一起 500kV电力变压器雷电冲击试验击穿故障分析

合集下载

500kV输电线路雷击跳闸原因分析及防范措施

500kV输电线路雷击跳闸原因分析及防范措施

500kV输电线路雷击跳闸原因分析及防范措施【摘要】500KV超高电压输电线路的跳闸情况较多,大部分地区的跳闸原因占百分之三十以上来自于雷击。

供电企业针对雷击跳闸做出了一系列的措施,其中包括加强线路外绝缘水平、减小避雷线保护角和较小杆塔接地电阻等,500KV输电线路得到一定的防雷性能保障。

本文就500输电线路存在的相关问题和雷击跳闸的特征进行分析,提出预防雷击跳闸的措施,讨论500KV输电线雷击跳闸的情况。

【关键词】500KV输电线路;雷击跳闸;防雷措施500KV输电线路是电力运行的重要环节,高压输电线路均配置自动闸系统,线路面临外界干扰时,为了保证不造成严重的事故时,自动闸会主动跳闸。

输电线路跳闸直接导致电力输送,致使社会的生产活动和人民的生活受到严重影响。

为使500KV输电线路安全可靠的运行的同时,输电线路的跳闸率是供电企业和线路管理单位的主要解决对象。

一、500KV输电线路的雷击跳闸据不完全统计,我国重庆的500KV输电线路在2004年到2007年之间由于雷击而导致的跳闸次数达27次之多,占总跳闸次数的90%以上;而保定供电企业的500KV输电线路上,雷击造成的跳闸占总跳闸次数的34%左右。

我国东北地区的丰徐一线,丰徐二线、元董一线和辽宁线,雷击造成跳闸占总跳闸次数的54.1%左右。

(一)复杂的地域环境超高电压输电线路一般是超长距离输电,线路所经地理位置相当复杂,要应对各地区的复杂多变的气候环境。

例如我国500KV输电线路的源安双回四线,经过易县、涞县、涞源县等多个山区县,地形差距相当大,海拔落差过大,一条线路最好到达海拔2000M以上,最低至800M以下。

其经过地区的气候差距也相当大,某些地区落雷数量过多,这些地区就必须要有针对性。

(二)雷击种类雷击是主要危害500KV输电线路正常运行的罪魁祸首之一,而直雷击对输电线路造成严重危害。

它分为绕击雷和反击雷两种。

反击雷的雷电流幅值一般在100KV以上,接地电阻值较大,呈现一基多项或者多基多项的闪络基数和相数,不受地形的影响。

500kV变压器典型雷击故障分析及对策

500kV变压器典型雷击故障分析及对策

0 0 6 4 1 . 5 8 5 6 . 5 3
5 . 5 9 9 _ 3 3 2 4 1 8 . 4 7 2 9 6பைடு நூலகம்1 . 6 1
2 o ( ) 9 - 0 8 — 2 3 2 5 4 9 . 6 1 2 O O 9 — 0 8 — 2 3 3 2 7 7 . 4 8
8 8 1 . 1 7 8 3 1 . 6 5 8 7 2 . 3 9 8 4 4 - 2 6
4 . 4 8 7 . 6 5 9 9 0 _ 3 9 1 0 8 1 . 1 6
O . 8 9 1 . 2 6 7 1 . 6 2 9 5 . 6 6
O . 2 2 O . 4 2 7 1 4 . 9 6 9 2 8 . 2 6
事 故 重演 。
本体的角钢因震动脱开 , 本体发生少量位移。 c相重 瓦 斯 、压力 释 放 动 作 。进 一 步 检 查 发 现 主 变 C相
2 2 0 k V侧 避 雷器 动作 一 次 ,对 应 C相 2 2 0 k V 出线 对侧 的 2 2 0 k V S 1 M 号 母 线 C相 避 雷 器 动 作 一 次 。
第3 2 卷第 1 期
2 0 1 3年 2月
红 水 河
Ho n g S h u i R i v e r
V0 I . 3 2. No . 1
F e b . 2 01 3
5 0 0 k V变压器典型雷击故障分析及对策
彭定 平
( 中国南方电网超高压输电公司百色局 , 广西 百色
瞬间过 电压 , 造成高压末端 出头和中压首端出头两 部位同时发生放 电, 并引发夹件对 油箱 的放电。事 故发生时变电站附近为雷雨天气 , 且在故障后 的检

500kv输电线路雷电绕击事故分析及预防措施

500kv输电线路雷电绕击事故分析及预防措施

500kv输电线路雷电绕击事故分析及预防措施随着现代社会发展的迅速,能源运输已成为现代社会经济发展不可或缺的组成部分。

500千伏(以下简称kv)输电线路是输电系统中重要的一环,是一种安全可靠、稳定性强、流量大的大型高压电力输送线路。

然而,由于输配电线路以及工程标准的不完善,经常会发生雷电绕击事故,给人们生活带来严重的危害,因此,研究和分析500kv 输电线路雷电绕击事故,找出预防其发生的措施,非常重要。

一、500kv输电线路雷电绕击事故的特点及危害1、500kv输电线路雷电绕击事故特点500kV输电线路雷电绕击事故是指雷电绕击发生时,由于高压电磁感应作用和雷电电压感应作用,引起500kV输电线路内绝缘容量明显低于正常值,从而引起相应设备烧损,或者直接损坏塔杆、拉线等电力设施,导致500kV输电线路失效,或者500kV输电线路及其配套设备损坏,从而成为500kV输电线路雷电绕击事故。

2、雷电绕击事故所带来的危害雷电绕击事故既可能直接造成电力设备损坏或烧毁,也可能间接引起500kV输电线路的失效,从而影响电网的安全运行,造成范围内电网停电,并可能给大众生活带来一定的危害。

