高中数学圆锥曲线之椭圆试题

合集下载

高中数学圆锥曲线系统讲解第15讲《椭圆中的两个最大张角结论》练习及答案

高中数学圆锥曲线系统讲解第15讲《椭圆中的两个最大张角结论》练习及答案

第15讲 椭圆中的两个最大张角结论知识与方法1.如图1所示,设A 、B 是椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 是椭圆C 上不与A 、B 重合的一个动点,则APB ∠始终为钝角,且当P 为短轴端点时,APB ∠最大.2如图2所示,设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,12F PF ∠最大.典型例题【例1】已知椭圆22:13x C y +=的左、右顶点分别为A 、B ,P 为椭圆C 上不与A 、B 重合的动点,则APB ∠的最大值为______.【解析】解法1:如图,不妨设P 在x 轴上方,作PQ x ⊥轴于点Q , 设PAB α∠=,PBA β∠=,则APB παβ∠=−−,设()(),01P x y y <≤,则tan PQ AQα===tan PQ BQβ==,而()()tan tan tan tan tan 1tan tan 1APB αβπαβαβαβ+∠=−−=−+=−==−①,因为点P 在椭圆C 上,所以2213x y +=,从而2233x y =−,代入①得:tan 333APB y y∠==−−−, 显然当1y =时,tan APB ∠取得最大值APB ∠也取得最大值23π. 解法2:如图,不妨设P 在x 轴上方,设PAB α∠=,PBA β∠=,则APB παβ∠=−−由椭圆第三定义,()1tan tan tan tan 3PA PB k k απβαβ⋅=−=−=−,所以1tan tan 3αβ=,而()()()tan tan 3tan tan tan tan tan 1tan tan 2APB αβπαβαβββαβ+∠=−−=−+=−=−+−,显然α、β均为锐角,所以tan 0α>,tan 0β>故()33tan tan tan 22APB ββ∠=−+≤−⨯= 当且仅当tan tan αβ=时取等号,此时αβ=,P 为椭圆的上顶点,所以tan APB ∠的最大值为APB ∠的最大值为23π.【答案】23π 【反思】上面的求解过程给出了两种推导椭圆上的动点对左、右顶点最大张角结论的方法,事实上,这一结论对任意的椭圆都成立,若熟悉了这一结论,小题中就可以直接用了.变式1 椭圆22:13x y C m+=(0m <<的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,若tan APB ∠的最大值为m =______.【解析】tan APB ∠的最大值为APB ⇒∠的最大值为23π, 如图,由最大张角结论,当P 为短轴端点时,APB ∠最大, 所以图中的23APB π∠=,从而3APO π∠=,故tan OA APO OP∠===,解得:1m =.【答案】1变式2 椭圆22:13x y C m+=(0m <的左、右顶点分别为A 和B ,若C 上存在点P ,使得23APB π∠=,则m 的取值范围是______.【解析】椭圆C 上存在点P ,使得23APB π∠=等价于最大张角大于等于23π,如图,2tan 33OA APB APO APO OP ππ∠≥⇒∠≥⇒∠==≥, 解得:01m <≤.【答案】(]0,1【例2】椭圆22:13x C y +=的左、右焦点分别为1F 、2F ,P 为椭圆C 上不与A 、B 重合的动点,则12cos F PF ∠的最小值为______.【解析】如图,由题意,12F F =1PF m =,2PF n =,由椭圆定义,m n +=在12PF F 中,由余弦定理,22222121212128cos 22PF PF F F m n F PF PF PF mn+−+−∠==⋅ ()2228222111232m n mn mn mnmn mn m n +−−−===−≥−=−+⎛⎫⎪⎝⎭, 当且仅当m n =时取等号,此时P 为椭圆的短轴端点,所以12cos F PF ∠的最小值为13−.