圆锥曲线之椭圆小题含详解

合集下载

圆锥曲线之椭圆题库 含详解 高考必备

圆锥曲线之椭圆题库 含详解 高考必备

椭圆题库1 E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221()(1663t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠= 2 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF (1)求点T 的轨迹C 的方程;(2)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.(1)解 :设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+ (2)解:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤所以,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M.当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 3 已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-b y a x ,则.1,31422222==+=-=b c b a a 得再由 故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 ③ ④由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得 .31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----4.已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2,并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.(12a =|F 1B |+|F 2B |=10,得a =5.又c =4, 所以b =22c a -=3.故椭圆方程为252x +92y =1.(2)解:由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59. 方法一:因为椭圆右准线方程为x =425,离心率为54.根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2).由|F 2A |、|F 2B |、|F 2C |成等差数列,得 54(425-x 1)+54(425-x 2)=2³59. 由此得出x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0), 则x 0=221x x +=28=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上,得9x 12+25y 12=9³25, ④ 9x 22+25y 22=9³25. ⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0,即9(221x x +)+25(221y y +)(2121x x y y --)=0(x 1≠x 2).将221x x +=x 0=4,221y y +=y 0,2121x x y y --=-k1(k ≠0)代入上式,得9³4+25y 0(-k 1)=0(k ≠0).由上式得k =3625y 0(当k =0时也成立).由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0.由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59.所以-516<m <516.5 设x 、y ∈R ,i 、j 为直角坐标平面内x 、y 轴正方向上的单位向量,若向量a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8.(1)求点M (x ,y )的轨迹C 的方程.(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设=+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.(1)解:∵a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8, ∴点M (x ,y )到两个定点F 1(0,-2),F 2(0,2)的距离之和为8.∴轨迹C 为以F 1、F 2为焦点的椭圆,方程为122x +162y =1.(2)∵l 过y 轴上的点(0,3),若直线l 是y 轴,则A 、B 两点是椭圆的顶点.∵OP =OA +OB =0,∴P 与O 重合,与四边形OAPB 是矩形矛盾.∴直线l 的斜率存在.设l 方程为y =kx +3,A (x 1,y 1),B (x 2,y 2),y =kx +3,122x +162y =1, (-21)>0恒成立,且x 1+x 2=-23418k k +,x 1x 2=-23421k +. ∵=+,∴四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA ⊥OB ,即²=0.∵=(x 1,y 1),=(x 2,y 2), ∴OA ²OB =x 1x 2+y 1y 2=0, 即(1+k 2)x 1x 2+3k (x 1+x 2)+9=0, 即(1+k 2)²(-23421k +)+3k ²(-23418k k +)+9=0,即k 2=165,得k =±45.∴存在直线l :y =±45x +3,使得四边形OAPB 是矩形. 6 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ²2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 解:(Ⅰ):易知2,1,a b c == 所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-由 消y 得(4+3k 2)x 2+18kx -21=0.此时,Δ=(18k 2)-4(4+3k 2)因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭∴12122243,44k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:k <或k > 又00090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得2k -<<2k << 7 如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S . (I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当2b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ② 又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是22y x =+或22y x =-或22y x =-+或22y x =-- 8 已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e . 直线,l :y=ex +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△MF 1F 2的周长为6;写出椭圆C 的方程;(理科无此问) (Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是2222222.,,1,).,0(),0,(b a c a b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得.(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+y x (Ⅲ)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e e e =+- 所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 9 如图,椭圆2222:1(0)x y Q a b a b+=>>的右焦点为(,0)F c ,过点F 的一动直线m 绕点F转动,并且交椭圆于A 、B 两点, P 为线段AB 的中点. (1) 求点P 的轨迹H 的方程;(2) 若在Q 的方程中,令221cos sin ,sin (0).2a b πθθθθ=++=≤<确定θ的值,使原点距椭圆Q 的右准线l 最远.此时设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?解:如图(1)设椭圆2222:1x y Q a b+=上的点1,1()A x y 、2,2()B x y ,又设P 点坐标为(,)P x y ,则2222221122222222b x a y a b b x a y a b⎧+=⎪⎨+=⎪⎩………………① ………………②1︒ 当AB 不垂直x 轴时,12,x x ≠由①—②得22121221221222222()2()20,,0,(*)b x x x a y y y y y b x yx x a y x cb x a y b cx -+-=-∴=-=--∴+-=2︒当 AB 垂直于x 轴时,点P 即为点F ,满足方程(*). 故所求点P 的轨迹H 的方程为: 222220b x a y b cx +-=.(2)因为,椭圆Q 右准线l 方程是2a x c =,原点距椭圆Q 的右准线l 的距离为2a c,222222,1c o s s i n ,s i n (0).2s 2s i n ().24c a b a b a c πθθθθθπ=-=++=≤==+由于则<2πθ=当时,上式达到最大值,所以当2πθ=时,原点距椭圆Q 的右准线l 最远.此时222,1,1,(2,0),1a b c D DF ====.设椭圆 22:121x y Q +=上的点1,1()A x y 、2,2()B x y , △ABD 的面积1212111.222S y y y y =+=- 设直线m 的方程为1x ky =+,代入22121x y +=中,得22(2)210.k y ky ++-= 由韦达定理得12122221,,22k y y y y k k +=-=-++ ()()222212121222814()()4,2k S y y y y y y k+=-=+-=+令211t k =+≥,得28424tS t≤=,当1,0t k ==取等号. 因此,当直线m 绕点F 转动到垂直x 轴位置时, 三角形ABD 的面积最大.9. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆相交于点P 和点Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.∴椭圆方程为22x +23y 2=1或23x 2+22y =1.10设A 、B 分别为椭圆22221x x a b+=(,0a b >)的左、右顶点,椭圆长半轴...的长等于焦距,且4x =为它的右准线。

高考数学圆锥曲线综合题题库1 含详解

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3;当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x.4520)54525()5(22200+-=-+=-=∴k kk k k x k y又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k RF ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|2、(江苏省启东中学高三综合测试二)已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上.(1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,.32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又, , 392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角.9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当.CBA 3310y 为钝角时∠-<22222y y 3428y 3y349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点.3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--= A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或3、(江苏省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A 、B 、C ,证明:⊿ABC 的垂心H 也在该双曲线上;(2)若正三角形ABC 的一个顶点为C(―1,―1),另两个顶点A 、B 在双曲线xy=1另一支上,求顶点A 、B 的坐标。

常德市选修一第三单元《圆锥曲线的方程》测试(含答案解析)

常德市选修一第三单元《圆锥曲线的方程》测试(含答案解析)