二、500kV输电线路雷电绕击事故发生原因1、输电线路设计上存在缺陷500kV输电线路的设计是基于输电线路的传输电流、电压、电磁场及绝缘层的参数,但由于当时的技术水平及材料的种类和质量的限制,施工时往往会出现设计、架设和护罩等不合理的现象,这些都有可能引起500kV输电线路的雷电绕击事故的发生。

2、绝缘水平不高500kV输电线路的绝缘水平是影响其安全运行的关键因素之一,这主要依赖于绝缘材料及其加工技术。

由于绝缘材料本身的限制,以及技术水平及护罩施工质量的不同,绝缘水平往往无法令人满意,导致500kV输电线路过载、过流或雷电绕击事故经常发生。

三、500kV输电线路雷电绕击事故的预防措施1、优化输电线路设计为了防止500kV输电线路雷电绕击事故的发生,应优化输电线路的设计,尽可能采用新型塔架、新型绝缘材料和高强度护罩等,使用抗雷技术,如隧道技术等,可有效降低雷电绕击时的磁场和电压的强度,从而降低500kV输电线路雷电绕击事故的发生几率。

一起500kV变电站避雷器雷击事故的分析及处理

一起500kV变电站避雷器雷击事故的分析及处理

文章编号:1004-289X(2022)06-0115-04一起500kV变电站避雷器雷击事故的分析及处理胡朝力1ꎬ李伟琦2ꎬ周刚3ꎬ邢旭亮3ꎬ田烨杰2ꎬ赵旭州3(1 国网浙江省电力有限公司平湖市供电公司ꎬ浙江㊀平湖㊀314200ꎻ2 国网浙江省电力有限公司嘉善供电公司ꎬ浙江㊀嘉善㊀314100ꎻ3 国网浙江省电力有限公司嘉兴供电公司ꎬ浙江㊀嘉兴㊀314000)摘㊀要:本文分析了一起某500kV变电站某出线间隔因雷击C相跳闸且重合闸失败造成的避雷器事故ꎮ通过现场检查ꎬ获取了一次设备检查㊁二次设备保护信息的记录ꎬ并结合后续的避雷器试验及异常相避雷器解体检查情况ꎬ发现避雷器绝缘筒内外表面㊁瓷套内壁均无闪络情况ꎬ多重雷电回击造成避雷器内电阻片受损ꎬ并在重合闸的作用下进一步崩溃ꎮ通过此次多重雷击事故造成的避雷器事故ꎬ结合变电站避雷器的常见故障情况ꎬ提出了优化设计采购㊁增设在线监测㊁做好防污清洁㊁加强技术管理㊁建立定期运维检查事项清单的措施建议ꎬ针对日后此类避雷器事故防范和处理有一定参考价值ꎮ关键词:500kV变电站ꎻ重合闸ꎻ多重雷击事故ꎻ事故防范中图分类号:TM63㊀㊀㊀㊀㊀文献标识码:BAnalysisandTreatmentoftheArresterStruckbyLightningfora500kVSubstationHUChao ̄li1ꎬLIWei ̄qi2ꎬZHOUGang3ꎬXINGXu ̄liang3ꎬTIANYe ̄jie2ꎬZHAOXu ̄zhou3(1 PinghuPowerSupplyCompanyꎬPinghu314100ꎬChinaꎻ2 JiashanPowerSupplyCompanyꎬJiashan314000ꎬChinaꎻ3.JiaxingPowerSupplyCompanyꎬJiaxing314000ꎬChina)Abstract:ThepaperanalyzesanarresteraccidentcausedbylightningstrokingCphasetripandreclosingdefeatforsomeoutletgapsinacertain500kVsubstation.Byfieldcheckꎬgettherecordsofprimaryequipmentcheckandsecondaryequipmentcheckandsecondaryequipmentprotectioninformation.Combiningfollow ̄uparrestertestandthecheckconditionofabnormalphasearresterbreakuptofindtheintermal ̄externalsurfaceofthearresterinsulatortubleandinsulatorinwallbeingwithoutflashoverphenomenor.Multiplethunderandlightningcounterattackmakesinternalresistordiscofthearresterdamagedandfurtherbreaksdownunderreclosingaction.Thepaperꎬbythear ̄resteraccidentcausedbymultiplethunderandlightningforthistimetocombinecommonconditionsofthesubsta ̄tionarresterꎬputsforwardoptimizationdesignpurchaseꎬincreaseson ̄linemonitoringꎬstrengthenstechnicalmanage ̄mentandsetsupmeasuresuggestionsofperiodicmaintenance.Itwillbeofsomereferencevalueforfuturearresterprotection.Keywords:500kVsubstationꎻredosingꎻmultiplethunderandlightningaccidentꎻaccidentprecaution1㊀引言随着社会发展ꎬ人类活动的进行ꎬ全球碳排放的增加ꎬ导致全球气候变化更加剧烈ꎮ近些年由于极端天气影响ꎬ全球范围内均发生了几起较大的电网事故ꎮ㊀㊀500kV变电站是指最高电压等级为500kV的变电站ꎬ其输入电能和输出电能的电压分一般为500kV和220kVꎮ500kV变电站作为我国电力网络的主力构架和系统联络点ꎬ其安全稳定运行对居民日常生活及工业生产影响重大ꎮ近些年我国南方频频遭受极端天气ꎬ其中冰冻及雷击的影响对电力系统的输电及变电业务影响较大ꎮ其中避雷器事故频繁出现ꎬ常见避雷器故障有避雷器接地体断裂㊁避雷器外部绝缘瓷套受外力破坏引起破损㊁外部条件导致避雷器内部元器件受潮㊁阀片等零件设备的老化㊁避雷器受到过电压等外力冲击导致瞬间电流量过大等原因ꎮ㊀㊀本文通过分析一起500kV变电站的某出线间隔出现C相跳闸且重合闸ꎬ造成的避雷器异常情况ꎮ通过对现场设备运行记录的分析ꎬ结合现场一次设备㊁二次信息及后续解体情况的分析检查ꎬ对本次避雷器异常情况做了定性分析ꎬ并结合避雷器常见的故障类型情况ꎬ对后续变电站运行维护提出了具体的优化方案和改进措施建议ꎮ2㊀事件概况㊀㊀当日ꎬ500千伏变电站4814线间隔出现C相跳闸ꎬ重合闸失败ꎮ保护正确动作ꎬ第一次故障电流有效值4 6kAꎬ重合后的第二次故障电流有效值46 2kAꎮ现场检查确认变电站4814线避雷器C相异常ꎮ㊀㊀异常发生时站内无工作ꎬ现场多云天气ꎬ部分线路廊道内雷雨天气ꎬ500千伏变电站4814线避雷器由西安某公司生产ꎬ避雷器型号Y20W5-420/1046Wꎬ于2016年5月投运ꎮ异常发生前ꎬ该变电站500千伏设备均正常运行ꎬ运行方式如图1所示ꎮ图1㊀异常前的500千伏变电站设备运行方式图3㊀设备状况与现场处置3 1㊀设备状况㊀㊀4814线避雷器投运至今带电检测㊁停电检修及日常巡视均未发现异常ꎬ具体如下:㊀㊀(1)带电检测试验数据㊀㊀最近一次带电检测时间2021年2月ꎬ采用AI-6106型氧化锌避雷器带电检测仪对4814线避雷器进行带电检测ꎬ检测数据无异常ꎮ㊀㊀(2)停电检修试验数据㊀㊀该避雷器于2016年5月投运ꎬ交接试验数据满足规程要求ꎮ最近一次检修时间为2017年10月ꎬ停电试验数据未见异常ꎮ㊀㊀(3)例行巡视情况㊀㊀最近一次机器人巡视ꎬ4814线三相避雷器表计数据均正常ꎬ外观检查均无异常ꎮ4814线三相避雷器红外测温结果及避雷器外观均无异常ꎮ3 2㊀现场处置情况㊀㊀6月8日15时34分42秒ꎬ500千伏4814线C相跳闸ꎬ重合失败ꎮ㊀㊀6月8日15时40分ꎬ主站通过工业视频发现疑似回浦变避雷器异常ꎮ㊀㊀6月8日15时41分ꎬ浙江公司立即启动应急响应ꎬ组织开展一二次设备检查ꎮ㊀㊀6月8日15时43分ꎬ现场检查发现4814线C相避雷器异常ꎮ㊀㊀6月8日16时46分ꎬ浙江公司第一批应急及管理人员陆续抵达现场ꎬ组织现场开展异常检查及处置工作ꎮ㊀㊀6月8日19时21分ꎬ4814线改线路检修ꎮ㊀㊀6月8日21时16分ꎬ华东网调许可4814线避雷器抢修工作ꎮ㊀㊀6月8日21时25分ꎬ现场抢修工作开始ꎬ开展4814线三相避雷器更换ꎬ4022㊁4023断路器分解物检测㊁线路压变常规试验及检查㊁间隔内引下线检查㊁异常后主变油色谱检测ꎮ㊀㊀6月9日7时40分ꎬ现场抢修和检查工作全部完毕ꎮ㊀㊀6月9日14时27分ꎬ4814线复役操作结束ꎬ情况正常ꎮ4㊀现场设备检查分析4 1㊀一次设备检查情况㊀㊀(1)一次设备检查㊀㊀现场检查发现4814线C相避雷器泄露电流表损坏ꎬ各节瓷瓶表面有明显黑色物质喷灼痕迹ꎬ三节避雷器喷口挡板全部脱落ꎮ4022㊁4023间隔是HGIS设备ꎬ现场对间隔内气室分解物测试无异常ꎬ其余设备检查无异常ꎮ6月9日晚拆除避雷器时ꎬ发现避雷器底座大支柱瓷瓶已断裂ꎮ4 2㊀二次信息检查㊀㊀(1)保护动作情况㊀㊀4814线路第一套线路保护南瑞继保PCS-931ꎬ第二套线路保护北京四方公司设备ꎬ4022㊁4023开关保护均为许继公司生产ꎮ故障时保护装置录波记录的保护动作时刻如表1所示ꎮ表1㊀保护动作情况时间(s)动作情况38 8614023㊁4022开关保护启动38 8634814线路第一套线路保护启动38 8644814线路第二套线路保护启动38 8804814线路第一套线路保护纵联差动保护动作38 8834814线路第二套线路保护纵联差动保护动作38 9144022沟通三跳动作38 9224023瞬时跟跳C相40 2544023保护C相重合闸动作40 3424814线第一套线路保护纵联差动㊁距离后加速动作40 3654814线第二套线路保护纵联差动㊁闭锁重合闸动作40 3664814线第二套线路保护接地距离I段动作40 3714814线第一套线路保护接地距离I段动作40 3744023沟通三跳动作㊀㊀(2)故障录波器检查情况㊀㊀根据保护动作行为及录波分析ꎬ第一次故障C相故障ꎬ最大故障电流1 15A(一次电流4 6kA)ꎬ故障电流持续时间约5msꎬ线路保护差动动作跳开4022开关三相(重合闸停用)ꎬ跳开4023开关C相并启动重合闸ꎮ1394ms后4814线开关C相重合ꎬ两套线路保护差动㊁距离后加速动作ꎬ跳开开关三相ꎬ第二次故障时最大故障电流11 55A(一次电流462kA)ꎮ图2㊀故障录波图㊀㊀C相线路跳闸后ꎬ在线路上仍监测到多次过电压波形ꎮ过电压峰值时刻与线路雷电定位系统统计的雷电回击时刻高度一致ꎮ4 