【答案】13−【反思】上面的求解过程给出了推导椭圆上的动点对左、右焦点最大张角结论的方法,事实上,这一结论对任意的椭圆都成立,若熟悉了这一结论,小题中就可以直接用了.变式 椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若椭圆C 上存在点P ,使1260F PF ∠=︒,则椭圆C 的离心率的取值范围是______.【解析】椭圆C 上存在点P ,使1260F PF ∠=︒等价于最大张角大于等于60°,如图,11211116030sin 2OF c F PF F PO F PO PF a ∠≥︒⇒∠≥︒⇒∠==≥, 即12e ≥,又01e <<,所以112e ≤<.【答案】1,12⎡⎫⎪⎢⎣⎭强化训练l.(★★★)已知椭圆22:142x y C +=的左、右顶点分别为A 、B ,P 为C 上不与A 、B 重合的动点,则cos APB ∠的最小值为______.【解析】由最大张角结论,当P 为短轴端点时,APB ∠最大, 此时,cos APB ∠最小,如图,c os OP APO AP===∠, 所以()2min 1cos 2cos 13APB APO ∠=∠−=−.【答案】13−2.(★★★)已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,P 为C 上的动点,则12F PF ∠的最大值为______.【解析】由最大张角结论,当P 为短轴端点时,12F PF ∠大,如图,由题意,2a =,1c =,所以当P 为短轴端点时,12PF F 为正三角形,从而12F PF ∠的最大值为60°.【答案】60°3.(★★★)已知P 为椭圆()2222:10x y C a b a b +=>>上任意一点,1F 、2F 是椭圆C 的两个焦点,当12F PF ∠最大时,121cos 3F PF ∠=,则椭圆C 的离心率为______.【解析】由最大张角结论,当P 为短轴端点时,12F PF ∠最大, 此时,如图,22222212121221241cos 223PF PF F F a a c F PF PF PF a +−+−∠===⋅ 所以椭圆C的离心率c e a ==.【答案】4.(★★★★)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为A 、B ,若椭圆C 上存在点P ,使得3cos 5APB ∠=−,则椭圆C 的离心率的最小值______.【解析】椭圆C 上存在点P ,使得3cos 5APB ∠=−等价于当P 为短轴端点时,3cos 5APB ∠≤−,如图,cos OP APO AP∠==,所以22222222cos 2cos 121b b a APB APO a b a b −∠=∠−=⨯−=++,从而222235b a a b −≤−+,化简得:224a b ≥ 所以22244a ac ≥−,从而2234a c ≤,故2c e a =≥,即椭圆C5.(★★★)椭圆(222:103x y C b b+=>>的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,若cos APB ∠的最小值为13−,则b =______.【解析】由最大张角定理,当P 为短轴端点时,APB ∠最大,此时,cos APB ∠最小, 如图,22221cos 22cos cos 1133b APB APO APO b ==∠−=−=−+∠∠,解得:2b =.6.(2017·新课标Ⅰ卷·★★★★)设A 、B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB =∠︒,则m 的取值范围是( )A.(][)0,19,+∞B.([)9,+∞C.(][)0,14,+∞D.([)4,+∞【解析】问题等价于当M 为椭圆C 的短轴端点时,120AMB ≥∠︒,即60AMO ∠≥︒,也即tan AMO ∠,当03m <<时,如图1,tan OA AMO OM∠==≥,解得:01m <≤,当3m >时,如图,tan OA AMO OM∠==,解得:9m ≥,综上所述,m 的取值范围是(][)0,19,+∞。