一、填空题1.椭圆C :22221x y a b+=()0a b >>,以原点为圆心,半径为椭圆C 的半焦距的圆恰与椭圆四个项点围成的四边形的四边都相切,则椭圆C 的离心率为________.2.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P 为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.3.已知椭圆()2222:10x y C a b a b +=>>的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、,满足tan tan 1αβ+=,则直线PA 的斜率为__________.4.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的两个焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆D :22(3)3x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2MN NF +的最大值是___________.5.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,O 为坐标原点.过点F 的直线240x y +-=与椭圆的交点为Q (点Q 在x 轴上方),且||||OF OQ =,则椭圆C 的离心率为_____.6.已知1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,P 是椭圆上一点(异于左、右顶点)为半径的圆内切于12PF F △,则椭圆的离心率的取值范围是________.7.椭圆2212516x y +=的左、右焦点为F 1、F 2,点P 在椭圆上,若F 1PF 2为直角三角形,则点P 到x 轴的距离为_____.8.已知O 为坐标原点,点(1,2)P 在抛物线C :24y x =上,过点P 作两直线分别交抛物线C 于点A ,B ,若0PA PB k k +=,则AB OP k k ⋅的值为______.9.已知P 是椭圆2214x y +=上的一点,F 为右焦点,点A 的坐标为,则AFP周长的最大值为_______.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P使12PF e PF =,则该椭圆的离心率e 的取值范围是______.11.如图,过原点O 的直线AB 交椭圆2222:1(0)x y C a b a b+=>>于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP .AQ 交椭圆C 于点P .Q ,连接BQ 交AP 于一点M ,若45AM AP =,则椭圆C 的离心率是__________.12.已知直线y kx m =+与双曲线22221(0,0)x y a b a b-=>>的两条渐近线交于A B 、两点,与1yx k交于点N ,若N 为AB 的中点,则双曲线的离心率等于____. 13.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____. 二、解答题14.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(Ⅰ)求椭圆C 的方程;(Ⅱ)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(III )若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值. 15.已知抛物线C 的顶点在坐标原点,焦点F 在x 轴上,且抛物线C 上横坐标为4的点P 到焦点F 的距离为92. (1)求抛物线C 的标准方程.(2)已知点()2,0P ,点Q 在抛物线C 上.①若点Q 在第一象限内,且2PQ =,求点Q 的坐标. ②求PQ 的最小值.16.已知椭圆()2222:10x y G a b a b +=>>过点33,22P ⎛⎫ ⎪ ⎪⎝⎭,且它的一个焦点在直线220x y +=.(1)求椭圆G 的方程;(2)设直线y x m =+与椭圆G 相交于不同的两点,M N ,且()0,1B -,是否存在实数m ,使得BM BN =?若存在,求出实数m ;若不存在,请说明理由.17.已知集合(){}22|4300A x x ax a a =-+<>,集合B ={a 方程221382x y a a+=--表示圆锥曲线C }(1)若圆锥曲线C 表示焦点在x 轴上的椭圆,求实数a 的取值范围;(2)若圆锥曲线C 表示双曲线,且A 是B 的充分不必要条件,求实数a 的取值范围.18.已知命题:p 方程22113x y m m+=+-表示焦点在y 轴上的椭圆,命题:q 关于x 的不等式22230x mx m +++>恒成立;(1)若命题q 是真命题,求实数m 的取值范围;(2)若“p q ∧”为假命题,“p q ∨”为真命题.求实数m 的取值范围.19.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:330l x y --=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.20.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值.21.已知椭圆的2222:1(0)x y C a b a b+=>>的焦距为6(2,1)A .(1)求椭圆C 的方程;(2)若不经过点A 的直线:l y kx m =+与C 交于,P Q 两点,且直线AP 与直线AQ 的斜率之和为0,求k 的值.22.已知椭圆E :()222210x y a b a b +=>>6,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标. 23.已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),求|PA |+|PM |的最小值24.已知命题p :方程22112x y m m +=-+表示双曲线;命题q :方程22212x ym m+=表示焦点在x 轴上的椭圆.若,p q 有且只有一个为真命题,求实数m 的取值范围.25.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,椭圆上的点31,2A ⎛⎫⎪⎝⎭到两焦点的距离之和为4; (2)离心率为35,短轴长为8 26.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,153F B =,124F F =.(1)试建立适当的坐标系,求截口BAC 所在的椭圆的方程;(2)如图,若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,若1260F PF ∠=︒求12F PF △的面积.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】由题意画出图形利用等面积法可得关于的等式结合隐含条件即可求得椭圆的离心率【详解】解:如图所示过点作则由题意可得即又由可得整理可得因为所以解得因为所以故答案为:【点睛】本题考查椭圆的几何性质考51- 【分析】由题意画出图形,利用等面积法可得关于a ,b ,c 的等式,结合隐含条件即可求得椭圆的离心率. 【详解】解:如图所示,过点O 作22OM A B ⊥,则290OMA ∠=︒,由题意可得,22221122OB OA A B OM ⋅=⋅,即22a b a b c ⋅=+,又由222a b c =+可得,()()2222222a a c a a c c -=+-,整理可得442230a c a c +-=,因为c e a =,所以42310e e -+=,解得235e -=, 因为01e <<,所以51e -=. 51-. 【点睛】本题考查椭圆的几何性质,考查运算求解能力,属于中档题.2.【分析】根据椭圆的几何性质由轴设写出的直线方程求出与轴的交点的坐标以及点的坐标根据化简得到即可求解【详解】由题意椭圆的左右焦点分别为且因为轴不妨设则直线的方程为令可得所以直线与轴的交点为又由所以化简解析:13【分析】根据椭圆的几何性质,由2PF x ⊥轴,设(,)M c t ,写出AM 的直线方程,求出AM 与y 轴的交点N 的坐标,以及Q 点的坐标,根据3ON OQ =,化简得到3a c =,即可求解. 【详解】由题意,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,且(,0)A a ,因为2PF x ⊥轴,不妨设(,)(0)M c t t ≠, 则直线AM 的方程为()ty x a c a=--,令0x =,可得aty a c=-, 所以直线AM 与y 轴的交点为1(0,),(0,)2at N Q t a c -, 又由3ON OQ =,所以132at t a c =⨯-,化简得3a c =, 所以椭圆的离心率为13c e a ==. 故答案为:13. 【点睛】求解椭圆的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ; 齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;特殊值法:通过取特殊值或特殊位置,求出离心率.3.或【分析】设出点坐标求得的表达式求得代入直线的斜率公式可得答案【详解】依题意设则即化简得由于是椭圆的左右顶点所以所以所以所以或所以当时当时所以直线的斜率为或故答案为:或【点睛】本小题主要考查椭圆的几解析:2或12- 【分析】设出P 点坐标,求得tan +tan αβ的表达式,求得00x y ,,代入直线的斜率公式可得答案. 【详解】依题意1,22c b a b a a ====.设()()000,0P x y x ≠,则2200221x y a b +=,即22002214x y a a +=,化简得222004y x a -=-. 