3㊀解体检查情况㊀㊀(1)避雷器试验结果㊀㊀对4814线A㊁B相三节避雷器开展了整只直流㊁工频㊁局放㊁密封性试验ꎻ随机抽取电阻片进行大电流冲击耐受(5片)㊁2ms方波冲击电流耐受(12片)㊁动作负载试验(6片)ꎬ全部试验均通过ꎬ未见异常ꎮ㊀㊀(2)异常相避雷器解体检查情况㊀㊀外观上检查ꎬ三节避雷器元件瓷套表面没有发现外闪的痕迹ꎬ瓷件和法兰完好ꎬ上下压力释放装置动作ꎬ上下压力释放装置附近有喷弧痕迹ꎮ㊀㊀上节避雷器元件解体检查情况ꎬ对上下盖板㊁密封圈进行了检查ꎮ经检查ꎬ密封状况良好ꎬ主密封圈内侧无锈蚀现象ꎮ整个芯体中电阻片均破裂ꎬ部分铝垫块有烧熔的痕迹ꎬ上部分电阻片和绝缘筒受高温粘连一起ꎮ电阻片均破裂ꎬ破裂的形式有环裂㊁炸裂ꎮ电阻片侧面绝缘釉被高温作用变黑ꎬ部分电阻片侧面有沿面烧痕ꎮ绝缘筒内外表面无闪络痕迹ꎬ均有黑色附着物ꎬ绝缘筒上部分受高温作用玻璃丝松散脱落ꎮ绝缘杆表面有黑色附着物ꎬ受高温作用部分玻璃丝裸露ꎬ如图3所示ꎮ图3㊀上节避雷器端部及内部情况㊀㊀中节避雷器元件解体检查情况ꎬ对上下盖板㊁密封圈进行了检查ꎬ密封状况良好ꎬ主密封圈内侧无锈蚀现象ꎮ整个芯体中电阻片均破裂ꎬ部分铝垫块有烧熔的痕迹ꎬ上部分电阻片和绝缘筒受高温粘连一起ꎬ现象与上节避雷器一致ꎮ阻片经检查发现均破裂ꎮ电阻片侧面绝缘釉被高温作用变黑ꎬ部分电阻片侧面有沿面烧痕ꎮ绝缘筒内外表面无闪络痕迹ꎬ均有黑色附着物ꎬ绝缘筒上部分受高温作用玻璃丝松散脱落ꎬ如图4所示ꎮ㊀㊀下节避雷器元件解体检查情况ꎬ对上下盖板㊁密封圈进行了检查ꎮ经检查ꎬ密封状况良好ꎬ主密封圈内侧无锈蚀现象ꎮ整个芯体中电阻片均破裂ꎬ部分铝垫块有烧熔的痕迹ꎬ电阻片和绝缘筒受高温粘连一起ꎬ绝缘筒已无法正常抽离ꎮ绝缘筒内外表面无闪络痕迹ꎬ均有黑色附着物ꎬ绝缘筒有三处环裂ꎮ绝缘杆表面有黑色附着物ꎬ受高温作用部分玻璃丝裸露ꎮ下节避雷器元件整体损坏情况最严重的ꎮ图4㊀中节避雷器密封状况及芯体5㊀事故原因分析㊀㊀经对异常避雷器三节元件的解体检查ꎬ避雷器元件内部无受潮痕迹ꎬ可排除因受潮引起异常的可能性ꎮ绝缘筒内外表面无闪络痕迹ꎬ瓷套内壁无闪络痕迹ꎬ可排除沿面闪络的可能性ꎮ芯棒局部检查ꎬ未见闪络痕迹ꎮ从电阻片的整体破裂情况看ꎬ可排除由单一或局部电阻片缺陷造成的异常可能性ꎬ其损坏现象更符合注入能量过大造成避雷器损坏的特征ꎮ异常原因可能是:㊀㊀一是线路雷击跳闸后ꎬ线路遭受多重雷电回击ꎬ避雷器吸收能量超过额定值(2 5MJ)ꎬ造成避雷器内部电阻片热崩溃开裂ꎬ呈现短路状态ꎬ导致重合闸失败ꎮ㊀㊀二是避雷器绝缘性能逐步丧失引发第一次线路跳闸ꎬ在雷电回击作用下ꎬ避雷器绝缘性能快速劣化ꎬ在开关重合闸冲击下内部阀片全部热崩溃开裂ꎮ6㊀对策及处理措施㊀㊀500kV变电站中的避雷器对保护主要设备及系统的安全稳定运行起到重要作用ꎮ从本次雷器受到过电压等外力冲击导致瞬间电流量过大ꎬ吸能过量的故障吸取教训ꎬ为保证变电站的安全运行及时发现处理避雷器故障ꎬ现从以下五个方面入手:㊀㊀(1)优化设计采购㊀㊀从工程设计之初就对避雷器容量的选取留有足够余量ꎬ电建采购时应选择有先进生产工艺生产厂家ꎬ产品经得起长期市场检验的且具有完善的检测手段厂家的产品ꎮ㊀㊀(2)增设在线监测㊀㊀结合地方气候数据分析ꎬ增加在线监测仪ꎬ加强对雷雨天气后的在线监测仪的巡视频率ꎮ㊀㊀(3)做好防污清洁㊀㊀对变电站的避雷器制定好定期的清扫和防污计划ꎬ同时也可以在设计之初采用防污瓷套型避雷器ꎮ㊀㊀(4)加强技术管理㊀㊀加强对变电站的避雷器技术管理ꎮ对所有运行或者采购过的避雷器建立技术档案ꎬ对出厂报告㊁定期测试报告及在线监测的运行数据建立在线的技术档案库ꎬ方便查询及日常分析维护ꎮ㊀㊀(5)建立定期运维检查事项清单㊀㊀加强对避雷器进行巡视维护的检查项目管理ꎬ做到逐项检查ꎬ对以往存在常见的潜在故障点进行全覆盖检查ꎮ7㊀结束语㊀㊀本文针对此次500kV变电站的避雷器受到多重雷击的特殊情况ꎬ通过一次㊁二次检查以及解体实验检查ꎬ分析了本次避雷器异常情况的具体过程和成因ꎮ随着近些年气候变化ꎬ一些极端气候天气出现的可能性增大ꎬ变电站遭受雷击的情况也不断增多ꎬ500kV作为电力系统的枢纽节点ꎬ保证其安全稳定运行十分重要ꎮ所以本文针对避雷器常见的故障情况ꎬ提出了五个方面的建议措施ꎬ以便更好的防范和杜绝此类避雷器异常情况ꎬ进一步保证了变电站的平稳正常运行ꎬ提高电网系统的稳定性ꎮ参考文献[1]㊀蔡福禄ꎬ张宇ꎬ杨怀明.110kV金属氧化物避雷器预防性试验及常见故障分析[J].云南水力发电ꎬ2021ꎬ37(9):62-64.[2]㊀周艳青ꎬ谌阳.500kV某变电站雷电侵入波过电压计算[J].电气技术ꎬ2021ꎬ22(3):104-108.[3]㊀谷定燮ꎬ修木洪ꎬ戴敏ꎬ周沛洪.1000kVGIS变电所VFTO特性研究[J].高电压技术ꎬ2007(11):27-32.[4]㊀刘宇.探讨500kV变电站变电运行中的故障分析和处理技巧[J].电力设备管理ꎬ2020(12):31-32+59.收稿日期:2022-04-06作者简介:胡朝力(1973.1-5)ꎬ男ꎬ浙江嘉兴人ꎬ助理工程师ꎬ主要从事变电运维方面的工作ꎻ李伟琦(1996.10-)ꎬ男ꎬ河南周口人ꎬ助理工程师ꎬ主要从事变电运检方面的研究ꎻ周刚(1966.11-)ꎬ男ꎬ浙江湖州人ꎬ本科ꎬ高级工程师ꎬ高级技师ꎬ主要从事电网运检方面的研究ꎮ。

