析一.二次函数的性质(共4小题)1.【解答】解:∵点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,∴a =0,∴n =m 2+4,∴m ﹣n =m ﹣(m 2+4)=﹣m 2+m ﹣4=﹣(m −12)2−154,∴当m =12时,m ﹣n 取得最大值,此时m ﹣n =−154,故选:C .2.【解答】解:∵图象的对称轴是y 轴,∴函数表达式y =x 2(答案不唯一),故答案为:y =x 2(答案不唯一).3.【解答】解:∵抛物线的对称轴为x =−122×(−16)=32, 设点M 的坐标为:(32,m ),当∠ABM =90°,过B 作BD 垂直对称轴于D ,则∠1=∠2,∴tan ∠2=tan ∠1=63=2, ∴AA AA =2,∴DM =3, ∴M (32,6),当∠M ′AB =90°时,∴tan ∠3=A′A AA =tan ∠1=63=2, ∴M ′N =9, ∴M ′(32,﹣9),综上所述,点M 的坐标为(32,﹣9)或(32,6).故答案为:(32,﹣9)或(32,6). 4.【解答】解:∵y =﹣x 2﹣2x +3=﹣(x 2+2x +1﹣1)+3=﹣(x +1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).二.二次函数图象与几何变换(共2小题)5.【解答】解:由“上加下减”的原则可知,将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y =(x ﹣1)2+2+3,即y =(x ﹣1)2+5;故选:D .6.【解答】解:①∵二次函数y =﹣(x ﹣m )2+m +1(m 为常数)与函数y =﹣x 2的二次项系数相同, ∴该函数的图象与函数y =﹣x 2的图象形状相同,故结论①正确;②∵在函数y =﹣(x ﹣m )2+m 2+1中,令x =0,则y =﹣m 2+m 2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y =﹣(x ﹣m )2+m 2+1,∴抛物线开口向下,对称轴为直线x =m ,当x >m 时,y 随x 的增大而减小,故结论③错误;④∵抛物线开口向下,当x =m 时,函数y 有最大值m 2+1,∴该函数的图象的顶点在函数y =x 2+1的图象上.故结论④正确,故答案为①②④.三.抛物线与x 轴的交点(共3小题)7.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (2,0),∴0=4a +2b +c ①,∵对称轴是直线x =1,∴−A 2A =1②, ∵关于x 的方程ax 2+bx +c =x 有两个相等的实数根,∴△=(b ﹣1)2﹣4ac =0③,由①②③可得:{A =−12A =1A =0,∴抛物线的解析式为y =−12x 2+x ;(2)∵n <﹣5,∴3n ﹣4<﹣19,5n +6<﹣19∴点B ,点C 在对称轴直线x =1的左侧,∵抛物线y =−12x 2+x ,∴−12<0,即y 随x 的增大而增大,∵(3n ﹣4)﹣(5n +6)=﹣2n ﹣10=﹣2(n +5)>0,∴3n ﹣4>5n +6,∴y 1>y 2;(3)若点B 在对称轴直线x =1的左侧,点C 在对称轴直线x =1的右侧时,由题意可得{3A −4<15A +6>11−(3A −4)<5A +6−1, ∴0<n <53, 若点C 在对称轴直线x =1的左侧,点B 在对称轴直线x =1的右侧时,由题意可得:{3A −4>15A +6<13A −4−1<1−(5A +6),∴不等式组无解,综上所述:0<n <53.8.【解答】解:(1)如图,如二次函数y =ax 2+bx +c 的图象与x 轴有两个交点M (x 1,0),N (x 2,0)(0<x 1<x 2),且经过点A (0,2).∴y =ax 2+bx +2,令y =0,则ax 2+bx +2=0,∵0<x 1<x 2,∴2A >0,∴a >0,∴抛物线开口向上,故答案为:上;(2)①若∠ACN =90°,则C 与O 重合,直线l 与抛物线交于A 点,因为直线l 与该函数的图象交于点B (异于点A ),所以不合题意,舍去;②若∠ANC =90°,则C 在x 轴的下方,与题意不符,舍去;③若∠CAN =90°,则∠ACN =∠ANC =45°,AO =CO =NO =2,∴C (﹣2,0),N (2,0),设直线l 为y =kx +b ,将A (0,2)C (﹣2,0)代入得{A =2−2A +A =0, 解得{A =1A =2, ∴直线l 相应的函数表达式为y =x +2;(3)过B 点作BH ⊥x 轴于H ,S 1=12AA ⋅AA ,S 2=12AA ⋅AA ,∵S 2=52S 1, ∴BH =52OA , ∵OA =2,∴BH =5,即B 点的纵坐标为5,代入y =x +2中,得x =3,∴B (3,5),将A 、B 、N 三点的坐标代入y =ax 2+bx +c 得{A =24A +2A +A =09A +3A +A =5,解得{A =2A =−5A =2,∴抛物线的解析式为y =2x 2﹣5x +2.9.【解答】解:(1)直线与抛物线的对称轴交于点D (2,﹣3),故抛物线的对称轴为x =2,即−12b =2,解得:b =﹣4,(2)∵b =﹣4∴抛物线的表达式为:y =x 2﹣4x ;把y =﹣3代入y =x 2﹣4x 并解得x =1或3,故点B 、C 的坐标分别为(1,﹣3)、(3,﹣3),则BC =2,∵四边形PBCQ 为平行四边形,∴PQ =BC =2,故x 2﹣x 1=2,又∵y 1=x 12﹣4x 1,y 2=x 22﹣4x 2,|y 1﹣y 2|=2,故|(x 12﹣4x 1)﹣(x 22﹣4x 2)|=2,|x 1+x 2﹣4|=1.∴x 1+x 2=5或x 1+x 2=3,由{A 2−A 1=2A 1+A 2=5,解得{A 1=32A 2=72; 由{A 2−A 1=2A 1+A 2=3,解得{A 1=12A 2=52. 四.二次函数的应用(共4小题)10.