人教版高中数学必修一第一章测试(含标准答案)

合集下载

人教版高中数学必修一第一章测试(含答案)

人教版高中数学必修一第一章测试(含答案)

第3题图2011-2012学年度第一学期佛冈中学高一级 高中数学《必修一》第一章教学质量检测卷时间:120分钟。

总分:150分。

命题者:XJL班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。

本大题共10小题,每小题5分,共50分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么AB 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x ,(0,3)x。

()7,f a 若则a 的值是 ( )A 、1B 、1-C 、2D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0题号 一 二 15 16 17 18 19 20 总分 得分7、()3f x x 函数的值域为( )A 、[3,) B 、(,3] C 、[0),D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。

最新版人教a版高中数学必修一第一章测试题含答案资料

最新版人教a版高中数学必修一第一章测试题含答案资料

第一章 章末检测题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3}且∁U A ={0,2},则集合A 的真子集共有( ) A.3个 B.4个 C.5个 D.6个答案 A2.设S ,T 是两个非空集合,且它们互不包含,那么S ∪(S ∩T)等于( ) A.S ∩T B.S C.∅ D.T答案 B解析 ∵S ∩T ⊆S ,∴S ∪(S ∩T)=S.3.已知全集U =Z ,A ={-1,0,1,2},B ={x|x 2=x},则A ∩(∁U B)为( ) A.{-1,2} B.{-1,0} C.{0,1} D.{1,2}答案 A4.已知A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,则满足f(0)>f(1)的映射有( ) A.3个 B.4个 C.5个 D.2个答案 A5.已知f(x)=⎩⎪⎨⎪⎧x -5x 2(x ≤5),f (x -2) (x>5),则f(8)的函数值为( )A.-312B.-174C.174D.-76答案 D6.已知函数y =f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是( ) A.f(4)>f(-π)>f(3) B.f(π)>f(4)>f(3) C.f(4)>f(3)>f(π) D.f(-3)>f(-π)>f(-4)答案 D7.设f(x)是R 上的偶函数,且当x ∈(0,+∞)时,f(x)=x(1+3x),则当x ∈(-∞,0)时,f(x)等于( )A.x(1+3x) B.-x(1+3x) C.-x(1-3x) D.x(1-3x)答案 C8.当1≤x ≤3时,函数f(x)=2x 2-6x +c 的值域为( ) A.[f(1),f(3)] B.[f(1),f(32)]C.[f(32),f(3)]D.[c ,f(3)]答案 C9.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) A.5个 B.6个 C.7个 D.8个答案 B解析 M 可能为∅,{7},{4},{8},{7,4},{7,8}共6个.10.若函数f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是( )A.[0,2]B.(1,2]C.[0,1)D.以上都不对答案 C11.已知二次函数f(x)=x 2-2x +m ,对任意x ∈R 有( ) A.f(1-x)=f(1+x) B.f(-1-x)=f(-1+x) C.f(x -1)=f(x +1) D.f(-x)=f(x)答案 A12.已知f(x)=3-2|x|,g(x)=x 2-2x ,F(x)=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F(x)的最值是( )A.最大值为3,最小值-1B.最大值为7-27,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案 B二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={x ∈N |82-x ∈N }用列举法表示A ,则A =________.答案 {0,1}解析 由82-x ∈N ,知2-x =1,2,4,8,又x ∈N ,∴x =1或0.14.已知集合A ={1,3,m},B ={3,4},A ∪B ={1,2,3,4},则m =________. 答案 215.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元的14%纳税;超过4 000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________元. 答案 3 80016.若直线y =1与曲线y =x 2-|x|+a 有四个交点,则a 的取值范围是________.答案 1<a<54解析 由图知a>1且抛物线顶点的纵坐标小于1.即⎩⎨⎧a>1,4a -14<1⇒1<a<54.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x ≤1或x>2},求A ∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解析 全集U ={x|x ≥2或x ≤1},∴A ∩B =A ={x|x<1或x>3}; A ∪B =B ={x|x ≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2}; (∁U A)∪(∁U B)=∁U (A ∩B)={x|2≤x ≤3或x =1}.18.(12分)设A ={-3,4},B ={x|x 2-2ax +b =0},B ≠∅,且A ∩B =B ,求a ,b 的值. 解析 ∵A ∩B =B ,∴B ⊆A ,∴B =∅或{-3}或{4}或{-3,4}. (1)若B =∅,不满足题意.∴舍去.(2)若B ={-3},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,9+6a +b =0,解得⎩⎪⎨⎪⎧a =-3,b =9.(3)若B ={4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =4,b =16.(4)若B ={-3,4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b>0,9+6a +b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =12,b =-12.19.