由于,A B 是椭圆的左右顶点,所以()(),0,,0A a B a -,所以tan +tan αβ0000+y y x a x a =+-0000022200022142x y x y xx ay y ===-=--,所以002x y =-,所以0024x a y a ⎧=-⎪⎪⎨⎪=⎪⎩或0024x a y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以当0024x y a ⎧=-⎪⎪⎨⎪=⎪⎩时,tanα002y x a ===+,当002x a y ⎧=⎪⎪⎨⎪=⎪⎩时,002y x a ===+PA或12,故答案为:2或12. 【点睛】本小题主要考查椭圆的几何性质,直线的斜率公式,关键在于求得点P 的坐标,属于中档题.4.【分析】根据题中条件得到的最大值不小于即可由余弦定理结合基本不等式得到点为短轴的顶点时最大;不妨设点为短轴的上顶点记得出离心率的最小值连接得到根据椭圆的定义结合三角形的性质求出的最大值即可得出结果【解析:4+【分析】根据题中条件,得到12F PF ∠的最大值不小于23π即可,由余弦定理,结合基本不等式,得到点P 为短轴的顶点时,12F PF ∠最大;不妨设点P 为短轴的上顶点,记12F PF θ∠=,得出离心率的最小值,连接DN ,得到()()22maxmaxMN NF DN NF +=+,根据椭圆的定义,结合三角形的性质,求出2DN NF +的最大值,即可得出结果. 【详解】若想满足椭圆上存在一点P ,使得1223F PF π∠=,只需12F PF ∠的最大值不小于23π即可,由余弦定理,可得()22222112121221221424cos 22PFPF c PF PF PF PF c F PF PF PF PF PF +--=+-∠=2222221122221112b b b PF PF PF PF a =-≥-=-⎛⎫+ ⎪⎝⎭,当且仅当 12PF PF =,即点P 为短轴的顶点时,12F PF ∠的余弦值最小,即12F PF ∠最大;如图,不妨设点P 为短轴的上顶点,记12F PF θ∠=,则 23πθ≥,于是离心率3sin 22c e a θ⎫==∈⎪⎪⎣⎭, 因此当椭圆C 的离心率取得最小值32时,24a =,则椭圆 22:14x C y +=;连接DN ,根据圆的性质可得:()()22maxmax3MN NF DN NF +=+,所以只需研究2DN NF +的最大值即可;连接1NF ,1DF ,21144423DN NF DN NF DF +=+-≤+=+当且仅当N ,D ,1F 三点共线(N 点在线段1DF 的延长线上)时,不等式取得等号, 所以2DN NF +的最大值为 423+ 因此2MN NF +的最大值是433+ 故答案为:433+ 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到椭圆离心率,求出椭圆方程,再由椭圆的定义,以及圆的性质,将动点到两点距离的最值问题,转化为椭圆上一动点到焦点,以及到定点的距离的最值问题,即可求解.5.【分析】转化条件为设点列方程可得点结合椭圆定义可得再由离心率的公式即可得解【详解】因为点在直线上所以椭圆左焦点设点则解得或(舍去)所以点所以即所以椭圆的离心率故答案为:【点睛】关键点点睛:解决本题的 5【分析】转化条件为()2,0F ,设点(),24Q x x -+,列方程可得点68,55Q ⎛⎫⎪⎝⎭,结合椭圆定义可得a ,再由离心率的公式即可得解.【详解】因为点F 在直线240x y +-=上,所以()2,0F ,椭圆左焦点()12,0F -, 设点(),24Q x x -+,则2OQ OF ===,解得65x =或2x =(舍去),所以点68,55Q ⎛⎫ ⎪⎝⎭,所以12a QF QF =+==,即a =,所以椭圆的离心率3c e a ===.【点睛】关键点点睛:解决本题的关键是求出点Q 的坐标,再结合椭圆的定义、离心率公式即可得解.6.【分析】根据三角形等面积公式得到再转化为关于的齐次不等式求离心率的取值范围【详解】的面积关系可得:即即整理为:两边同时除以得且解得:故答案为:【点睛】方法点睛:本题考查椭圆离心率的取值范围求椭圆离心解析:10,3⎛⎤⎥⎝⎦【分析】根据三角形等面积公式得到()11222222P a c c c y bc +⋅=⋅⋅≤,再转化为关于,a c 的齐次不等式,求离心率的取值范围. 【详解】12PF F △的面积关系可得:()11222222P a c c y bc +⋅=⋅⋅≤,即))22a c c bc a cb +≤⇒+≤, 即()()222222a c b a c+≤=-,整理为:22320c ac a +-≤ ,两边同时除以2a , 得23210e e +-≤且01e <<, 解得:103e <≤. 故答案为:10,3⎛⎤⎥⎝⎦【点睛】方法点睛:本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.7.【分析】设点P(xy)表示出点P 到x 轴的距离为由哪一个角是直角来分类讨论在第一类中直接令x=士3得结果在第二类中要列出方程组【详解】设点则到轴的距离为由于(1)若或令得即到轴的距离为(2)若则由可得 解析:165【分析】设点P (x ,y ),表示出点P 到x 轴的距离为||y ,由哪一个角是直角来分类讨论,在第一类中直接令x =士3得结果,在第二类中要列出方程组. 【详解】设点(,)P x y ,则到x 轴的距离为||y 由于5a =,4b =,3c ∴=,(1)若1290PF F ∠=︒或2190PF F ∠=︒,令3x =±得2y =291616(1)2525-=,16||5y ∴=,即P 到x 轴的距离为165. (2)若1290F PF ∠=︒,则122221210||6PF PF PF PF ⎧+=⎪⎨+=⎪⎩, 22121||||(106)322PF PF ∴=-=,由1210PF PF +=可得此情况不存在. 综上,P 到x 轴的距离为165. 故答案为:165. 【点睛】解决本题的关键是要注意分类讨论的思想,题目中的直角三角形,要分清楚那个角是直角,是解决问题的先决条件.8.-2【分析】可先设由斜率的定义表示出结合抛物线方程进行坐标代换全部代换成关于纵坐标的表达式通过即可求解【详解】设则同理∵∴得∴又∴故答案为-2【点睛】本题考查抛物线的几何性质设而不求方法的具体应用运解析:-2 【分析】可先设()11,A x y ,()22,B x y ,由斜率的定义表示出AB k ,PA k ,PB k ,结合抛物线方程进行坐标代换,全部代换成关于纵坐标的表达式,通过0PA PB k k +=即可求解 【详解】设()11,A x y ,()22,B x y ,则212122212112444AB y y y y k y y x x y y --===-+-.1121112241214PA y y k y x y --===-+-,同理242PB k y =+. ∵0PA PB k k +=,∴1244022y y +=++,得124y y +=-. ∴414AB k ==--. 又221OP k ==,∴122AB OP k k ⋅=-⨯=-.故答案为-2 【点睛】本题考查抛物线的几何性质,设而不求方法的具体应用,运算能力,属于中档题9.10【分析】如图所示设椭圆的左焦点为利用利用即可得到结果【详解】解:如图所示设椭圆的左焦点为由题意可知则因为的坐标为所以由椭圆的定义可得因为所以周长为当且仅当三点共线时取等号所以周长的最大值为10故解析:10 【分析】如图所示,设椭圆的左焦点为'F ,利用'AF AF =,'24PF PF a +==,利用''PA PF AF -≤,即可得到结果【详解】解:如图所示,设椭圆的左焦点为'F ,由题意可知2,1,a b c ===F ,因为A的坐标为,所以'3AF AF ==,由椭圆的定义可得'24PF PF a +==, 因为''PA PF AF -≤,所以AFP 周长为'434310AF PA PF AF PA PF ++=++-≤++=, 当且仅当',,A P F 三点共线时取等号, 所以AFP 周长的最大值为10, 故答案为:10【点睛】此题考查了椭圆的定义及其性质,三角形的三边大小关系,考查数形结合的思想,考查计算能力,属于中档题10.【分析】由椭圆的定义可得解得由椭圆的性质可得解不等式求得离心率的取值范围【详解】设点的横坐标为则由椭圆的定义可得由题意可得则该椭圆的离心率的取值范围是故答案为:【点睛】本题考查椭圆的定义以及简单性质 解析:)21,1【分析】由椭圆的定义可得22()()a a e x e e x c c +=⨯-,解得(1)c a x e e -=+,由椭圆的性质可得(1)c aaa e e --+,解不等式求得离心率e 的取值范围.【详解】设点P 的横坐标为x ,12PF e PF =,则由椭圆的定义可得22()()a a e x e e x c c +=⨯-,(1)c a x e e -∴=+,由题意可得(1)c aaa e e --+, 111(1)e e e -∴-+,∴2211e e e e e e⎧--⎨-+⎩,∴11e <, 则该椭圆的离心率e的取值范围是1,1),故答案为:1,1). 【点睛】本题考查椭圆的定义,以及简单性质的应用,由椭圆的定义可得22()()a a e x e e x c c+=⨯-,是解题的关键.11.【分析】先设出两点的坐标分别为由此可得而则得再由和BMQ 三点共线可得而两点在椭圆上把其坐标代入椭圆方程中两方程作差得由此可得从而可求出离心率【详解】设)则由则再由BMQ 三点共线则故故即又因为即所以故【分析】先设出,A Q 两点的坐标分别为()()1122 ,,,A x y Q x y ,由此可得()()1111,,,B x y P x y ---,而则45AM AP =得113(,)5M x y -,再由AB AQ ⊥,和B ,M ,Q 三点共线可得222221211()5y y x x -=--,而,A Q 两点在椭圆上,把其坐标代入椭圆方程中,两方程作差得22221212220x x y y a b --+=,由此可得2215b a =,从而可求出离心率. 【详解】设()()1122 ,,,A x y Q x y ), 则()()1111,,,B x y P x y ---,113(,)5M x y - 由AB AQ ⊥,则1211211y y y x x x -⋅=--, 再由B ,M ,Q 三点共线,则1211215y y y x x x +=+, 故2121212115y y x xx x y y +-=-⋅+-,故即 222221211()5y y x x -=--,又因为2211221x y a b +=,2222221x y a b +=,即22221212220x x y y a b--+=, 所以2215b a =,故椭圆C.