【解答】解:根据题意:y =﹣0.2x 2+1.5x ﹣2,当x =−1.52×(−0.2)=3.75时,y 取得最大值, 则最佳加工时间为3.75min .故答案为:3.75.11.【解答】解:(1)设y 与x 之间的函数表达式为y =kx +b (k ≠0),将表中数据(55,70)、(60,60)代入得:{55A +A =7060A +A =60, 解得:{A =−2A =180. ∴y 与x 之间的函数表达式为y =﹣2x +180.(2)由题意得:(x ﹣50)(﹣2x +180)=600,整理得:x 2﹣140x +4800=0,解得x 1=60,x 2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w 元,则:w =(x ﹣50)(﹣2x +180)=﹣2(x ﹣70)2+800,∵﹣2<0,∴当x =70时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.12.【解答】解:(1)∵y 1=﹣180x +2250,y 2=﹣10x 2﹣100x +2000,∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250﹣2000=250(m ),故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则s =(﹣180x +2250)﹣(﹣10x 2﹣100x +2000)=10x 2﹣80x +250=10(x ﹣4)2+90,∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m .13.【解答】解:(1)当x =5时,EF =20﹣2x =10,EH =30﹣2x =20,y =2×12(EH +AD )×20x +2×12(GH +CD )×x ×60+EF •EH ×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF =(20﹣2x )米,EH =(30﹣2x )米,参考(1),由题意得:y =(30+30﹣2x )•x •20+(20+20﹣2x )•x •60+(30﹣2x )(20﹣2x )•40=﹣400x +24000(0<x <10);(3)S 甲=2×12(EH +AD )×x =(30﹣2x +30)x =﹣2x 2+60x , 同理S 乙=﹣2x 2+40x ,∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x 2+60x ﹣(﹣2x 2+40x )≤120,解得:x ≤6,故0<x ≤6,而y =﹣400x +24000随x 的增大而减小,故当x =6时,y 的最小值为21600,即三种花卉的最低种植总成本为21600元.五.二次函数综合题(共8小题)14.【解答】解:(1)分别过点M 、N 作MG ⊥CD 于点E ,NT ⊥DC 于点T ,∵MG ∥TN ∥x 轴,∴△DMG ∽△DAC ,△DCB ∽△DTN ,∴AA AA =AA AA ,AA AA =AA AA ,∵a =﹣1,则y =﹣x 2+2x +c ,将M (﹣1,1)代入上式并解得:c =4,∴抛物线的表达式为:y =﹣x 2+2x +4,则点D (1,5),N (4,﹣4),则MG =2,DG =4,DC =5,TN =3,DT =9,∴2AA =45,AA 3=59,解得:AC =52,BC =53, ∴AA AA =32;(2)不变,理由:第(2)问有错误MG =2,DG =4a∵y =ax 2﹣2ax +c 过点M (﹣1,1),则a +2a +c =1,解得:c =1﹣3a ,∴y =ax 2﹣2ax +(1﹣3a ),∴点D (1,1﹣4a ),N (4,1+5a ),∴MG =2,DG =4a ,DC =1﹣4a ,FN =3,DF =﹣9a ,由(1)的结论得:AC =1−4A −2A ,BC =1−4A −3A ,∴AA AA =32;(3)过点F 作FH ⊥x 轴于点H ,则FH ∥l ,则△FHE ∽△DCE ,∵FB =FE ,FH ⊥BE ,∴BH =HE ,∵BC =2BE ,则CE =6HE ,∵CD =1﹣4a ,∴FH =1−4A 6, ∵BC =4A −13A , ∴CH =54×4A −13A =20A −512A ,∴F (53−512A +1,16−23a ), 将点F 的坐标代入y =ax 2﹣2ax +(1﹣3a )=a (x +1)(x ﹣3)+1得: 16−23a =a (53−512A +1+1)(53−512A +1﹣3)+1,解得:a =−54或14(舍弃), 经检验a =−54,故y =−54x 2+52x +194. 15.【解答】解:(1)将A (2,0),B (6,0)代入y =ax 2+bx +3, 得{4A +2A +3=036A +6A +3=0, 解得{A =14A =−2 ∴二次函数的解析式为y =14A 2−2x +3.∵y =14A 2−2A +3=14(A −4)2−1,∴E (4,﹣1).(2)如图1,图2,连接CB ,CD ,由点C 在线段BD 的垂直平分线CN 上,得CB =CD .设D (4,m ),∵C (0,3),由勾股定理可得:42+(m ﹣3)2=62+32.解得m =3±√29.∴满足条件的点D 的坐标为(4,3+√29)或(4,3−√29).(3)如图3,设CQ 交抛物线的对称轴于点M ,设P (n ,14A 2−2n +3),则Q (12A ,18A 2−A +32), 设直线CQ 的解析式为y =kx +3,则18A 2−A +32=12nk +3. 解得k =14A −2−3A ,于是CQ :y =(14A −2−3A )x +3,当x =4时,y =4(14A −2−3A )+3=n ﹣5−12A, ∴M (4,n ﹣5−12A ),ME =n ﹣4−12A .