(12分)已知函数f(x)=11+x 2.(1)判断函数f(x)在(-∞,0)上的单调性,并证明你的结论; (2)求出函数f(x)在[-3,-1]上的最大值与最小值.解析 (1)设任意x 1,x 2∈(-∞,0),且x 1<x 2,而f(x 1)-f(x 2)=11+x 12-11+x 22=(x 2+x 1)(x 2-x 1)(1+x 12)(1+x 22),由x 1+x 2<0,x 2-x 1>0,得f(x 1)-f(x 2)<0,得f(x 1)<f(x 2),故函数f(x)=11+x 2在(-∞,0)上为单调递增函数. (2)f(x)min =f(-3)=110,f(x)max =f(-1)=12, 故f(x)在[-3,-1]上的最大值为12,最小值为110.20.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f(x)的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?解析 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550. 因此,当一次订购量为550个时,每个零件的实际出厂价格为51元.(2)当0<x ≤100时,P =60.当100<x<550时,P =60-0.02(x -100)=62-x50.当x ≥550时,P =51.所以P =f(x)=⎩⎪⎨⎪⎧60,0<x ≤10062-x50,100<x<550,x ∈N 51,x ≥550.(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则 L =(P -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤10022x -x250,100<x<550,(x ∈N )11x ,x ≥550.当x =500时,L =6 000; 当x =1 000时,L =11 000.因此,当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元.21.(12分)求函数f(x)=x 2-2ax -1在区间[0,2]上的最值. 解析 f(x)=x 2-2ax -1=(x -a)2-a 2-1,(1)当a ≤0时,f(x)在[0,2]上为增函数,∴f(x)的最小值为f(0)=-1,最大值为f(2)=3-4a. (2)当0<a ≤1,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(2)>f(0).∴f(x)的最大值为f(2)=3-4a ,f(x)的最小值为-a 2-1.(3)当1<a<2时,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(0)>f(2),∴f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a 2-1.(4)当a ≥2时,f(x)在[0,2]上为减函数,f(x)的最大值为f(0)=-1,f(x)的最小值为3-4a. 22.(12分)已知函数f(x)的定义域是(0,+∞), 当x>1时,f(x)>0,且f(x·y)=f(x)+f(y). (1)求f(1);(2)证明f(x)在定义域上是增函数;(3)如果f(13)=-1,求满足不等式f(x)-f(x -2)≥2的x 的取值范围.解析 (1)令x =y =1,得f(1)=2f(1),故f(1)=0.(2)证明:令y =1x ,得f(1)=f(x)+f(1x )=0,故f(1x )=-f(x).任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 2)-f(x 1)=f(x 2)+f(1x 1)=f(x 2x 1).由于x 2x 1>1,故f(x 2x 1)>0,从而f(x 2)>f(x 1).∴f(x)在(0,+∞)上是增函数.(3)由于f(13)=-1,而f(13)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x =y =3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x -2)≥f(9),∴f(x)≥f[9(x -2)],∴x ≤94.又⎩⎪⎨⎪⎧x>0,x -2>0,∴2<x ≤94.∴x 的取值范围是(2,94].1.已知集合A ={x|x>1},B ={x|-1<x<2},则A ∩B 等于( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}答案 D2.已知函数f :A →B(A ,B 为非空数集),定义域为M ,值域为N ,则A ,B ,M ,N 的关系是( )A.M =A ,N =BB.M ⊆A ,N =BC.M =A ,N ⊆BD.M ⊆A ,N ⊆B 答案 C解析 值域N 应为集合B 的子集,即N ⊆B ,而不一定有N =B.3.根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天t ∈N *)的关系满足下图,日销售Q(件)与时间t(天)之间的关系是Q =-t +40(t ∈N *).(1)写出该产品每件销售价格P 与时间t 的函数关系;(2)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品销售价格×日销量)解析 (1)根据图像,每件销售价格P 与时间t 的函数关系为:P =⎩⎪⎨⎪⎧t +30 (0<t ≤20,t ∈N *),50 (20<t ≤30,t ∈N *).(2)设日销售金额为y 元,则y =⎩⎪⎨⎪⎧(t +30)(-t +40)(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-t 2+10t +1 200(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *).若0<t ≤20,t ∈N *时,y =-t 2+10t +1 200=-(t -5)2+1 225,∴当t =5时,y max =1 225;若20<t ≤30,t ∈N *时,y =-50t +2 000是减函数.∴y<-50×20+2 000=1 000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1 225元.4.若函数f(x)=12x 2-x +32的定义域和值域都是[1,b],求b 的值.解析 由条件知,f(b)=b ,且b>1,即12b 2-b +32=b.解得b =3.。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