一起500kV线路雷击故障原因分析与处理

一起500kV线路雷击故障原因分析与处理

一起500kV线路雷击故障原因分析与处理一. 故障概况(1)故障概况2012年5月29日12:8:58,某500kV线路(以下称线路1)两套主保护动作,A,C相跳闸,重合闸未动作。

几乎同时,同一通道另500kV线路(以下称线路2)两套主保护动作,A,C相跳闸,重合闸未动作。

故障发生时,气象部门提供监测数据表明:天气为阴天,气温约20℃,南风,风力2.8m/s,降水量为0.1mm。

但了解故障区段附近群众及护线员得知,故障时段有雷雨天气。

(2)故障录波情况线路1两端变电站保护动作显示,A相一次最大电流为5.34kA,8.84kA;C 相一次最大电流为5.11kA,7.96kA,故障持续时间约45ms。

线路2两端变电站保护动作显示,A相一次最大电流为5.81kA,8.56kA;C相一次最大电流为5.77kA,8.47kA,故障持续时间约60ms。

表明两条线路跳闸时间几乎同时,且持续时间短。

(3)雷电监测情况查询雷电定位系统监测数据,故障时间点前后1h内,线路周边10km范围内有6次落雷活动记录。

其中12:08:58 有3次落雷,分别为负极性31.9kA,距离线路约5km;负极性109.1kA,距离线路约9 km;正极性557.6kA,距离线路约5 km,如图1所示。

分析判断该雷电活动与线路跳闸有着必然联系。

图1 故障时段雷电监测情况二. 故障点情况(1)故障点情况线路运维单位故障巡线发现,线路1上304号塔A相大号侧左侧耐张串绝缘子导线侧第1-3片绝缘子及铁塔侧球头金具上有放电痕迹。

C相跳线串小号侧1m 处引流线、跳线串绝缘子及对应水平位置铁塔主材上有放电痕迹,如图2所示。

图2 线路1上304号塔C相引流线放电痕迹线路2上322号塔(距离线路1上304号塔大号侧约1.7km)A相(左相)、C相(右相)跳线串铁塔侧球头金具、绝缘子及导线线夹附近的导线均有放电痕迹;如图3-5所示。

图3 线路2上322号塔A相跳线线夹放电痕迹图4 线路2上322号塔C相跳线绝缘子放电痕迹图5 线路2上322号塔A,C相放电通道示意(2)线路参数线路1、线路2均为常规型线路,导线采用四分裂LGJ-400/35型钢芯铝绞线,每相导线四分裂,四根导线呈正方形布置,分裂间距为450mm,全线架设双地线。