∵S △CQE =S △CEM +S △QEM =12×12A ⋅AA =12⋅12A ⋅(A −4−12A )=12. ∴n 2﹣4n ﹣60=0,解得n =10或n =﹣6,当n =10时,P (10,8),当n =﹣6时,P (﹣6,24).综合以上可得,满足条件的点P 的坐标为(10,8)或(﹣6,24).16.【解答】解:(1)对于抛物线y =﹣ax 2+2ax +3a ,对称轴x =−2A −2A=1, ∴E (1,0),故答案为(1,0).(2)如图,连接EC .对于抛物线y =﹣ax 2+2ax +3a ,令x =0,得到y =3a ,令y =0,﹣ax 2+2ax +3a =0,解得x =﹣1或3,∴A (﹣1,0),B (3,0),C (0,3a ),∵C ,D 关于对称轴对称,∴D (2,3a ),CD =2,EC =DE ,当∠HEF =90°时,∵ED =EC ,∴∠ECD =∠EDC ,∵∠DCF =90°,∴∠CFD +∠EDC =90°,∠ECF +∠ECD =90°,∴∠ECF =∠EFC ,∴EC =EF =DE ,∵EA ∥DH ,∴F A =AH ,∴AE =12DH ,∵AE =2,∴DH =4,∵HE ⊥DFEF =ED ,∴FH =DH =4,在Rt △CFH 中,则有42=22+(6a )2,解得a =√33或−√33(不符合题意舍弃),∴a =√33.当∠HFE =90°时,∵OA =OE ,FO ⊥AE ,∴F A =FE ,∴OF =OA =OE =1,∴3a =1,∴a =13, 综上所述,满足条件的a 的值为√33或13.(3)结论:EH ∥GK .理由:由题意A (﹣1,0),F (0,﹣3a ),D (2,3a ),H (﹣2,3a ),E (1,0),∴直线AF 的解析式y =﹣3ax ﹣3a ,直线DF 的解析式为y =3ax ﹣3a ,由{A =−3AA −3A A =−AA 2+2AA +3A ,解得{A =−1A =0或{A =6A =−21A , ∴K (6,﹣21a ),由{A =3AA −3A A =−AA 2+2AA +3A ,解得{A =2A =3A 或{A =−3A =−12A , ∴G (﹣3,﹣12a ),∴直线HE 的解析式为y =﹣ax +a ,直线GK 的解析式为y =﹣ax ﹣15a ,∵k 相同,a ≠﹣15a ,∴HE ∥GK .17.【解答】解:(1)将点A (﹣1,2)代入二次函数y =﹣x 2+bx +4中,得﹣1﹣b +4=2,∴b =1,∴二次函数的解析式为y =﹣x 2+x +4,将点B (3,n )代入二次函数y =﹣x 2+x +4中,得n =﹣9+3+4=﹣2,故答案为:1,﹣2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B (3,﹣2),∵A (﹣1,2),∴{−A +A =23A +A =−2, ∴{A =−1A =1, ∴直线AB 的解析式为y =﹣x +1,由(1)知,二次函数的解析式为y =﹣x 2+x +4,∵点P (m ,0),∴M (m ,﹣m +1),N (m ,﹣m 2+m +4),∵点N 在点M 的上方,且MN =3,∴﹣m 2+m +4﹣(﹣m +1)=3,∴m =0或m =2;(3)①如图1,由(2)知,直线AB 的解析式为y =﹣x +1,∴直线CD 的解析式为y =﹣x +1+4=﹣x +5,令y =0,则﹣x +5=0,∴x =5,∴C (5,0),∵A (﹣1,2),B (3,﹣2),∴直线AC 的解析式为y =−13x +53,直线BC 的解析式为y =x ﹣5,过点N 作y 轴的平行线交AC 于K ,交BC 于H ,∵点P (m ,0),∴N (m ,﹣m 2+m +4),K (m ,−13m +53),H (m ,m ﹣5),∴NK =﹣m 2+m +4+13m −53=−m 2+43m +73,NH =﹣m 2+9,∴S 2=S △NAC =12NK ×(x C ﹣x A )=12(﹣m 2+43m +73)×6=﹣3m 2+4m +7,S 1=S △NBC =12NH ×(x C ﹣x B )=﹣m 2+9,∵S 1﹣S 2=6,∴﹣m 2+9﹣(﹣3m 2+4m +7)=6,∴m =1+√3(由于点N 在直线AC 上方,所以,舍去)或m =1−√3;∴S 2=﹣3m 2+4m +7=﹣3(1−√3)2+4(1−√3)+7=2√3−1,S 1=﹣m 2+9=﹣(1−√3)2+9=2√3+5;②如图2,记直线AB 与x 轴,y 轴的交点为I ,L ,由(2)知,直线AB 的解析式为y =﹣x +1,∴I (1,0),L (0,1),∴OL =OI ,∴∠ALD =∠OLI =45°,∴∠AOD +∠OAB =45°,过点B 作BG ∥OA ,∴∠ABG =∠OAB ,∴∠AOD +∠ABG =45°,∵∠FBA =∠ABG +∠FBG ,∠FBA +∠AOD ﹣∠BFC =45°,∴∠ABG +∠FBG +∠AOD ﹣∠BFC =45°,∴∠FBG =∠BFC ,∴BG ∥CF ,∴OA ∥CF ,∵A (﹣1,2),∴直线OA 的解析式为y =﹣2x ,∵C (5,0),∴直线CF 的解析式为y =﹣2x +10,过点A ,F 分别作过点M 平行于x 轴的直线的垂线,交于点Q ,S ,由旋转知,AM =MF ,∠AMF =90°,∴△AMF 是等腰直角三角形,∴∠F AM =45°,∵∠AIO =45°,∴∠F AM =∠AIO ,∴AF ∥x 轴,∴点F 的纵坐标为2,∴F (4,2),∴直线OF 的解析式为y =12x ①,∵二次函数的解析式为y =﹣x 2+x +4②, 联立①②解得,{A =1+√654A =1+√658或{A =1−√654A =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.18.