人教版高中数学必修一第一章单元测试(含答案)

人教版高中数学必修一第一章单元测试(含答案)

高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。

人教版高一数学必修一-第一章练习测试题与参考答案

人教版高一数学必修一-第一章练习测试题与参考答案

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。

高一数学必修1《第一章》单元测试题(含答案).doc

高一数学必修1《第一章》单元测试题(含答案).doc

班级:_______ 姓名:____________ 成绩: ____________一.选择题(本大题共12小题,第小题5分,共60分.1.设集合A = {xeQ\x>-l\,贝U ()A. 0^ AB.近冬AC. yf2e AD. |V2j c A2.已知集合A到B的映射f:x->y=2x+l,那么集合A中元素2在B中対应的元素是:A、2B、5C、6D、83.设集合A = {x\\< x <2} .B = {x\x < a}.若Au 3,则Q 的范围是( )A. a >2B. « < 1C. a > 1D. a <24.函数),=卮口的定义域是()A G'Z)B・[gg C.(列) D.(列]5.全集U= {0丄3,5,6,8},集合A={ 1, 5, 8}, B={2},则集合(qTl)UB:二()A. {0,2,3,6}B. {0,3,6}C. {2,1,5,8}D. 06.已知集合A = [x\-l<x<3},B = {x\2<x<5],则AljB=()A. (2,3)B. [-1,5]C. (-1,5)D. (-1,5]7.下列函数是奇函数的是()A. y = xB. y = 2x2 -3C. y =D. y = x2[0,1]8.化简:yl(7r-4)2 + 7T =()A. 4B. 2兀 _ 4C. 2兀一4 或4D. 4 — 2龙9.设集合M={x|-2<x<2), N={y\0<y<2},给出卜-列四个图形,其屮能表示以集合M为定义域,N为值域的函数关系的是()10.________________________________________________________________ 已知f (x) =g (.x) +2, •且g(x)为奇函数,若f (2) =3,则f (・2) = _______________________A 0 B・・3 C・1 D. 3x2x>011.己知f (x)=<71 % = 0,则f[f(-3)]等于0兀vOA> 0 Bx 7i C、d D> 912.已知函数/&)是人上的增函数,・A(O,—1), B(3,l)是其图像上的两点,那么|/(%)|<1 的解集是()A. (-3,0)B. (0,3)C.(一汽―l]u[3,+g)D. (―oo,0]u[l,-H«)二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上・)[x + 5(x>l) ,13.已知f(x) = \ .,则/T f (1)1 = .[2X2+1(X<1) ---------------------------------14 .已知/(兀一1) = /,贝|J于(兀)= __________15・定义在R上的奇函数/(%),当x>0时,/(%) = 2 ;则奇函数/(%)的值域是.16.关于下列命题:①若函数y = 2”的定义域是{x|x<0},则它的值域是{y | y <1};②若函数y=l-的定义域是{兀|兀>2},贝怕的值域是{y|y<-};x 2③若函数y = x2的值域是{y | 0 < > < 4},则它的定义域一定是{x|-2<x<2};④若函数=2r的定义域是{y | y < 4},则它的值域是{x|0<x<8}.其中不止确的命题的序号是___________ (注:把你认为不正确的命题的序号都填上).班级:_______ 姓名:____________ 成绩:____________一、选择题答案表:木人题共12题,每小题5分,共60分二、填空题答案:本人题共有4小题,每小题5分,满分20分13> __________ 14. _____________________________15> ____________ 16> ________________________三、解答题:本大题共5小题,共70分.题解答应写出文字说明,证明过程或演算步骤.17.设A = {% | x2 + 4% = 0} , A = {x\x2 +2(a + l)x + / -1 = 0},其中xe R ,如果 =求实数Q的取值范围.18.己知全集[/= {1,2,3,4,5,6,7,8}, A = {x | x2-3x4-2 = 0}, B = {x\\< x<5,xe Z} fC = {x\2<x<9,xeZ}. (1)求/lU(fiAC);(2)求(Q,B)U(Q,C).19.已知函数y=x2~2x+9分别求下列条件下的值域,(1)定义域是{x|3<x<8} (2)定义域是{% | -3 < x < 2}20.已知函数/(x) = x + -.兀(1)判断函数的奇偶性,并加以证明;⑵用定义证明f(x)在(0,1)上是减函数;(3)函数/(x)在(-1,0)上是单调增函数还是单调减函数?(直接写岀答案,不要求写证明过程).21.已知函数/(x)是定义在R上的偶函数,且当xWO吋,/⑴=F+2兀. ⑴现已应出函数/⑴在y轴左侧的图像,如图所示,请补出完整函数/*(兀)的图像,并根据图像写出函数/(%)的增区间;(2)写出函数/(%)的解析式和值域.1、B2、B3、A 4. B.提示:2x-l>0. 5. A.6. B.提示:运用数轴.7. A.提示:B为偶函数,C、D为非奇非偶函数.8. A.提示:+龙二”一4| + 兀=龙一4 + 龙二2龙一4 .9. B.捉刀P:10. c 11 B 12. B .提zjx: *•* —1 v /(兀)v 1,而y*(o)=—1,y*(3) = ], /(0)</(x)</(3), .\0<x<3.13.8.提示:/⑴=3, f(3) =8.14./(x) = (x + 1)2.提示:V/(x-l) = x2 =[(x —1) + 1 2, /. f(x) = (x + l)215.{-2, 0, 2 }.提示:因为/(0) = 0;x <0 时,f(x) = -2 ,所以f(x)的值域是{-2, 0, 2 }.16 .①②④.提示:若函数y = 2r的定义域是{ x | x < 0},则它的值域是{y\O<y<\};若函数v = 1的定义域是01 x > 2},则它的值域是{y\O<y<-}.x 2三.17、解A={0, —4} ........................................................A O B=B ・\BeA .........................................................