【点睛】此题考查椭圆的简单几何性质,求椭圆的离心率,考查运算能力,利用了数形结合的思想,属于中档题.12.【分析】由题意联立方程组可得由中点的性质可得化简后利用即可得解【详解】由题意双曲线的两条渐近线为则同理联立为的中点即整理得故答案为:【点睛】本题考查了双曲线的性质和离心率的求解考查了直线交点的问题和【分析】由题意联立方程组可得A am x ka b -=+、B amx b ka=-、21N km x k =-,由中点的性质可得2A B N x x x +=,化简后利用e =即可得解. 【详解】由题意双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,则A y kx mam x b ka b y x a =+⎧-⎪⇒=⎨+=-⎪⎩,同理Bam x b ka =-, 联立211N y kx mkm x k y x k =+⎧⎪⇒=⎨-=⎪⎩,N 为AB 的中点,∴2A B N x x x +=,即221am am mkb ka b ka k -+=+--, 整理得221b a =,∴e ==. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了直线交点的问题和运算能力,属于中档题.13.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物线的解析:②⑤ 【分析】设抛物线方程为22y px =.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论. 【详解】设抛物线方程为22y px =.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p =,抛物线方程为220y x =,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp =⨯,解得52p =,可得抛物线方程为25y x =.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p ⨯=--,解得5p =,可得抛物线方程为210y x =,因此正确.能使抛物线方程为210y x =的条件是②⑤. 故答案为:②⑤. 【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、解答题14.(Ⅰ)22143x y +=;(Ⅱ)存在,3(,0)2-;(III)【分析】(Ⅰ)根据离心率和顶点求出,a c ,再求出b 即可得出方程;(Ⅱ)联立直线与椭圆方程求出点D 坐标,进而得出点P 坐标,再利用1OP EQ k k ⋅=-即可求出定点;(III )设OM 的方程为y kx =,与椭圆联立,得出M 横坐标,利用D AE AMx x x x AD AE OM x -+-+=表示出,即可求出最值.【详解】解:(Ⅰ)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(Ⅱ)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得:22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++, 所以2228612(,)4343k kD k k -+++, 因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++,则3(0)4OP k k k-=≠, 直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥,则1OP EQ k k ⋅=-,即3214n kk m-⎛⎫-⋅=- ⎪⎝⎭恒成立, 所以(46)30m k n +-=,所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(III )因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得:22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥,即k =时取等号,所以当k =AD AE OM +的最小值为.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.15.(1)22y x =;(2)①()2,2; 【分析】(1)由抛物线定义:抛物线上点到焦点距离等于点到其准线的距离有42pPF =+,即可求p ,写出抛物线方程.(2)令(,)Q x y ,利用两点距离公式得PQ =Q 的坐标,利用点在抛物线上,结合二次函数最值求PQ 的最小值. 【详解】(1)由题意,可设抛物线C :22y px =,焦点,02p F ⎛⎫ ⎪⎝⎭,则9422p PF =+=,解得1p =,∴抛物线C 的标准方程为22y x =, (2)令(,)Q x y ,①由已知条件得2PQ ==,将22y x =代入上式,并变形得,220x x -=,解得0x =(舍去)或2x =, 当2x =时,2y =±,只有2x =,2y =满足条件, ∴点Q 的坐标为()2,2.②2PQ ==,其中22y x =,()()()22222224130PQ x x x x x x =-+=-+=-+≥,当1x =时,min PQ =【点睛】 关键点点睛:(1)由抛物线定义,由待定系数法求p ,写出抛物线方程.(2)由点在抛物线上,结合两点坐标的距离公式,求点坐标以及距离的最小值.16.(1)2213x y +=;(2)不存在,理由见解析.【分析】(1)由直线方程求得焦点坐标,结合点的坐标可列出关于,a b 的方程组,解之可得; (2)直线方程与椭圆方程联立方程组,消元后,由判别式大于0得m 的范围,设交点坐标()()1122,,,M x y N x y ,应用韦达定理得1212,x x x x +,从而可得中点坐标,若存在,则利用等腰三角形性质,得垂直,从而由向量数量积为0求出m ,若m 满足判别式大于0,说明存在,不满足说明不存在. 【详解】(1)在20x y ++=中,令0y =得x c =-=所以224a b -=又过点22P ⎛ ⎝⎭所以2222222214a b a b ⎧⎛⎛⎪ ⎪⎝⎭⎝⎭⎨+=⎪⎪-=⎩解得2231a b ⎧=⎨=⎩所以椭圆G 的方程为2213x y +=;(2)由2213x y y x m ⎧+=⎪⎨⎪++⎩得()2246310x mx m ++-=所以()2223648104m m m ∆=-->⇒< 设()()1122,,,M x y N x y则()1221232314m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩设,M N 的中点为(),p p P x y 则3,44p p p m m x y x m =-=+= 若BM BN =,则MN BP ⊥,则0MN BP ⋅= 又()30,1,,144m m B BP ⎛⎫-=-+ ⎪⎝⎭所以()3,11,1044m m ⎛⎫-+⋅= ⎪⎝⎭解得2m = 所以与24m <矛盾所以不存在实数m ,使得BM BN =. 【点睛】方法点睛:本题考查求椭圆的标准方程,考查直线与椭圆相交中的存在性问题.解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,直线方程与椭圆方程联立方程组后消元应用韦达定理得1212,x x x x +,然后把这个结论代入题中其他条件去证明、去求参数.在在性问题一般都是假设存在,按照存在的性质求解,如果能求出相应参数值,说明存在,求不出说明不存在. 17.(1)1143a <<;(2)01a <≤或4a ≥. 【分析】(1)根据椭圆的标准方程,求出a 的范围;(2)再确定集合A ,由双曲线的标准方程得集合B ,然后根据充分必要条件的定义集合包含关系,从而得出a 的不等关系,求得结论. 【详解】(1)由方程221382x y a a+=--表示的曲线是表示焦点在x 轴上的椭圆∴(3)(82)0a a ->->, ∴1143a << 解不等式22430(0)x ax a a -+<>可得3(0)a x a a <<>方程221382x y a a+=--表示的曲线是双曲线∴(3)(82)0a a --<, ∴4a >或3a <因为A 是B 的充分不必要条件所以(,3)a a 是(,3)(4,)-∞⋃+∞的真子集 所以033a <≤或4a ≥ 解得01a <≤或4a ≥所以a 的取值范围是01a <≤或4a ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 18.(1)13m -<<;(2)[)1,3. 【分析】(1)根据判别式小于0可解得结果;(2)根据复合命题的真假可得p ,q 为一个真命题,一个假命题,分两种情况讨论列式可解得结果. 【详解】(1)若命题q 是真命题,则关于x 的不等式22230x mx m +++>恒成立; 则判别式244(23)0m m ∆=-+<,即2230m m --<,得13m -<<(2)∵方程22113x y m m+=+-表示焦点在y 轴上的椭圆.∴013m m <+<-,解得:11m -<<,∴若命题p 为真命题,则实数m 的取值范围是11m -<<;由(1)知,若命题q 为真命题,则实数m 的取值范围是13m -<<若“p q ∧”为假命题,“p q ∨”为真命题,则p ,q 为一个真命题,一个假命题, 若p 真q 假,则1131m m m -<<⎧⎨≥≤-⎩或,此时无解,若p 假q 真,则1311m m m -<<⎧⎨≥≤-⎩或,得13m ≤<.综上,实数m 的取值范围是[)1,3. 【点睛】关键点点睛:分别根据命题,p q 为真命题,求出m 的取值范围是解题关键.19.(1)22143x y +=;(2)证明见解析, 1x =.【分析】(1)设椭圆C 的半焦距为()0c c >,由圆的定义可求得圆的半径,再由直线与圆的相切的条件可求得c , 2a ,2b ,可求得椭圆方程.(2)设其方程为4x my =+,设()11,H x y ,()22,G x y ,直线与椭圆的方程联立整理得()223424360my my +++=,得出根与系数的关系,表示直线MH 的方程和直线GN 的方程。