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=﹣4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x+3,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=AAAA=13,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC=√9+9=3√2,CD=√1+1=√2,BD=√(4−2)2+(3+1)2=2√5,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan ∠DBC =AA AA =√23√2=13=tan ∠ACE , ∴∠ACE =∠DBC ,∴∠ACE +∠ECB =∠DBC +∠BCF ,∴∠ACB =∠CFD ,又∵∠CQD =∠ACB ,∴点F 与点Q 重合,∴点P 是直线CF 与抛物线的交点,∴0=x 2﹣4x +3,∴x 1=1,x 2=3,∴点P (3,0);当点Q 在点D 下方上,过点C 作CH ⊥DB 于H ,在线段BH 的延长线上截取HF =QH ,连接CQ 交抛物线于点P ,∵CH ⊥DB ,HF =QH ,∴CF =CQ ,∴∠CFD =∠CQD ,∴∠CQD =∠ACB ,∵CH ⊥BD ,∵点B (4,3),点D (2,﹣1),∴直线BD 解析式为:y =2x ﹣5,∴点F (52,0), ∴直线CH 解析式为:y =−12x +12, ∴{A =−12A +12A =2A −5,解得{A =115A =−35, ∴点H 坐标为(115,−35), ∵FH =QH ,∴点Q (1910,−65), ∴直线CQ 解析式为:y =−43x +43, 联立方程组{A =−43A +43A =A 2−4A +3,解得:{A 1=1A 1=0或{A 2=53A 2=−89,∴点P (53,−89); 综上所述:点P 的坐标为(3,0)或(53,−89);(3)如图,设直线AC 与BD 的交点为N ,作CH ⊥BD 于H ,过点N 作MN ⊥x 轴,过点E 作EM ⊥MN ,连接CG ,GF ,∵点A (0,3),点C (1,0),∴直线AC 解析式为:y =﹣3x +3,∴{A =−3A +3A =2A −5, ∴{A =85A =−95, ∴点N 坐标为(85,−95),∵点H 坐标为(115,−35), ∴CH 2=(115−1)2+(35)2=95,HN 2=(115−85)2+(−35+95)2=95, ∴CH =HN ,∴∠CNH =45°,∵点E 关于直线BD 对称的点为F ,∴EN =NF ,∠ENB =∠FNB =45°,∴∠ENF =90°,∴∠ENM +∠FNM =90°,又∵∠ENM +∠MEN =90°,∴∠MEN =∠FNM ,∴△EMN ≌△NKF (AAS )∴EM =NK =95,MN =KF ,∴点E 的横坐标为−15,∴点E (−15,185), ∴MN =275=KF ,∴CF =85+275−1=6, ∵点F 关于直线BC 对称的点为G ,∴FC =CG =6,∠BCF =∠GCB =45°,∴∠GCF =90°,∴点G (1,6),∴AG =√12+(6−3)2=√10.19.【解答】解:(1)由题意m =2,n =4,∴y 1=a (x ﹣2)2+4,把(0,2)代入得到a =−12.(2)①如图1中,过点A 作AN ⊥x 轴于N ,过点P 作PM ⊥AN 于M . ∵y 1=a (x ﹣m )2+n =ax 2﹣2amx +am 2+n ,∴P (0,am 2+n ),∵A (m ,n ),∴PM =m ,AN =n ,∵∠APM =45°,∴AM =PM =m ,∴m +am 2+n =n ,∵m >0,∴am =﹣1.②如图2中,由题意AB ⊥y 轴, ∵P (0,am 2+n ),当y =am 2+n 时,am 2+n =6ax 2+n ,解得x =±√66m , ∴B (−√66m ,am 2+n ),∴PB =√66m ,∵AP =2m ,∴AA AA =√66A =2√6.(3)如图3中,过点A 作AH ⊥x 轴于H ,过点P 作PK ⊥AH 于K ,过点B 作BE ⊥KP 交KP 的延长线于E .设B (b ,6ab 2+n ),∵P A =2PB ,∴点A 的横坐标为﹣2b ,∴A [﹣2b ,a (﹣2b ﹣m )2+n ],∵BE ∥AK , ∴AAAA =AAAA =12, ∴AK =2BE ,∴a (﹣2b ﹣m )2+n ﹣am 2﹣n =2(am 2+n ﹣6ab 2﹣n ),整理得:m 2﹣2bm ﹣8b 2=0,∴(m ﹣4b )(m +2b )=0,∵m ﹣4b >0,∴m +2b =0,∴m =﹣2b ,∴A (m ,n ),∴点A 是抛物线C 1的顶点.20.【解答】解:(1)当y =0时,12x 2−32x ﹣2=0,解得x =﹣1或4,∴A (﹣1,0),B (4,0),C (0,﹣2),由题意设抛物线L 2的解析式为y =a (x +1)(x ﹣4),把(2,﹣12)代入y =a (x +1)(x ﹣4),﹣12=﹣6a ,解得a =2,∴抛物线的解析式为y =2(x +1)(x ﹣4)=2x 2﹣6x ﹣8.(2)∵抛物线L 2与L 1是“共根抛物线”,A (﹣1,0),B (4,0),∴抛物线L 1,L 2的对称轴是直线x =32, ∴点P 在直线x =32上,∴BP =AP ,如图1中,当A ,C ,P 共线时,BP ﹣PC 的值最大,此时点P 为直线AC 与直线x =32的交点,∵直线AC 的解析式为y =﹣2x ﹣2,∴P (32,﹣5)(3)由题意,AB =5,CB =2√5,CA =√5,∴AB 2=BC 2+AC 2,∴∠ACB =90°,CB =2CA ,∵y =12x 2−32x ﹣2=12(x −32)2−258,∴顶点D (32,−258), 由题意,∠PDQ 不可能是直角,第一种情形:当∠DPQ =90°时,①如图3﹣1中,当△QDP ∽△ABC 时,AA AA =AA AA =12, 设Q (x ,12x 2−32x ﹣2),则P (32,12x 2−32x ﹣2),∴DP =12x 2−32x ﹣2﹣(−258)=12x 2−32x +98,QP =x −32, ∵PD =2QP ,∴2x ﹣3=12x 2−32x +98,解得x =112或32(舍弃), ∴P (32,398).