由x2 + 2(a+ l)x + a2—1=0 得A =4 (a+1) 2—4 (a2—1) =8 (a+1) .....................................................................(1)当a<-l 时△<() B=4)CA ...........................................................(2)当a=・l 吋△=() B={O}cA ......................................................(3)当a>-l 时△>()要使BoA,则A=BVO, -4是方程x2+2(a+l)x+『・l=0的两根.J_2(d + 1) = -41 = 0解Z得a=l综上可得aW・l或a=l .....................................................1&解:(1)依题意有:A = {1,2},B = {1,2,3,4,5},C = {3,4,5,6,7,8}・・・MC = {3,4,5},故有AU(BAC) = {1,2}U{3,4,5} = {1,2,3,4,5}.由C"3二{6,7,8},C〃C二{1,2}(籾)U ( 〃C) = {6,7,8} u (1,2) = {1,2,6,7,8}.仃T)设x^x2 G(0」)冃・兀1 <x2••/ 0 < Xj < x2 < 1,/-兀]兀2 V 1,兀1尤2 一1 V 0T x2 > x A x2 -Xj > 0 .・• J&2)- / (“) V 0,/(x2) < /(xj因此函数/(兀)在(0,1)上是减函数(111) .f(x)在(-1,0)上是减函数.21. (1)函数图像如右图所示:/(兀)的递增区间是(-1,0) , (l,+oo).(2)解析式为:f(x) = [X +2x,x_0 值域为:[x-2x,x>0{y|y»-1}.20.解:y = 2x+2 -3-4' =-3-(2x)2 +4-2S令t = 2\则y = -3t2+4t= -3(t一 -)2 + -1 12 1V -1 < X < 0 , /.-<2X <lBPre[-,l],又・.•对称轴r = -e[-?l],32 2 4・••当t = -f即x = log2-时人ax=j ;当21 即x=o 时,y min =1.20•证明:仃)函数为奇函数f(-x)1=-x ——= =-/w一兀1 =(x2-Xj) 1-(兀2 —舛)(兀]兀2—1)第一章《集合与函数概念》单元测试题姓名:_______ 班别: _________ 成绩: _____________一、选择题:每小题4分,共40分1、在“①高一数学课本中的难题;②所有的正三角形;③方程午+2 = 0的实数解”中,能够表示成集合的是( )(A)②(B)③(C)②③(D)①②③2、若A=|x|0<x< V2 ={x11 < x < 2},则A^J B =( )(A) {x|x<0} (B) [x\x>2](C) {0<x<V2)(D) {x\0<x<2}3、若A={0丄2,3},B ={兀|兀=3a,dw 4},则Ar>B =( )(A) {1,2} (B) {0,1}(C) {0,3} (D) {3}4、在映射f : A T B中,A = B = {(x, y) \ x, ye R}, K / : (x, y) (x- >\x+ y),则与A中的元素(-1,2)对应的B屮的元素为( )(A) (—3,1) (B) (1,3) (C) (-1-3) (D) (3,1)5、下列各组函数.f⑴与g(x)的图象相同的是( )(A) /(x) = x,g(x) = (Vx)2(B) /(x) = x2)4g(x) = (x + l)2[x(X > 0)(C) f(x) = l,g(x) =兀(D) /(x)=|x|,g(x) = 2 / °、6、/⑴是定义在㈣上的增函数,则不等式的解集是()(A) (0 , +8) (B) (0 , 2) (C) (2 ,+8) (D) (2 ,—)77、若奇函数/(兀)在[1,3]上为增函数,且有最小值0,贝陀在[-3,-1]上()(C) (D)9、 若{1,4,牛{0,"+»,则严+严的值为()(A) 0 (B) 1 (C) -1(D) 1 或一 110、 奇函数f(x)在区间[・b,上单调递减,且f (x)>0,(0<a<b),那么I f (x)l 在区间[a, b ]上是 ( )A 单调递增B 单调递减C 不增也不减D 无法判断 二、填空题:每小题4分,共20分11、 ________________________________________________________________ 若A={0^2,},B = {1,2,3},C = {2,3,4},贝iJ(AnB)u(BnC) = ________________________12、 已知y = /(x)为奇函数,当%>0时/(x) = x(l — x),则当兀S0时,A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0 (A)(B)则/(兀)= _______________________________________13、已知(兀)都是定义域内的非奇非偶函数,而f(x)-g(x)是偶函数,写出满足条件的一组隊I 数,/(%) = ____________ : g (x) = _________________ ;14、/(X)= X2+2X +1, XG[-2,2]的最大值是__________________15、奇函数/(兀)满足:①/⑴在(0,+oo)内单调递增;®/(1) = 0 ;则不等式(x-l)/(x)> 0 的解集为:________________________________ ;三、解答题:每小题12分,共60分16、设A = {xeZ\\x\< 6}, 3 二{1,2,3},C 二{3,4,5,6},求:(1) Au(BnC): (2) AnQ(fiuC)17、已知函数几兀) xe{x\x = 2nU9neZ}画出它的图象,并求心(_3))的值11,{x\x = 2n,ne Z}18、已知函数f (x)=兀+ —.x(1)判断f(X)在(0, +8)上的单调性并加以证明;(2)求f (x)的定义域、值域;19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份0.90元,卖出的价格是每份1.0元,卖不掉的报纸可以以每份0.10元的价格退冋报社。