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析一、解答题1.(23-24高三下·重庆·阶段练习)已知抛物线()2:20E y px p =>,O 是坐标原点,过()4,0的直线与E 相交于A ,B 两点,满足OA OB ⊥.(1)求抛物线E 的方程;(2)若()0,2P x 在抛物线E 上,过()4,2Q -的直线交抛物线E 于M ,N 两点,直线PM ,PN 的斜率都存在,分别记为1k ,2k ,求12k k ⋅的值.3【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(23-24高三下·重庆·阶段练习)已知抛物线2:4,,C x y M N =为抛物线C 上两点,,M N 处的切线交于点()00,P x y ,过点P 作抛物线C 的割线交抛物线于,A B 两点,Q 为AB 的中点.(1)若点P 在抛物线C 的准线上,(i )求直线MN 的方程(用含0x 的式子表示);(ii )求PMN 面积的取值范围.(2)若直线MQ 交抛物线C 于另一点D ,试判断并证明直线ND 与AB 的位置关系.【答案】(1)(i )012y x =【详解】(1)(i )设点221212,,,44x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,因为抛物线2:4C x y =,得12y x '=,则()21111:42MP x l y x x x -=-,整理得2111124y x x x =-①,()22221:42NP x l y x x x -=-,整理得2221124y x x x =-②,联立①②得()0120121214x x x y x x ⎧=+⎪⎪⎨⎪=⎪⎩,因为点P 在抛物线C 的准线上,即直线1y =-上,所以124x x =-,设直线MN 的方程为y kx b =+,斜率必存在,联立24=+⎧⎨=⎩y kx bx y ,消去y 得2440x kx b --=,所以212012Δ161604244k b x xk x x x b ⎧=+>⎪+==⎨⎪=-=-⎩,得0121k x b ⎧=⎪⎨⎪=⎩.所以直线MN 的方程为0112y xx =+;(ii )由(i )得21x x -=(2)直线ND 与AB 平行,证明:直线AB 斜率必存在,设消去y 得20444x kx kx -++=则()2034340161610444k kx x x k x x kx ⎧-+>⎪+=⎨⎪=+⎩,得则直线(21:4MQ x l y k x x '-=-()2122011214442x k k x x x k x ----=-整理得()(221284k x x k ---则2211112842D kx k x kx x x k x -+-=-则2101284142D kx k kx y k x ⎛-+-= -⎝【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般联立方程,然后用韦达定理来解决问题,特别是当一个交点知道的情况下,3.(23-24高三下·重庆·阶段练习)已知()()122,0,2,0C C -,动点P 满足1PC 与2PC 的斜率之积为定值14.(1)求动点P 的轨迹Γ的方程;(2)过点()4,0M 的直线l 与曲线Γ交于,A B 两点,且,A B 均在y 轴右侧,过点A 作直线:1l x '=的垂线,垂足为D .(i )求证:直线BD 过定点;(ii )求MBD 面积的最小值.【答案】(1)(22104x y y -=≠(2)(i )证明见解析;(ii )3【分析】(1)设动点P 的坐标,由题意列式并化简,即可得答案;(2)(i )设直线方程:l x my =结合题意有(2212212240Δ644884124m m m m y y m y y m ⎧-≠⎪=-⎪⎪-⎨+=⎪-⎪⎪⋅=<-⎩解得22m -<<,且122my y =又直线BD 的方程为1y y -=令0y =,则()122111y x x y y -=--()(122121235422=y y y y y y y y ++-=-4.(23-24高三上·重庆·阶段练习)已知点00(,)P x y 是椭圆E :221(0)a b a b +=>>上的动点,离心率2e =设椭圆左、右焦点分别为12,F F ,且12|||4|PF PF +=(1)求椭圆E 的标准方程;(2)若直线12,PF PF 与椭圆C 的另一个交点分别为A ,B ,问PAB 面积是否存在最大值,若存在,求出最大值;若不存在,请说明理由.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(23-24高三上·重庆·期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为()()121,01,0F F -,,椭圆C 上一动点A 在第二象限内,点A 关于x 轴的对称点为点B ,当AB 过焦点1F 时,直线2AF 过点30,4⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)点B 与焦点2F 所在直线交椭圆C 于另一点P ,直线AP 交x 轴于点T ,求TAB △面积最大时,点A 横坐标的值.【答案】(1)22143x y +=(2)13-设直线PB 的方程为1x my =+,联立得()2234690m y my ++-=,由于直线则12122269,343m y y y y m m -+=-=++直线PA 的方程为(21121y y y y x x ++=-令0y =,得(1121212y my y x y x x y y ==++即(4,0)T ;()()1114||432TABS x AB x =-⋅=-6.(23-24高三上·重庆渝中·阶段练习)已知椭圆C :()2210a b a b +=>>的上、下顶点分别为A ,B ,左顶点为D ,ABD △(1)求椭圆C 的方程;(2)过椭圆外一点(),0M m 的直线交椭圆于P ,Q 两点,已知点P 与点P '关于x 轴对称,直线P Q '与x 轴交于点K ;若AKB ∠是钝角,求m 的取值范围.【点睛】方法点睛:求解椭圆的方程,关键是求得所以需要两个条件,如本题中,等边三角形以及等边三角形的面积,一共两个条件,用这两个条件列方程组,即可求得,a 7.(23-24高三上·重庆渝中·阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.8.(23-24高三上·重庆渝中·阶段练习)已知椭圆()22:10x y C a b a b +=>>的离心率为e =,且经过点()1,e .(1)求椭圆C 的方程;(2)若A ,F 分别为椭圆C 的上顶点和右焦点,直线()3:0l y kx k =->与椭圆C 交于点B ,D ,F 到直线AB ,AD 的距离分别为1d 和2d ,求证:12d d =.。