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。

高二圆锥曲线椭圆双曲线练习题

高二圆锥曲线椭圆双曲线练习题

高二圆锥曲线椭圆双曲线练习题高二圆锥曲线练习题1. 设椭圆E的离心率为e,焦点F1是E的一焦点,P是E上一点,直线PF1与椭圆E交于另一点Q。

证明:PF1 = QF1。

解析:设椭圆E的中心为O,长轴长为2a,短轴长为2b。

根据椭圆的定义可知,PF1 + PF2 = 2a,其中F2是E的另一焦点。

又由于椭圆的对称性,QF1 = PF2。

因此,PF1 + QF1 = PF2 + PF2 = 2a。

得出结论:PF1 = QF1。

2. 设双曲线H的离心率为e,焦点F是H的一焦点,P是H上一点,直线PF与双曲线H交于另一点Q。

证明:PF = QF。

解析:设双曲线H的中心为O,焦距为2c,所以焦点F距离中心O的距离为c。

根据双曲线的定义可知,PF - PF' = 2a,其中F'是双曲线的另一焦点。

又由于双曲线的对称性,QF = PF'。

因此,PF - QF = PF' - PF' = 2a。

得出结论:PF = QF。

3. 已知双曲线H的上焦点为F1(4, 0),离心率为2。

双曲线H上一点P的坐标为(2, 5),求直线PF1的方程。

解析:设双曲线H的中心为O,焦点距离中心的距离为c。

由于离心率e为2,即c = ae = 2a,所以a = c / 2。

又因为双曲线H的上焦点为F1(4, 0),所以中心O的横坐标为c = 4。

又由于双曲线H上一点P的坐标为(2, 5),所以点P的横坐标为c - a = 4 - 2 = 2。

根据焦点的定义,得到PF1的距离为PF1 = PF' = 2a,其中F'为双曲线H的下焦点。

又根据双曲线的定义,PF1 - PF' = 2a。

代入已知值:2a - 2a = 2a,得到PF1 = 2a。

因为点P的坐标为(2, 5),点F1的坐标为(4, 0),所以直线PF1的斜率为:k = (5 - 0) / (2 - 4) = -5/2。

高中数学 第2章 圆锥曲线与方程 2.1.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质应用案

高中数学 第2章 圆锥曲线与方程 2.1.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质应用案

第1课时 椭圆的简单几何性质[A 基础达标]1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6D .10、6、0.6解析:选B.把椭圆的方程写成标准形式为x 29+y 225=1,知a =5,b =3,c =4.所以2a =10,2b =6,ca=0.8.2.一椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则该椭圆的标准方程是( )A.x 216+y 29=1或x 29+y 216=1 B.x 225+y 29=1或y 225+x 29=1 C.x 225+y 216=1或y 225+x 216=1 D .椭圆的方程无法确定解析:选C.由题可知,a =5且c =3,所以b =4, 所以椭圆方程为x 225+y 216=1或y 225+x 216=1.3.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1 C.x 216+y 24=1 D.x 216+y 220=1 解析:选C.由已知a =4,b =2,椭圆的焦点在x 轴上,所以椭圆方程是x 216+y 24=1.故选C.4.已知焦点在x 轴上的椭圆:x 2a2+y 2=1,过焦点作垂直于x 轴的直线交椭圆于A ,B两点,且|AB |=1,则该椭圆的离心率为( )A.32B.12C.154D.33解析:选A.椭圆的焦点坐标为(±a 2-1,0),不妨设A ⎝ ⎛⎭⎪⎫a 2-1,12,可得a 2-1a 2+14=1,解得a =2,椭圆的离心率为e =a 2-1a =32.故选A.5.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若存在点P 为椭圆上一点,使得∠F 1PF 2=60°,则椭圆离心率e 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫0,22 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,22 解析:选C.在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,得(2c )2=m 2+n 2-2mn cos 60°,配方得(m +n )2-3mn =4c 2,所以3mn =4a 2-4c 2,所以4a 2-4c 2=3mn ≤3·⎝ ⎛⎭⎪⎫m +n 22=3a 2,即a 2≤4c 2,故e 2=c 2a 2≥14,解得12≤e <1.