②如图3﹣2中,当△DQP ∽△ABC 时,同法可得PQ =2PD ,x −32=x 2﹣3x +94,解得x =52或32(舍弃), ∴P (32,−218). 第二种情形:当∠DQP =90°.①如图3﹣3中,当△PDQ ∽△ABC 时,AA AA =AA AA =12, 过点Q 作QM ⊥PD 于M .则△QDM ∽△PDQ ,∴AA AA =AA AA =12,由图3﹣3可知,M (32,398),Q (112,398), ∴MD =8,MQ =4,∴DQ =4√5,由AA AA =AA AA ,可得PD =10, ∵D (32,−258) ∴P (32,558).②当△DPQ ∽△ABC 时,过点Q 作QM ⊥PD 于M .同法可得M (32,−218),Q (52,−218), ∴DM =12,QM =1,QD =√52,由AA AA =AA AA ,可得PD =52, ∴P (32,−58). 综上所述:P 点坐标为(32,398)或(32,−218)或(32,558)或(32,−58). 21.【解答】解:(1)①∵点A 在y =14x 2的图象上,横坐标为8, ∴A (8,16),∴直线OA 的解析式为y =2x ,∵点M 的纵坐标为m ,∴M (12m ,m ).②假设能在抛物线上,连接OP .∵∠AOB =90°,∴直线OB 的解析式为y =−12x ,∵点N 在直线OB 上,纵坐标为m ,∴N (﹣2m ,m ),∴MN 的中点的坐标为(−34m ,m ),∴P (−32m ,2m ),把点P 坐标代入抛物线的解析式得到m =329.(2)①当点A 在y 轴的右侧时,设A (a ,14a 2),∴直线OA 的解析式为y =14ax , ∴M (8A,2),∵OB ⊥OA , ∴直线OB 的解析式为y =−4A x ,可得N (−A 2,2),∴P (8A −A 2,4),代入抛物线的解析式得到,8A −A 2=±4,解得,a =4√2±4,∴直线OA 的解析式为y =(√2±1)x .②当点A 在y 轴的左侧时,即为①中点B 的位置,∴直线OA的解析式为y=−4A x=﹣(√2±1)x,综上所述,满足条件的直线OA的解析式为y=(√2±1)x或y=﹣(√2±1)x.。
中考数学分类一次函数与二次函数试卷(含答案)

中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020二次函数一、选择题1. (2020•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A .函数有最小值B.对称轴是直线x =C .当x <,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.2. (2020•广西贺州,第10题3分)已知二次函数y=ax2+bx+c (a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A .B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象. 分析:先根据二次函数的图象得到a >0,b <0,c <0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置. 解答: 解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣>0, ∴b <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0,∴一次函数y =cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B .点评: 本题考查了二次函数的图象:二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的图象为抛物线,当a >0,抛物线开口向上;当a <0,抛物线开口向下.对称轴为直线x =﹣;与y 轴的交点坐标为(0,c ).也考查了一次函数图象和反比例函数的图象.3.(2020年四川资阳,第10题3分)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A . 4个B . 3个C . 2个 D .1个考点: 二次函数图象与系数的关系.分析: 利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.4.(2020年天津市,第12 题3分)已知二次函数y=ax2+bx+c (a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.(2020•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A . 开口向下B . 对称轴是x =﹣1C . 顶点坐标是(1,2)D . 与x 轴有两个交点考点:二次函数的性质. 专题:常规题型. 分析: 根据抛物线的性质由a =1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x =1,从而可判断抛物线与x 轴没有公共点.解答: 解:二次函数y =(x ﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x =1,抛物线与x 轴没有公共点. 故选C .点评: 本题考查了二次函数的性质:二次函数y =ax 2+bx +c (a ≠0)的顶点式为y =a (x ﹣)2+,的顶点坐标是(﹣,),对称轴直线x =﹣b 2a ,当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上,当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下.6.