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

圆锥曲线之椭圆题库2 含详解 高考必备

圆锥曲线之椭圆题库2 含详解 高考必备

51 如图,设F 是椭圆)0(1:2222>>=+b a b y a x C 的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知.||2||,8||MF PM MN ==且(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A 、B 求证:∠AFM=∠BFN ; (3)(理科)求三角形ABF 面积的最大值。

解(1)48||=∴=a MN122)(1210132)(2||2||22222=-==∴==⇒=+--=-=c a b c e c e e c a a c a MF PM 舍去或即得又1121622=+∴y x 椭圆的标准方程为(2)当AB 的斜率为0时,显然.0=∠=∠BFN AFM 满足题意当AB 的斜率不为0时,设),(),,(2211y x B y x A ,AB 方程为,8-=my x 代入椭圆方程 整理得014448)43(22=+-+my y m则431444348),43(1444)48(22122122+=⋅+=++⨯-=∆m y y m my y m m662222112211-+-=+++=+∴my y my y x y x y k k BF AF)6)(6()(62212121=--+-=my my y y y my.,0BFN AFM k k BF AF ∠=∠=+∴从而综上可知:恒有BFN AFM ∠=∠(3)(理科)43472||||212212+-=-⋅=-=∆∆∆m m y y PF S S S PAFPBF ABF33163272416437216)4(34722222=⋅≤-+-=+--=m m m m当且仅当32841643222=-=-m m m 即(此时适合△>0的条件)取得等号.∴三角形ABF 面积的最大值是3 352 设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.解:设P (x ,y )是所求轨迹上的任一点,①当斜率存在时,直线l 的方程为y =k x +1,A (x 1,y 1),B (x 2,y 2),联立并消元得:(4+k 2)x 2+2k x -3=0, x 1+x 2=-,422k k +y 1+y 2=248k+,由)(21→→→+=OB OA OP 得:(x ,y )=21(x 1+x 2,y 1+y 2),即:⎪⎪⎩⎪⎪⎨⎧+=+=+-=+=22122144242k y y y k k x x x消去k 得:4x 2+y 2-y =0当斜率不存在时,AB 的中点为坐标原点,也适合方程所以动点P 的轨迹方程为:4x 2+y 2-y = 0.53 已知椭圆C:2222by a x +=1(0a b >>)的离心率为36,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23, 求△AOB 面积的最大值.解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩∴ 1b =,∴ 所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB =(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.=223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+.22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠≤+=++⨯+++. 当且仅当2219k k =,即k =时等号成立.当0k =时,AB = 综上所述max 2AB =.∴ 当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. 54 已知向量)1,0(,)0,(21••e •••a •e ==,经过定点)0,(••a A -且方向向量为21e e λ+-的直线与经过定点)0,(•a •B 且方向向量为212e e +λ的直线交于点M ,其中∈λR ,常数a >0. (1)求点M 的轨迹方程; (2)若26=a ,过点)0,1(••F 的直线与点M 的轨迹交于C 、D 两点,求FD FC ∙的取值范围.设点),(,),(,),(•y a •x ••y a •x •••y x •M -=+=则,又∥),()(21λλ••e e a -=+-,∥)1,2()2(21••e e a λλ=+故⎩⎨⎧-=-=+a x ay ay a x λλ2)(,消去参数λ,整理得点M的轨迹方程为22222a y a x =+(除去点)0,(,)0,(•a ••B ••a •A -) (2)由26=a 得点M 轨迹方程为121)26(222=+y x (除去点)0,26(,)0,26(•••B •••A -),若设直线CD 的方程为)1(-=x k y ••k ,0(≠)点过否则A CD ,••y x C ),(11,••y x D ),(22,则由⎩⎨⎧=+-=362)1(22y x x k y 消去y 得0)12(312)13(22222=-+-+k k x k ,显然0)1(242>+=∆k ,于是)13(2)12(3,13622212221+-=+=+k k x •x •k k x x , 设),1(,),1(,2211•y •x •••y •x •m •-=-==∙,因此)1)(1()1)(1()1)(1(212212121--+--=+--=∙=x x k x x y y x x m]1136)13(2)12(3)[1(]1)()[1(2222221212++-+-+=++-+=k k k k k x x x x k ,即,6121)016(01612)13(21222•m m •m m k k k m -<<-⇒≠+>++=⇒++-= 若直线x CD ⊥轴,则61,12121-===y •y •x x ,于是61-=m ,综上可知⎥⎦⎤ ⎝⎛--∈=∙61,21••m 55如图,已知直线)0(1:1:2222>>=++=b a by a x C my x L 过椭圆的右焦点F ,且交椭圆C 于A ,B 两点,点A ,F ,B 在直线2:a x G =上的射影依次为点D ,K ,E . (1)若抛物线y x 342=的焦点为椭圆C 的上顶点,求椭圆C 的方程;(2)对于(1)中的椭圆C ,若直线L 交y 轴于点M ,且BF MB AF MA 21,λλ==,当m 变化时,求21λλ+的值;(3)连接AE ,BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由. 解:(1)易知)0,1(,332F b b 又=∴=41222=+==∴c b a c13422=+∴y x C 的方程为椭圆(2))1,0(mM y l -轴交于与设⎩⎨⎧=-++=012431),(),,(222211y x my x y x B y x A 由 0)1(144096)43(222>+=∆=-++∴m my y m(*)321121m y y =+∴又由),1()1,(111111y x my x --=+∴=λλ1111my --=∴λ同理2211my --=λ38322)11(122121-=--=+--=+∴y y m λλ3821-=+∴λλ…(3))0,(),0,1(2a k F =先探索,当m =0时,直线L ⊥ox 轴,则ABED 为矩形,由对称性知,AE 与BD 相交FK中点N ,且)0,21(2+a N猜想:当m 变化时,AE 与BD 相交于定点)0,21(2+a N … 证明:设),(),,(),,(),,(12222211y a D y a E y x B y x A当m 变化时首先AE 过定点N21,21)1(0)1(40)1(2)(0122121222222222222222222a y K m y a y K a b m a b a a b y m b y m b a b a y a x b m y x ENAN --=---=>>-+=∆=-+++⎩⎨⎧=-++=又即 )21(21)(2112221212m y a a y m y y y a K K ENAN ----+-=-而)0)()1()1()2(21)(21(222222222222222221212=+-⋅-=+-⋅-+-⋅-=-+-bm a mb mb a b m a a b m b m a mb a y my y y a∴=∴ENAN K K A 、N 、E 三点共线同理可得B 、N 、D 三点共线∴AE 与BD 相交于定点)0,21(2+a N56 已知椭圆C 过点)0,2(),26,1(-F M 是椭圆的左焦点,P 、Q 是椭圆C 上的两个动点,且|PF|、|MF|、|QF|成等差数列。