故选C.6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:依题意得椭圆的焦点坐标为(0,5),(0,-5),故c =5,又2b =45,所以b =25,a 2=b 2+c 2=25,所以所求椭圆方程为x 220+y 225=1.答案:x 220+y 225=17.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的标准方程为________.解析:设椭圆的长半轴长为a ,由2a =12知a =6. 又e =c a =32,故c =33, 所以b 2=a 2-c 2=36-27=9.所以椭圆标准方程为x 236+y 29=1.答案:x 236+y 29=18.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点.已知点P (a ,b ),△F 1PF 2为等腰三角形,则椭圆的离心率e =________.解析:设F 1(-c ,0),F 2(c ,0)(c >0),由题意得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c .把b 2=a 2-c 2代入,整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,解得c a =-1(舍去)或c a =12.所以e =c a =12.答案:129.求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)短轴的一个端点与两焦点组成一个正三角形,且焦点到长轴上同侧顶点的距离为3.解:(1)由题意知,2c =8,c =4,所以e =c a =4a =12,所以a =8,从而b 2=a 2-c 2=48,所以椭圆的标准方程是y 264+x 248=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.从而b 2=9,所以所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1. 10.如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.解:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).如题图所示,则有F 1(-c ,0),F 2(c ,0),A (0,b ),B (a ,0),直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b2=1,得y =±b 2a ,所以P ⎝⎛⎭⎪⎫-c ,b 2a . 又PF 2∥AB , 所以△PF 1F 2∽△AOB .所以|PF 1||F 1F 2|=|AO ||OB |,所以b 22ac =ba,所以b =2c .所以b 2=4c 2,所以a 2-c 2=4c 2,所以c 2a 2=15.所以e =c a =55. [B 能力提升]11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:选C.由题意得F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2), OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2,当x 0=2时,OP →·FP →取得最大值为6.12.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫-b 22=0⇒3c 2=2a 2⇒e =63.答案:6313.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c . 所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0). 其中,c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.14.(选做题)已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B ,过F ,B ,C 三点作⊙P ,且圆心在直线x +y =0上,求此椭圆的方程.解:设圆心P 的坐标为(m ,n ),因为圆P 过点F ,B ,C 三点,所以圆心P 既在FC 的垂直平分线上,也在BC 的垂直平分线上,FC 的垂直平分线方程为x =1-c2.① 因为BC 的中点为⎝ ⎛⎭⎪⎫12,b 2, k BC =-b ,所以BC 的垂直平分线方程为y -b 2=1b ⎝⎛⎭⎪⎫x -12②由①,②联立,得x =1-c 2,y =b 2-c2b ,即m =1-c 2,n =b 2-c2b.因为P (m ,n )在直线x +y =0上, 所以1-c 2+b 2-c2b =0,可得(1+b )(b -c )=0, 因为1+b >0,所以b =c ,结合b 2=1-c 2得b 2=12,所以椭圆的方程为x 2+y 212=1,即x 2+2y 2=1.。