(2020•舟山,第10题3分)当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A . ﹣ B.或 C .2或D .2或﹣或考点:二次函数的最值 专题:分类讨论. 分析:根据对称轴的位置,分三种情况讨论求解即可. 解答: 解:二次函数的对称轴为直线x =m , ①m <﹣2时,x =﹣2时二次函数有最大值,此时﹣(﹣2﹣m )2+m 2+1=4,解得m =﹣,与m <﹣2矛盾,故m 值不存在; ②当﹣2≤m ≤1时,x =m 时,二次函数有最大值, 此时,m 2+1=4,解得m =﹣,m =(舍去);③当m >1时,x =1时,二次函数有最大值, 此时,﹣(1﹣m )2+m 2+1=4, 解得m =2,综上所述,m 的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.7.(2020•毕节地区,第11题3分)抛物线y=2x2,y=﹣2x2,共有的性质是()A .开口向下B.对称轴是y轴C .都有最低点D.y随x的增大而减小考点:二次函数的性质分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.8.(2020•孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A .1个B . 2个C . 3个D .4个考点:二次函数图象与系数的关系;抛物线与x 轴的交点 专题:数形结合.分析: 由抛物线与x 轴有两个交点得到b 2﹣4ac >0;有抛物线顶点坐标得到抛物线的对称轴为直线x =﹣1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x =1时,y <0,则a +b +c <0;由抛物线的顶点为D (﹣1,2)得a ﹣b +c =2,由抛物线的对称轴为直线x =﹣=1得b =2a ,所以c ﹣a =2;根据二次函数的最大值问题,当x =﹣1时,二次函数有最大值为2,即只有x =1时,ax 2+bx +c =2,所以说方程ax 2+bx +c ﹣2=0有两个相等的实数根.解解:∵抛物线与x 轴有两个交点,答: ∴b 2﹣4ac >0,所以①错误;∵顶点为D (﹣1,2),∴抛物线的对称轴为直线x =﹣1,∵抛物线与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x =1时,y <0,∴a +b +c <0,所以②正确;∵抛物线的顶点为D (﹣1,2),∴a ﹣b +c =2,∵抛物线的对称轴为直线x =﹣=1,∴b =2a ,∴a ﹣2a +c =2,即c ﹣a =2,所以③正确;∵当x =﹣1时,二次函数有最大值为2,即只有x =1时,ax 2+bx +c =2,∴方程ax 2+bx +c ﹣2=0有两个相等的实数根,所以④正确. 故选C .点评: 本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x =﹣;抛物线与y 轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.9.(2020·台湾,第26题3分)已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?( )A.1 B.3 C.5 D.7分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h﹣0>10﹣h,然后解不等式后进行判断.解:∵抛物线的对称轴为直线x=h,而(0,5)、(10,8)两点在抛物线上,∴h﹣0>10﹣h,解得h>5.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y =ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(2020·浙江金华,第9题4分)如图是二次函数2=-++的图象,使y1≤成立的x的取值范围是【】y x2x4A.1x3≤-C.x1≥-≤≤B.x1D.x1≤-或x3≥【答案】D.【解析】试题分析:由图象可知,当y1≤时,x1≤-或x3≥. 故选D.考点:1.曲线上点的坐标与方程的关系;2.数形结合思想的应用11.(2020•浙江宁波,第12题4分)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴a﹣2b=﹣2﹣2×1=﹣4,2﹣4ab=2﹣4×(﹣2)×1=10,∴点A的坐标为(﹣4,10),∵对称轴为直线x=﹣=﹣2,∴点A关于对称轴的对称点的坐标为(0,10).故选D.点评:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.12.(2020•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF 重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A .B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.解答:解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选A.13.(2020•济宁,第8题3分)“如果二次函数y=ax2+bx+c 的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A .m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b考点:抛物线与x轴的交点.分依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函析: 数的增减性求解.