高中数学必修一第一章单元测试及答案

高中数学必修一第一章单元测试及答案

数学必修一第一单元测试及答案一:单项选择题: (共10题,每小题5分,共50分)1. 下列各项中,不可以组成集合的是( )A.所有的正数B. 等于2的数C.接近于0的数D. 不等于0的偶数2. 下列四个集合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-3. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A 沿x 轴向右平移1个单位B 沿x 轴向右平移12个单位C 沿x 轴向左平移1个单位D 沿x 轴向左平移12个单位5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B.x y -=3 C.x y 1= D.42+-=x y6. 已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则)(B C A U 为( ) A.{}12-, B.{}10-, C.{}01, D.{}12,7. 设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则=)(T S C U () A .∅ B .{2,4,7,8} C .{1,3,5,6} D .{2,4,6,8}8. 集合{1,2,3}的真子集共有( )A .5个B .6个C .7个D .8个 9. 设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( ) A .{3,5}、{2,3} B .{2,3}、{3,5}C .{2,5}、{3,5}D .{3,5}、{2,5} 10.反函数是( ) A. B. C. D. 二:填空题: (共2题,每小题10分,共20分)1.函数0y =的定义域是_____________________2. 设全集U =R ,集合Q ={x |0<x <5},则C U Q=____三:解答题: (共2题,每小题10分,共20分)1. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.2. 设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,求m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3题图
高中数学《必修一》第一章教学质量检测卷
班别: 姓名: 座号:
题号 1 2 3 4 5 6 7 8 9 10 答案
1、下列各组对象中不能构成集合的是( )
A 、佛冈中学高一(20)班的全体男生
B 、佛冈中学全校学生家长的全体
C 、李明的所有家人
D 、王明的所有好朋友 2、已知集合{}{}
5,1,A x R x B x R x =∈≤=∈>那么A
B 等于
( )
A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}
15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,
则图中的阴影部分表示的集合为( )
A .{}2
B .{}4,6
C .{}1,3,5
D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )
A.x x f =)(,2())g x x =
B.()2
2
1)(,)(+==x x g x x f
C.2()f x x =
()g x x = D.()0f x =,()11g x x x
=--
5、函数2
()21f x x ,(0,3)x。