圆锥曲线-椭圆

圆锥曲线-椭圆

圆锥曲线-椭圆一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.26.已知椭圆(a>b>0)的离心率为,且过点A(0,1).(1)求椭圆的标准方程;(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点.求证:直线MN 恒过定点.27.已知椭圆C的中心在坐标原点,左焦点为F1(﹣,0),点M(,)在椭圆上.(1)求椭圆C的标准方程;(2)过点P(1,0)的直线l交椭圆C于两个不同的点A、B,若△AOB(O是坐标原点)的面积S=,求直线AB的方程.28.已知椭圆的长轴为,离心率为.(1)求C的方程;(2)若直线l与曲线C交于A,B两点,且,求证:直线l与圆E:x2+y2=2相切.圆锥曲线-椭圆参考答案与试题解析一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【分析】把椭圆方程化为标准方程,然后求解长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【解答】(本小题12分)解:把已知方程椭圆16x2+25y2=400化为标准方程:,这里a=5,b=4,所以c==3因此,椭圆的长轴和短轴长分别是2a=10,2b=8离心率e==.两个焦点分别是F1(﹣3,0),F2(3,0),四个顶点分别是A1(﹣5,0),A1(5,0),B1(0,﹣4),B1(0,4).【点评】本题考查椭圆标准方程以及椭圆的简单性质的应用,考查计算能力.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.【分析】(1)化椭圆方程为标准方程,然后求解其长轴长,焦点坐标,离心率.(2)利用焦点坐标,结合离心率求解双曲线方程即可.【解答】(10分)解:(1)曲线9x2+y2=81,的标准方程为:,可得a=9,b=3,c==6,所以长轴长为:18,焦点坐标(0,).(2)与已知曲线共焦点,可得c=6,离心率为,则a=6,则b==6.所求的双曲线方程为:y2﹣x2=36.(5分)【点评】本题考查双曲线方程的求法,椭圆的简单性质的应用,考查计算能力.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.【分析】设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,则4a=16,运用离心率公式可得c=2,求得b,进而得到椭圆方程.【解答】解:设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,即有三角形的周长为4a=16,解得a=4,由e==,解得c=2,b==2,则椭圆的方程为+=1.【点评】本题考查椭圆的方程的求法,注意运用椭圆的定义和基本量的关系,考查运算能力,属于基础题.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.【分析】(1)设出椭圆方程,利用已知条件化简求解即可.(2)利用椭圆的性质转化求解椭圆方程即可.【解答】解:(1)焦点在x轴上,设椭圆的标准方程,焦距为4,可得a2﹣b2=4,…①,椭圆经过点P(3,),可得:…②,解①②,可以得到b2=32解:①②可得:a2=36,b2=32,所求椭圆方程为:.(2)焦距为8,离心率为0.8.可得c=4,a=5,则b=3,椭圆的标准方程为:或.【点评】本题考查椭圆的简单性质椭圆方程的求法,考查计算能力.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).【分析】(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系和弦长公式计算弦长.【解答】解:(1)由题意可知椭圆焦点在x轴上,设椭圆方程为(a >b>0),由题意可知,∴a=3,b=.∴椭圆的标准方程为=1.(2)直线l的方程为y=x+2,联立方程组,得14x2+36x﹣9=0,设P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1x2=﹣,∴|PQ|=|x1﹣x2|===.【点评】本题考查了椭圆的性质,弦长公式,属于基础题.6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.【分析】(1)由题意可得A,B,C的坐标,写出直线BF的方程,再由AC的中点在直线BF上求得a,由隐含条件求得b,则椭圆方程可求;(2)由直线BF的斜率可得b,求出a,得到椭圆方程,联立直线方程和椭圆方程求得D的坐标,则点D到椭圆E右准线的距离可求.【解答】解:(1)由题意,A(﹣a,0),B(0,b),C(0,﹣b),又F(﹣1,0),∴c=1,直线BF:y=bx+b.∵M为AC的中点,∴,代入直线BF:y=bx+b,得a=3,由a2=b2+c2=b2+1,得b2=8,∴椭圆E的标准方程是;(2)∵直线BF的斜率为1,则,∴椭圆,又直线BF:y=x+1,联立,解得x=0(舍),或,∵右准线的方程为x=2,∴点D到右准线的距离为.【点评】本题考查椭圆的简单性质,考查了椭圆标准方程的求法,是基础的计算题.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.【分析】画出图形,结合图形以及椭圆的定义与性质,求出a、b的值,即可写出椭圆的方程.【解答】解:如图所示,设椭圆的长轴是2a,短轴是2b,焦距是2c;则离心率e==,∴4a=|AF1|+|AF2|+|BF1|+|BF2|=16;∴a=4,∴c=×4=2,∴b2=a2﹣c2=42﹣=8;∴椭圆的方程是.【点评】本题考查了椭圆的定义与简单的几何性质的应用问题,解题时应结合图形进行解答问题,是基础题.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.【分析】(1)由已知可得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)由题意定义结合已知求得PF2,再由椭圆的第二定义可得点P到右准线的距离.【解答】解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.