解答: 解:依题意,画出函数y =(x ﹣a )(x ﹣b )的图象,如图所示.函数图象为抛物线,开口向上,与x 轴两个交点的横坐标分别为a ,b (a <b ).方程1﹣(x ﹣a )(x ﹣b )=0转化为(x ﹣a )(x ﹣b )=1,方程的两根是抛物线y =(x ﹣a )(x ﹣b )与直线y =1的两个交点. 由m <n ,可知对称轴左侧交点横坐标为m ,右侧为n . 由抛物线开口向上,则在对称轴左侧,y 随x 增大而减少,则有m <a ;在对称轴右侧,y 随x 增大而增大,则有b <n .综上所述,可知m <a <b <n .故选A .点评:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.14.(2020年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n 与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.15.(2020年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1 0 1 3y﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x ==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.16.(2020•滨州,第9题3分)下列函数中,图象经过原点的是()A .y=3x B.y=1﹣2x C.y=D.y=x2﹣1考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征分析:将点(0,0)依次代入下列选项的函数解析式进行一一验证即可.解答:解:∵函数的图象经过原点,∴点(0,0)满足函数的关系式;A、当x=0时,y=3×0=0,即y=0,∴点(0,0)满足函数的关系式y=3x;故本选项正确;B、当x=0时,y=1﹣2×0=1,即y=1,∴点(0,0)不满足函数的关系式y=1﹣2x;故本选项错误;C、y=的图象是双曲线,不经过原点;故本选项错误;D、当x=0时,y=02﹣1=﹣1,即y=﹣1,∴点(0,0)不满足函数的关系式y=x2﹣1;故本选项错误;故选A.点评:本题综合考查了二次函数、一次函数、反比例图象上的点的坐标特征.经过函数图象上的某点,该点一定满足该函数的解析式.二.填空题1. (2020•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2.考点:根据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.2.(2020年云南,第16题3分)抛物线y=x2﹣2x+3的顶点坐标是.考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.3.(2020•浙江湖州,第16题4分)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a <b<c时,都有y1<y2<y3,则实数m的取值范围是.分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b <c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a 最小可以取2以及对称轴的位置是解题的关键.4. (2020•株洲,第16题,3分)如果函数y =(a ﹣1)x 2+3x +的图象经过平面直角坐标系的四个象限,那么a 的取值范围是 a <﹣5 .考点:抛物线与x 轴的交点分析: 函数图象经过四个象限,需满足3个条件:(I )函数是二次函数;(II )二次函数与x 轴有两个交点;(III )二次函数与y 轴的正半轴相交.解答: 解:函数图象经过四个象限,需满足3个条件: (I )函数是二次函数.因此a ﹣1≠0,即a ≠1①(II )二次函数与x 轴有两个交点.因此△=9﹣4(a ﹣1)=﹣4a ﹣11>0,解得a <﹣②(III )二次函数与y 轴的正半轴相交.因此>0,解得a >1或a <﹣5③综合①②③式,可得:a <﹣5.故答案为:a <﹣5.点评: 本题考查二次函数的图象与性质、二次函数与x 轴的交点、二次函数与y 轴交点等知识点,解题关键是确定“函数图象经过四个象限”所满足的条件.5. (2020年江苏南京,第16题,2分)已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表: x… ﹣1 0 1 2 3 … y … 10 5 2 1 2 … 则当y <5时,x 的取值范围是 .考点:二次函数与不等式分析:根据表格数据,利用二次函数的对称性判断出x =4时,y =5,然后写出y <5时,x 的取值范围即可.解答:由表可知,二次函数的对称轴为直线x =2,所以,x =4时,y =5,所以,y <5时,x 的取值范围为0<x <4.故答案为:0<x <4.点评:本题考查了二次函数与不等式,观察图表得到y =5的另一个x 的值是解题的关键.6. (2020•扬州,第16题,3分)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 0 .(第3题图)考点:抛物线与x 轴的交点分析: 依据抛物线的对称性求得与x 轴的另一个交点,代入解析式即可.解答: 解:设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0),与x 轴的一个交点是P (4,0),∴与x 轴的另一个交点Q (﹣2,0),把(﹣2,0)代入解析式得:0=4a ﹣2b +c ,∴4a ﹣2b +c =0,故答案为:0.点本题考查了抛物线的对称性,知道与x 轴的一个交点和评:对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.7.