500kV超高压输电线路雷击跳闸原因分析及处理措施

500kV超高压输电线路雷击跳闸原因分析及处理措施
Vo . 0 NO 5 13 .
oc . O11 t2
河 北 电力 技 术
HEBEI ELECTRI P C OW ER
第3 0卷 第 5期
21 年 1 01 O月
50k 0 V超高压输电线路雷击跳 闸 原 因分析及处理措施
Ca s ay i n tl me tMe s r s f rLihn n r e T i f u e An lss a d Se t e n a u e o g t ig Sti r o k p
N4 2 7铁塔及线 路周 围没有 发 现雷 击 的痕 迹 , 此h n n r t cin wo k r n mis i i t ig p o e t r . o n g o Ke rs EHV ;r n mis n l e ;ih n n ti e ti y wo d : ta s s i n s l t ig sr ; r o i g k p
2 原 因分 析
2 1 故障 点设 备 情况 .
20 0 8年 3 月对 侯北线 山 区段铁塔 接地 电阻 进行
压输 变电分公 司负责 运行 区段 长 8 . 1 m, 有铁 0 8 0k 共
塔 1 1 , 中耐张塔 2 8基 其 8基 ( 括 1 耐 张换位 ) 直 包 基 , 线塔 1 3 。该 线路 导线 采 用 L J 0 / 5钢 心铝 5基 G 一4 0 3 绞线 , 四分裂呈正方 形排列 , 裂间距 4 0mm。线路 分 5 左侧 避 雷线 采用 直 接接 地 方式 , 右侧 O G 光缆 采 PW 用逐基接 地方 式 , 路 防雷 保 护角 设 计小 于 1。 线 5。线 路铁塔采 用逐基接地 方环加射 线型式 的接 地装 置 , 由
to q p e , r p e he m e s e t sr n t e t e rns in e uim nt p o os s t a ur s o te g h n h ta — f ma in, a ge e t t i or to m na m n o mpr v t e q p e , nd s g e t o e h e uim nt a u g s s

500kV输电线路雷击跳闸原因分析及防范措施

500kV输电线路雷击跳闸原因分析及防范措施
从 而 保 证 电 网连 续供 电 的 目的 。
【 关键词 】雷击跳 闸 ;防范及措施
前 言
根据输 电线路 的特征来看,它 的分布 范围极广 ,覆盖的地域从 座高 山穿过 到另一座高 山,绵延数百 公里甚至长达数千公里 。历 经各种各样 的气候变 化和温湿度 ,及其 复杂 的地形、地势使得遭遇 雷击的现象更为频繁 和更 大的破坏力 ,需要采 取特殊的措施进行有 效的维护工作 。根据 以往的经验和数据 显示,在所有类似 的输 电线 路遭遇雷击而 出现 故障的事故 中,电力 系统的故障是 比较突 出的, 占了很大的 比重 。更因为输 电线路遭遇 雷击之 后,经过输 电线路 的 流通传给变 电站 的电流、 电波作用 于变 电站 内的电气设施 ,最终 导 致变 电站短路或断 电的现 象 1 输 电 线路 雷 击 跳 闸 分 析 雷 击 跳 闸 引起 绝 缘 子 闪 络 放 电 ,造 成 绝 缘 子 表 面 存 在 闪络 放 电 痕迹 。一般绝缘 子发生雷击放 电后铁件 上有熔化痕迹 ,瓷质绝缘子 表面釉层烧伤脱落 ,玻璃 绝缘子表面存在 网状裂 纹。 当雷 电流很大 时,会在架 空地 线放 电间隙 、接地 网联 板和拉线楔形线夹连接处有 明显的烧伤痕迹 。雷击导线烧伤面积往往 较大且分散 ,烧伤程度较 轻。雷击闪络发生后 ,由于空气绝缘为 自恢 复绝缘,被击穿 的空气 绝缘强度迅速恢 复,原来 的导 电通道又变 成绝缘介质 ,因此 当重合 闸动作时 ,一般重合 成功 。当然 ,雷击 也可能引起永久性故障 ,即 瓷绝缘子脱落 、避雷线 断线 、导线 断线三种情况 。 架空输 电线路雷 害事 故的形成通常包括四个阶段 : ( 1 )输 电线 路在遭受雷击时 ,雷 电流通过杆塔接 地装置泄流入地 ,产生雷 电过 电压的作用 ; ( 2 )输电线路设备及其绝缘受到破坏发生 闪络 ; ( 3 ) 输 电线路从冲击 闪络转变 为稳定的工频 电压 ; ( 4 )线路跳闸 ,供 电 中断。要及时处理这种情况 ,首先就必须对雷击跳 闸的形式及原 因 进行分析 。 线路雷击跳 闸主 要表 现为两种形式:一是直击雷过 电压 ,是由 雷直接击于线路或杆塔而 引起 的;二是感应雷或绕击雷过 电压 ,是 指雷击线路附近地面或线路杆塔 时,由于电磁感应绕过避雷线击于 在导线上而 引起 的。 2架 空输电线路防雷措施 针对架空输 电线路雷害 事故形 成的四个阶段 ,进行防雷保护必 须做好 “ 四道防线 ”。 ( 1 )防直击雷 :采取沿线路装设避雷线等措 施使输 电线路不受直击雷 。 ( 2 )防闪络:采 取加 强线路绝缘、降低 接地电阻等措施,使输电线路绝缘不发生 闪络 。 ( 3 )防建 弧:采取 措施使输 电线路发生 闪络后 不建立稳定的工频 电弧 。 ( 4 )防停 电: 采取措施使输 电线路建立工频 电弧后不中断 电力供应 。 防雷措旌必须结合实 际,有针 对性地 综合采取各种有效措施 , 从根本上降低雷击跳 闸率 。 2 . 1架 设避雷线 架 设 避 雷 线 具 有 防止 雷 直击 导 线 、减 小 流 经 杆 塔 的 雷 电流 以及 对导线的耦合和屏蔽作用 ,它是输 电线路防雷保护最基本 、最有效 的措施 。一般而言 ,线路 电压越 高架 设避 雷线效果越好,在线路造 价 中所 占比重也越低 。 5 0 0 k V线路保护角 取 1 5 。左右, 减小避雷线保 护角,可 以减少雷 电绕击率 ,相应就要增加 杆塔高度。 2 . 2 安 装 线 路 自动 重 合 闸装 置 安装线路 自动重合闸 ,也是架 空输 电线路 常用的一种防雷保护 措施 。安装后输 电线路在遭受雷击跳 闸时,雷击 在我国 已有十余年的应用历史 , 其运行情 况 良好 。当输 电线路杆塔遭受 雷击 ,雷电流超过一定值时, 大部分 的雷电流从避雷器流入导线, 传到相临杆塔或经塔体流入地 ; 当导线遭 受雷击 时,大部分的雷电流从避雷器流入大地。因此,安 装线路避 雷器无 论是在 雷击 导线还是塔顶或避雷线时的反 击方面都 是非常有 效的。 2 . 5 增 设 耦 合 地 线 及 塔 顶 防 雷 拉 线 对 于经常受雷击 的杆段 ,可在导线下面加装一条耦 合地线,对 避 雷线起 分流作用和 耦合作用 ,间接降低接地 电阻 ;在重雷区的易 击 点,可 架设塔 顶防雷拉线,当雷 电流直击导线时 ,首先会触及 防 雷拉线 ,可以起 到屏 蔽作用和 有一定的分流作用。 3 架空输 电线路杆塔接地装置存在 的问题及分析 架空输电线路杆 塔接地装置存在的主要 问题是接地 电阻系数不 符合规定 而超标 ,而 引起杆塔 接地电阻超 标的原因主要包 括以下两