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆一、填空题1. 已知椭圆x24+y2=1的左右焦点分别为F1,F2,过F2作直线交椭圆于A,B两点,若F2为线段AB的中点,则△AF1B的面积为.2. 椭圆x29+y25=1的左右焦点分别为F1,F2,过焦点F1的直线交该椭圆于A,B两点,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则▵ABF2的面积S=.二、解答题3. 设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.4.已知椭圆C的中心在原点,对称轴为坐标轴,且经过点(3,0),离心率为√63.求椭圆C的方程.5.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,短轴一个端点到右焦点的距离为3√2.(1)求椭圆C的方程;(2)若直线y=x−1与椭圆C交于不同的两点A、B,求|AB|.6. 椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,√3),离心率为12,左、右焦点分别为F 1(−c,0),F 2(c,0) (1)求椭圆的方程(2)斜率为−12的直线l 与椭圆交于A ,B 两点,当|AB |=√552时,求直线l 的方程7.已知椭圆C :x 26+y 2b2=1(b >0)的左、右焦点分别为F 1(−c,0)和F 2(c,0),P 为椭圆C 上任意一点,三角形PF 1F 2面积的最大值是3. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)的直线l 交椭圆C 于A ,B 两点,且Q(94,0),证明:QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ 为定值.8. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 为圆x 2+y 2+2x =0的圆心,且椭圆上的点到点F 的距离最小值为√2−1. (1)求椭圆方程;(2)已知经过点F 的动直线l 与椭圆交于不同的两点A ,B ,点M (−54,0),证明:MA⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ 为定值.答案和解析1.解:由x 24+y 2=1,得a =2,b =1,c =√3,又因为F 2为线段AB 的中点,则可知AB ⊥x 轴,把x =√3带入椭圆方程可得y =±12, 所以|AB |=1,2c =2√3,所以△AF 1B 面积为S =12×2c ×|AB |=√3故答案为:√3. 2.解:∵椭圆x 29+y 25=1的左右焦点分别为F 1,F 2,a =3,b =√5,c =2,过焦点F 1的直线交椭圆于A(x 1,y 1),B(x 2,y 2)两点, ∵△ABF 2的内切圆的面积为π,∴△ABF 2内切圆半径r =1.即△ABF 2面积S =12×1×(AB +AF 2+BF 2)=2a =6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆小题1.已知12F F ,为椭圆C :22198x y +=的左、右焦点,点E 是椭圆C 上的动点,12EF EF ⋅的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,82.若椭圆的短轴为AB ,一个焦点为1F ,且1ABF △为等边三角形的椭圆的离心率是( )A .14B C .2D .123.已知12,F F 分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过1F 的直线1MF 是圆2F 的切线,则椭圆的离心率为()A 1B .2-C .2D .24.椭圆192522=+y x 的焦点1F 2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )A . 12B .10C .9D .85.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于B A ,两点,若△2ABF 是正三角形,则这个椭圆的离心率为( ) A .22B .32 C .33D .23 6.若椭圆的中心在原点,一个焦点为(0,2),直线y=3x+7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( )A .2211220x y += B .221412x y += C .221128x y += D .221812x y += 7.设椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为F 1、F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ). A .63 B .31 C .21D .33 8.△ABC 的两个顶点为A(-4,0),B(4,0),△ABC 周长为18,则C 点轨迹为 ( ) (A )192522=+y x (y ≠0) (B )192522=+x y (y ≠0)(C )191622=+y x (y ≠0)(D )191622=+x y (y ≠0)9.已知,A B 是椭圆22221(0)x y a b a b+=>>长轴的两个端点, ,M N 是椭圆上关于x 轴对称的两点,直线,AM BN 的斜率分别为12,k k )0(21≠k k ,若椭圆的离心率为23,则||||21k k +的最小值为( ) A .1B .2C .3 D .210.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y += 11.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为A .34 B .23C .12D .4512.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a ) 的焦点相同且12a a >.给出如下四个结论: ①圆1C 和椭圆2C 一定没有公共点;②1122a b a b >; ③22212221b b a a -=-; ④1212a ab b -<-.其中,所有正确结论的序号是( )A .②③④B .①③④C .①②④D .①②③13.如图,从椭圆()222210x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点F 1,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB ∥OP ,则椭圆的离心率为( )A .12B 5C 2D 3 14.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 126||F F ,则椭圆C 的离心率e = A 2 B 3 C 2 D 315.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为F 3O 且倾斜角为π3的直线l 与椭圆E 相交于A 、B 两点,若△AFB 的周长为813413+,则椭圆方程为.16.椭圆()012222>>b a by a x =+的左、右焦点分别为21,F F ,若椭圆上存在点P 使线段1PF与以椭圆短轴为直径的圆相切,切点恰为线段1PF 的中点,则该椭圆的离心率为17.圆222(0)x y r r +=>经过椭圆22221(0)x y a b a b+=>>的两个焦点12,F F ,且与该椭圆有四个不同交点,设P 是其中的一个交点,若12PF F ∆的面积为26,椭圆的长轴长为15,则a b c ++=(c 为半焦距).18.如图所示,已知椭圆C :24x +y 2=1,在椭圆C 上任取不同两点A ,B ,点A 关于x轴的对称点为A ′,当A ,B 变化时,如果直线AB 经过x 轴上的定点T(1,0),则直线A ′B 经过x 轴上的定点为________.19.在平面直角坐标系xOy 中,以椭圆2222x y a b+=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值围是________.20.