()
7,f a 若则a 的值是 ( )
A 、1
B 、1-
C 、2
D 、2±
6、2,
0()[(1)]1 0x x f x f f x ()设,则 ,(
)+≥⎧=-=⎨
<⎩( ) A 、3 B 、1 C. 0 D.-1 7、()
3f x x 函数的值域为( )
A 、[3,
) B 、(
,3] C 、[0),
D 、R
8、下列四个图像中,不可能是函数图像的是 ( )
题号 一 二 15 16 17 18 19 20 总分 得分
y
x
y
y
y
O
O
9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:
那么b ⊗ ()a c ⊕=( )
A .a
B .b
C .c
D .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2
y x x =
+--的定义域为
12、函数2()610f x x x =-+-在区间[0,4]的最大值是
13、若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;
③()()2
()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x
=在()(),00,-∞+∞上是减函数。

其中真命题的序号是
(把你认为正确的命题的序号都填上).
三、解答题(本大题6小题,共80分.解答时应写出文字说明、证明过程或演算步骤). 15、(本题满分12分)已知集合A ={x| 73<≤x }, B={x| 2<x<10}, C={x|x<a} (1)求;B A ⋃ (2)求()R C A B ; (3)若A C ⊆,求a 的取值范围.
16、(本题满分12分)已知函数3
1
()f x x x
,判断()f x 的奇偶性并且证明。

17、(本题满分14分)已知函数3()1
x
f x x ,求()f x 在区间[2,5]上的最大值和最小值 18、 (本题满分14分)已知函()
11f x x
(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域。

19、(本题满分14分)已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7,
(I )求()f x 的解析式;
(II )求函数[]()f f x 的解析式并确定其定义域。

20、 (本题满分14分)已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。

(1)求()f x 的解析式;
(2)若()f x 在区间[2,1]a a +上不单调...
,求实数a 的取值范围; (3)在区间[1,1]-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围。

高中数学《必修一》第一章教学质量检测卷
参考答案
11、|2,3x R x
x
且 12、-1 13、4,9,16 14、 ① ②
三、解答题
15、解:(1)A ∪B={x ∣2<x<10}……………..4分 (2)|37R C A
x x
x

(C R A)∩B={ x ∣2<x<3或7≤x<10}.........................8分
(3)a≥7........................12分 16.解: ()f x 是奇函数…………….2分
证明: ()f x 的定义域是(-,0)(0,+)
,定义域关于原点对称…………….4分 在()f x 的定义域内任取一个x,则有 3
3
3
3
1
1()
()()()()f x x x f x x x …………….10分
所以, ()f x 是奇函数…………….12分
17.解:在[2,5]上任取两个数12x x ,则有…………….2分
1212121212333()()()
011(1)(1)
x x x x f x f x x x x x …………….8分
所以,()f x 在[2,5]上是增函数。

…………….10分 所以,当2x 时,min ()(2)2f x f …………….12分
当5x
时,max
5
()(5)
2
f x f …………….14分 18、
解: (1)
…………….6分 (2)画图(略)…………….10分 (3)值域[]1,+∞ ……………14分
19、解:(1)设()(0)f x kx b k =+>…………….2分
由题意有:3227k b k b -+=⎧⎨+=⎩ …………….6分
1
5
k b =⎧∴⎨=⎩ …………….8分 ()5f x x ∴=+,[]3,2x ∈-………….10分
(2)(())(5)10f f x f x x =+=+ {}3x ∈-…………….14分 20、.解:(1)由已知,设2()(1)1f x a x =-+,…………….2分
由(0)3f =,得2a =,故2
()243f x x x =-+。

…………………4分 (2)要使函数不单调,则211a a <<+,则1
02
a <<。

……………8分 (3)由已知,即2
243221x x x m -+>++,化简得2
310x x m -+->…………10分 设2
()31g x x x m =-+-,则只要min ()0g x >,……………12分 而min ()(1)1g x g m ==--,得1m <-。

……………14分
,(1)2,(1)
x x y
x x。

相关文档
最新文档