(2020•菏泽,第12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C 两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则= _______.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出AB的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解.解答:解:设设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=2=3a,∴点D的坐标为(,3a),∵DE∥AC,∴点E的纵坐标为3a,∴=3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3﹣,==3﹣.故答案为:3﹣.点评:本题是二次函数综合题型,主要利用了二次函数图象上点的坐标特征,根据平行与x轴的点的纵坐标相同,平行于y轴的点的横坐标相同,求出用点A的纵坐标表示出各点的坐标是解题的关键.8. (2020•珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2 .考点:二次函数的性质分析: 点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴. 解答: 解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x ==2.故答案为:直线x =2.点评: 本题主要考查了抛物线的对称性,图象上两点的纵坐标相同,则这两点一定关于对称轴对称.三.解答题1. ( 2020•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2﹣4mx +2m 2+1和y 2=ax 2+bx +5,其中y 1的图象经过点A (1,1),若y 1+y 2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. ( 2020•福建泉州,第22题9分)如图,已知二次函数y =a (x ﹣h )2+的图象经过原点O (0,0),A (2,0).(1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转.分析: (1)由于抛物线过点O (0,0),A (2,0),根据抛物线的对称性得到抛物线的对称轴为直线x =1;(2)作A ′B ⊥x 轴与B ,先根据旋转的性质得OA ′=OA =2,∠A ′OA =2,再根据含30度的直角三角形三边的关系得OB =OA ′=1,A ′B =OB =,则A ′点的坐标为(1,),根据抛物线的顶点式可判断点A ′为抛物线y =﹣(x ﹣1)2+的顶点.解答: 解:(1)∵二次函数y =a (x ﹣h )2+的图象经过原点O (0,0),A (2,0).∴抛物线的对称轴为直线x =1;(2)点A ′是该函数图象的顶点.理由如下:如图,作A ′B ⊥x 轴于点B ,∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠A ′OA =2,在Rt △A ′OB 中,∠OA ′B =30°,∴OB =OA ′=1,∴A ′B =OB =,∴A ′点的坐标为(1,),∴点A ′为抛物线y =﹣(x ﹣1)2+的顶点.点评: 本题考查了二次函数的性质:二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(﹣,),对称轴直线x =﹣,二次函数y =ax 2+bx +c (a ≠0)的图象具有如下性质:①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上,x <﹣时,y 随x 的增大而减小;x >﹣时,y 随x 的增大而增大;x =﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.3. (2020•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.考四边形综合题点:分析: (1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF ∽△ABC 推出对应边的相似比,然后进行转换,即可得出h 与x 之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S 关于h 的二次函数表达式,求出顶点坐标,就可得出面积s 最大时h 的值.(2)第一步,沿∠ABC 的对角线对折,使C 与C 1重合,得到三角形ABB 1,第二步,沿B 1对折,使DA 1⊥BB 1. 解答:新 课 标 解:(1)①∵DE ∥AC ,DF ∥BC ,∴四边形DECF 是平行四边形.②作AG ⊥BC ,交BC 于G ,交DF 于H ,∵∠ACB =45°,AC =24cm∴AG ==12,设DF =EC =x ,平行四边形的高为h ,则AH =12h ,∵DF ∥BC , ∴=, ∵BC =20cm , 即:=∴x =×20, ∵S =xh =x •×20=20h ﹣h 2. ∴﹣=﹣=6, ∵AH =12,∴AF =FC ,∴在AC 中点处剪四边形DECF ,能使它的面积最大.(2)第一步,沿∠ABC 的对角线对折,使C 与C 1重合,得到三角形ABB 1,第二步,沿B 1对折,使DA 1⊥BB 1. 理由:对角线互相垂直平分的四边形是菱形.点评:本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.4. ( 2020•广东,第25题9分)如图,在△ABC 中,AB =AC ,AD ⊥AB 于点D ,BC =10cm ,AD =8cm .点P 从点B 出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.。