如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆2222x y a b+=1(a >b >0)的左、右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一个交点为D ,若cos ∠F 1BF 2=725,则直线CD 的斜率为________.21.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于B A ,两点,且线段AB 的中点在直线02=-y x 上,则此椭圆的离心率为_______22.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP DF =+,则||OM =.参考答案1.B 【解析】试题分析:由题意可知椭圆的左右焦点坐标为)0,1(),0,1(21F F -,设),(y x E ,则),1(),,1(21y x EF y x EF --=---=,所以791988112222221+=-+-=+-=⋅x x x y x EF EF )33(≤≤-x , 所以当0=x 时,21EF EF⋅有最小值7,当3±=x 时,21EF EF ⋅有最大值8,故选B . 考点:1.椭圆的定义及几何性质;2.向量的坐标运算.2.B 【解析】试题分析:因为椭圆的短轴长为2b ,11AF BF a ==,所以2232,3,.2c a b c a b b e a ==-=∴== 考点:1.椭圆的性质;2.离心率.3.A 【解析】试题分析:如图,易知2MF c=,122F F c=,12MF MF ⊥,故13MF c =,所以有1232MF MF c c a +=+=,可解得离心率.∵12F F ,分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M N , ,过1F 的直线1MF 是圆2F 的切线,∴2MF c =,122F F c = ,12MF MF ⊥,∴13MF c =,∴()2331a c c c =+=+,∴椭圆的离心率3311c e a ===-+.故选:A .考点:椭圆的离心率.4.C 【解析】试题分析:21PF PF ⊥所以2P π∠=,由焦点三角形面积公式得2tan9tan 4592S b θ==⨯=考点:椭圆焦点三角形 5.C 【解析】试题分析:设2ABF ∆的边长为2x ,则2ABF ∆的高线长为3x ,由椭圆的定义可知223a x x x =+=,且23c x =,所以离心率33c e a ==.故C 正确. 考点:椭圆的简单几何性质. 6.D 【解析】试题分析:椭圆的中心在原点,一个焦点为(0,2),所以椭圆的焦点在y 轴上,且422=-b a ,故能排除A ,B ,C 答案为D.考点:求椭圆的方程. 7.D . 【解析】试题分析:根据题意,作出示意图(如图所示)在21F PF Rt ∆中,02130=∠F PF ;设m PF 21=,则m F F m PF 3,212==;由椭圆的定义,得m F F c m PF PF a 32,322121===+=,则椭圆的离心率为3322==a c e .考点:椭圆的定义、直角三角形.8.A 【解析】试题分析:由题意可知8,18AB AB CA CB =++=,可得10CA CB AB +=>.由椭圆的定义可知点C 的轨迹是以()()4,0,4,0A B -为焦点的椭圆但去掉长轴两个端点.此时210,4a c ==,所以2225,9a b a c ==-=.所以点C 的轨迹方程为()221,0259x y y +=≠.故选A.考点:1椭圆的定义;2定义法求轨迹方程. 9.A 【解析】试题分析:设)(),,(),,(a x a y x N y x M <<--,则a x y k +=1,ax y k --=2,因椭圆的离心率为23,所以2112=-=e a b =-++=+x a y a x y k k ||||2112)1(2222222222==--=-≥a b x a a x b x a y 考点:椭圆及最值10.D 【解析】试题分析:由焦点(3,0)F 可知2239c a b =∴-=,设()()1122,,,A x y B x y ,代入椭圆方程后两式相减得222a b =2218,9a b ∴==,所以方程为221189x y += 考点:1.椭圆方程;2.直线与椭圆相交的中点弦问题 11.A 【解析】试题分析:由题意可知122333222224c F F F P c a c c a e a ⎛⎫=∴=-∴=∴== ⎪⎝⎭考点:椭圆离心率 12.B 【解析】试题分析:因为椭圆1C 和椭圆2C 的焦点相同且12a a >.,所以22221122a b a b -=-,1212a a b b >∴>,,∴①③正确;又22221212a a b b -=-,112200a b a b >>>>,,∴④正确,故选B .考点:椭圆的简单性质. 13.C 【解析】试题分析:根据题意可知,2(,)b P c a ,因AB ∥OP ,可知ABOP k k ,可得2b baca,整理得b c ,所以选C . 考点:椭圆的离心率. 14.A 【解析】试题分析:设椭圆C 的的焦距为2()c c a <,由于直线AB 的方程为0ax by ab +-=,所以=,因222b a c =-,所以42243720a a c c -+=,解得222a c =或223a c =(舍),所以2e =,故答案为A. 考点:椭圆的简单几何性质.15.2214x y += 【解析】试题分析:由离心率为2可得2a b =,椭圆方程可化为:2224x y a +=,将:l y =代入得||13A x a =,由椭圆对称性,△AFB 的周长=2||24||A a AB a x +=+,可得2a =.故椭圆方程为2214x y +=. 考点:直线与椭圆. 16.试题分析:设线段1PF 的的中点为M ,则OM b =,由OM 是12F PF 的中位线,22122OM PF PF b ∴=⇒=,再由椭圆的定义可得111122,2PF a b MF PF a b =-==- 在1Rt OMF 中,()()222222222223499a b b c a b c a b a b a c -+==+⇒=⇒==-可得3e =考点:椭圆的离心率17.13【解析】试题分析:依题意作图,易求a=152;利用椭圆的定义与直径三角形△F1PF2即可求得c=112,从而可求得b,继而可得a+b+c的值.考点:椭圆的定义与性质.18.(4,0)【解析】设直线AB的方程为x=my+1,由22141xyx my⎧+=⎪⎨⎪=+⎩得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0.记A(x1,y1),B(x2,y2),则A′(x1,-y1),且y1+y2=-224mm+,y1y2=-234m+,当m≠0时,经过点A′(x1,-y1),B(x2,y2)的直线方程为121y yy y++=121x xx x--.令y=0,得x=2121x xy y-+y1+x1=2121my myy y-+y1+my1+1=2212112121my y my my y myy y-++++1=12212my yy y++1=2232424mmmm⋅+-+-+1=4,所以y=0时,x=4.当m=0时,直线AB的方程为x=1,此时A′,B重合,经过A′,B的直线有无数条,当然可以有一条经过点(4,0)的直线.当直线AB为x轴时,直线A′B就是直线AB,即x轴,这条直线也经过点(4,0).综上所述,当点A,B变化时,直线A′B经过x轴上的定点(4,0).19.2⎛⎝⎭【解析】由题意得,圆半径r =2b a ,因为△ABC 是锐角三角形,所以cos 0>cos 2A =cr>cos4π,即<c r <1,所以<22ac a c -<1,即<1ee-<1,解得e∈2⎛⎝⎭.20.1225【解析】由cos ∠F 1BF 2=725得cos ∠OBF 2=45=b a ,进一步求得直线BD 的斜率为-43,由2222431y x b x y a b ⎧⎪⎪⎨⎪⎪⎩=-+,+=⇒222229()16y b b y a b --=⇒925y b y b +=--,∴直线CD 的斜率为9412325325()4y b y b x y b ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭++=-=--=-. 21.22 【解析】试题分析:直线1+-=x y 与02=-y x 的交点为)31,32(M ,点)31,32(M 即为,A B 中点,设1+-=x y 与12222=+by a x 的交点分别为),(),,(2211y x B y x A ,所以121242,33x x y y +=+=。

相关文档
最新文档