一例500kv变压器感应耐压试验击穿原因分析及处理

一例500kv变压器感应耐压试验击穿原因分析及处理

Key words: large ̄capacity transformerꎻ induction withstand voltage testꎻ finite element methodꎻ field strength analysisꎻ
quality control
油浸式电力变压器是完成工频交流电压转换、
2. State Grid Ganzhou Power Supply Company ꎬ Ganzhouꎬ 341000ꎬ China)
Abstract: In this paperꎬ the breakdown point of discharge is found by oil chromatograph analysis and core suspension
关键词: 大容量变压器ꎻ 感应耐压试验ꎻ 有限元法ꎻ 场强分析ꎻ 质量管控
中图分类号: TM406 文献标志码: B
文章编号: 1008 ̄ 0198(2020)01 ̄ 0036 ̄ 05
Breakdown Analysis of a Test of Inductive Withstand Voltage for
实现电能跨电压等级传输的设备ꎬ 也是主电网结构
的重要组成部分ꎮ 500 kV 变压器的绝缘性能是其
500 kV 变压器多由三台单相变压器组成ꎬ 高、
中压绕组多为自耦型ꎬ 根据相关规程规定 [2] ꎬ 出
厂试验中绝缘试验项目包括外施工频耐压、 短时感
全生命周期中的关键性因素ꎬ 绝缘可靠性是变压器
应耐压和长时感应耐压带局部放电等ꎮ 其中ꎬ 耐压
500 kV Transformer
LI Wei 1 ꎬ ZHANG Jin1 ꎬ FU Jingsong1 ꎬ CHEN Bin2 ꎬ LIU Yaofeng1 ꎬ YIunan Electric Power Company Limited Maintenance Companyꎬ Changsha 410004 ꎬ Chinaꎻ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一起 500kV电力变压器雷电冲击试验击穿故障分析
发表时间:2019-11-15T09:12:45.267Z 来源:《中国电业》2019年14期作者:刘枝
[导读] 电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。

摘要:电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。

在运行过程中,变压器不仅需要承受长期工作电压,还会遇到雷电过电压、操作过电压、工频过电压等情况,其绝缘强度会不断受到考验,近年来已发生数起500kV电力变压器绝缘故障,造成了重大的损失。

究其原因,一个重要的方面是制造过程遗留的微小缺陷未能在出厂前及时发现,经过长时间运行后引起变压器内部局部放电,最终导致内部绝缘破坏等严重故障的发生。

本文以一起500kV电力变压器雷电冲击试验击穿故障进行详细的分析。

关键词:电力变压器;雷电冲击;试验
1试验情况
1.1设备信息
实验变压器铁心采用单相四柱三框式结构,主柱绕组从内到外依次为低压绕组、中压绕组、高压绕组;激磁绕组和调压绕组位于旁柱上,采用线性调压的方式。

调压绕组采用内外两层串联的结构。

1.2试验过程
按照试验方案,雷电冲击试验前完成了绕组对地绝缘电阻测量、绕组绝缘系统电容及介质损耗因数测量、套管试验、电压比测量及联结组别检定和绕组电阻测量等试验,试验结果均符合相关标准及技术协议要求。

雷电冲击试验首先在高压绕组线端进行,分别施加1次50%电压和3次100%电压下的雷电冲击。

试验过程中无异常放电现象,电压波形波头、波尾时间、电压幅值、过冲等均符合标准要求,50%电压冲击波形与100%电压冲击波形相似,电流波形无截断,试验通过。

在中压进行试验时变压器位于1分接。

施加50%冲击电压和首次施加100%冲击电压试验均顺利通过;第二次施加100%冲击电压试验时出现异常放电:试验人员听到清脆异响,电压异常降低,电流波形出现大幅振荡。

试验未通过,初步判断变压器内部放生了绝缘击穿。

随后再次施加冲击电压,并利用局部放电超声波自动定位系统判断击穿位置。

在油箱4个面的上部和下部分别布置2个传感器,施加70%电压试验,又发生击穿,听到内部放电声,冲击电压波形出现截断。

此时,布置在变压器油箱侧面下部人孔附近的超声信号传感器测得的时域信号最超前,该处为铁心旁柱所在位置,怀疑调压绕组下部出线位置附近发生绝缘击穿。

冲击试验后对该变压器油样进行采集。

三比值法编码为102,判断变压器内部发生了电弧放电。

CO、CO2含量也发生突变,判断故障涉及固体绝缘材料。

1.3吊罩检查
首先工作人员对故障设备外观进行了全方位检查,油箱无变形,套管无裂纹,非电量保护装置正常无动作,无渗漏油。

外观检查后厂家组织吊罩检查。

拆除套管等附件后将上节油箱吊起,发现油箱底部散落有瓦楞纸和绝缘纸碎片。

进一步观察到内层调压绕组下部引线下部出头与托板槽口左侧、下侧贴合紧实,绝缘被击穿,引线出头沿托板对夹件腹板放电,有明显电弧灼烧痕迹,其他位置均无放电痕迹。

将绕组拔出,对主柱和旁柱主体进行检查:各组绕组排列整齐,间隙均匀;绕组间、绕组与铁心及铁心与轭铁间的绝缘垫,完整无松动;绝缘板绑扎紧固。

绕组绑扎牢固,无移动变形现象,绝缘层完整,表面无变色、脆裂或击穿等缺陷。

因此判断击穿仅发生在调压绕组下部引线位置。

剥除所有调压绕组下部引线外绝缘层发现放电点为调压绕组下部2分接出头,其余分接无放电痕迹,调压绕组其他位置无放电痕迹和损伤。

调压绕组和励磁绕组之间的围屏以及内部励磁绕组未受损伤。

2原因分析
故障发生后,厂方与业主单位的专家及技术人员共同分析,从设计、制造工艺控制、关键点检查等方面归纳出故障原因。

2.1设计方面
针对击穿处的绝缘,未将绕组出头处沿垫板对地的爬距考虑在内。

经实际测量发现,纸板沿面爬距为120mm。

而变压器制造厂家均认可的设计绝缘距离为220kV等级引线表面包10mm绝缘时油中对地距离为190mm、沿纸板爬电距离为620mm。

因此该部位绝缘裕度严重不足,是造成该变压器绝缘击穿及沿绝缘表面爬电的主要原因。

2.2制造工艺控制方面
与该变压器同批次生产的同类型变压器共三台,其中一台通过了全部出厂试验。

为了与发生击穿的变压器进行对比,对通过所有出厂试验的变压器进行吊罩检查。

发现该变压器调压绕组下部引线的挝弯位置明显高于故障变压器,且出线与槽口两边距离相当,其调压绕组下部出头与托板间有一定的油隙,该油隙可以提高引线出头与夹件间的耐电强度,使其顺利通过绝缘试验。

但纸板沿面爬距仍不满足要求。

因此制造过程中工艺控制不严谨、不规范也是造成变压器发生绝缘击穿的原因之一。

2.3关键点检查方面
在产品的生产过程中,厂方质量监督人员和业主驻厂监造人员均应当对绕组绕制、器身装配、绝缘包扎等关键环节,绕组出头放置、绝缘距离等关键尺寸进行现场核对。

但双方在核对各部件接口时忽视了调压内层下部出线引线对铁心夹件的距离校核,没有及时发现该部位的绝缘距离不足,是造成变压器发生绝缘击穿的又一个原因。

3结果及建议
3.1整改措施
(1)改变外层调压绕组的下部出线方式,由原来的轴向出线方式改为辐向出线方式。

进而有效提高外层调压绕组的出头位置,增加了与下夹件间的纸板沿面爬距,有效提升了绝缘强度。

(2)调整内层调压绕组的出头档位,使内层调压出线位置向远离夹件的方向转动1个档位,进一步拉开调压出线与下夹件的爬电距离。

(3)改进内层调压绕组的出头包扎方式,首先在出线外包裹瓦楞纸板,再通过加包纸浆成型件,伸出托板辐向尺寸约200mm,并在调压绕组出线下部的两层托板间增加1层反角环。

通过以上措施进一步分割油隙,增大爬距,进而起到增强绝缘的作用。

通过更改设计方案和更换
绝缘件等整改措施,故障变压器及同批次其他两台变压器顺利通过所有出厂试验,各项数据满足设计和技术协议要求,产品合格。

3.2建议与意见
变压器的绝缘结构设计是保证设备性能和现场安全可靠运行的基础和保障,采用线性调压方式进行大范围调压的有载调压变压器调压绕组出线较多,需布置在狭小空间内,绝缘距离的把控更是至关重要。

存在绝缘设计缺陷的变压器在出厂试验或运行过程中极有可能发生内部绝缘击穿,造成重大的安全、财产损失。

通过分析此次故障,从设备供应商和电网用户单位方面总结出以下经验教训:(1)对设备供应商:产品设计、原材料质量、制造装配工艺、试验方案等因素都可能对变压器最终的质量产生重大影响,尤其是设计方面。

若由于设计人员能力经验不足或者疏忽原因导致出现关键结构不合理,违反设计规范,则产品极大可能无法通过绝缘试验考核,且整改过程相当复杂,会造成产品成本的增加和工期的滞后。

尤其是对首台(套)类设备,务必严把设计关,产品设计方案要经过权威专家的认证,并且在制造过程中严格控制工艺流程和质量,对每一个关键工序都进行现场核对,提升设备的一次性合格率;(2)对电网用户单位:电网的安全稳定运行很大程度依赖一次设备的可靠性,因此必须在设备招标环节对供应商资质条件、业绩成果和技术水平等方面进行严格考评。

同时,电网用户单位需加强关键设备在产品规划、设计和制造等阶段的监督,通过查阅设计规范和现场核对关键结构和参数进行把控,发现问题及时解决,提升入网设备和工程质量。

参考文献:
[1]周海滨,杨春梦,龙启.500kV变压器故障诊断与措施[J].电工技术,2017(2):92-93.。

相关文档
最新文档