【点评】本题考查椭圆的简单性质,考查了椭圆定义的应用,是基础题.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.【分析】(Ⅰ)由椭圆的方程及性质直接求解.(Ⅱ)由椭圆的定义知①,勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得|PF1|•|PF2|即可.【解答】解:(Ⅰ)由椭圆知a2=2,b2=1,则,故c=1﹣﹣﹣(2分)所以椭圆C的长轴,短轴2b=2,离心率,左焦点F1(﹣1,0).(6分)(Ⅱ)解:由(Ⅰ)可得,b=1,c=1.由椭圆的定义知①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)在Rt△PF1F2中,由勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得2|PF1|•|PF2|=8﹣4=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴|PF 1|•|PF2|=2,∴S=|PF1|•|PF2|=×2=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了椭圆的方程及焦点三角形的面积,属于基础题.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.【分析】(1)由题意求得椭圆的长半轴和短半轴长,再由椭圆的焦点在y轴上可得椭圆的标准方程;(2)由隐含条件求得c,则椭圆的焦点坐标、离心率可求;(3)由题意求出双曲线的顶点坐标和焦点为坐标,进而得到双曲线的实半轴长和虚半轴长,则双曲线的标准方程可求.【解答】解:(1)由已知2a=10,2b=8,解得a=5,b=4,∵椭圆的焦点在y轴上,∴所求椭圆的标准方程为;(2)由c2=a2﹣b2=9,得c=3.因此椭圆的焦点坐标为F1(0,﹣3),F2(0,3),离心率;(3)由已知,所求双曲线的顶点坐标为(0,﹣3),(0,3),焦点为坐标为(0,﹣5),(0,5),∴双曲线的实半轴长a=3,半焦距c=5,则虚半轴长为b=.又双曲线的焦点在y轴上,∴双曲线的标准方程为.【点评】本题考查椭圆及双曲线的简单性质,考查了椭圆及双曲线标准方程的求法,是基础题.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.【分析】由题意分别表示出|PF1|=6﹣r,|PF2|=2+r,|PF1|+|PF2|=8>2,可知P 的轨迹是以F1,F2为焦点,长轴长为8的椭圆,即可求得P的轨迹方程.【解答】解:设所求点P(x,y),F1(﹣1,0),F2(1,0),动圆半径为r,由题易得|PF1|=6﹣r,|PF2|=2+r,∴|PF1|+|PF2|=8>2,由点P到两定点F1,F2距离之和为定长8,且大于|F1F2|=2c=2,满足椭圆定义,∴轨迹方程:.动圆圆心P的轨迹方程.【点评】本题考查轨迹方程的求法,考查椭圆的定义,属于基础题.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.【分析】(1)设出椭圆的标准方程,由题意得b=2,再由a、b、c之间的关系及|FB|=2,求出a2=12,从而得到椭圆的方程.(2)假设存在直线l,则点A在线段MN的垂直平分线上,把直线l的方程代入椭圆的方程,转化为关于x的一元二次方程,由题意知判别式大于0,设出M、N的坐标,利用一元二次方程根与系数的关系,用斜率表示MN的中点P的坐标,求出AP的斜率,由AP⊥MN,斜率之积等于﹣1,求出直线l的斜率【解答】解:(1)依题意,设椭圆方程=1 (a>b>0 ),则其右焦点坐标为F(c,0),c=,由|FB|=解得c=2,又∵b=2,∴a2=c2+b2=12,即椭圆方程为.(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,把y=kx﹣2代入椭圆方程.消去y得x2+3(kx﹣2)2=12,即(1+3k2)x2﹣12kx=0由k≠0,得方程的△=(﹣12k)2=144k2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x0=,∴y0=kx0﹣2=,即P(),∵k≠0,∴直线AP的斜率为k1=,由AP⊥MN,得.∴2+2+6k2=6,解得:k=.∴存在直线l满足题意,直线l的方程y=±x﹣2.【点评】本题考查用待定系数法求椭圆的标注方程,直线与圆锥曲线的位置关系,一元二次方程根与系数的关系,两直线垂直的性质,以及直线的倾斜角与斜率的关系,属于压轴题.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.【分析】(1)由椭圆方程,求得a和b,则c2=a2﹣b2,求得c,求得焦点坐标,根据椭圆的离心率公式求得椭圆的离心率;(2)根据圆的方程,求得圆心,根据三角形的面积公式,即可求得△CF1F2的面积.【解答】解:(1)由题意可得:c2=a2﹣b2=16﹣4=12,c=2,…(2分)a=4,所以e==,…(4分)椭圆的焦点F1(﹣2,0),F2(2,0);…(6分)(2)由(1)知丨F1F2丨=4,…(7分)圆C:(x+k)2+(y﹣2)2=25(k∈R)的圆心为点C(﹣k,2),…(8分)∴△CF1F2的面积为×2×丨F1F2丨=4.△CF1F2的面积4.…(10分)【点评】本题考查椭圆的标准方程及简单性质,圆的标准方程,三角形的面积公式,考查计算能力,属于基础题.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.【分析】(1)根据直线的参数方程,即可求得直线l的直角坐标公式,由椭圆C 的参数方程即可求得曲线C的参数方程;(2)由(1)可得丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,根据辅助角公式及正弦函数的性质,即可求得|x﹣y﹣4|的最小值.【解答】解:(1)由ρcos(θ+)=4,则ρcosθ﹣ρsinθ=4,将x=ρcosθ,y=ρsinθ代入,即直线l的直角坐标方程为x﹣y﹣4=0,由题意可得:椭圆的参数方程(φ为参数),(2)因为点M在椭圆上,则M(2cosφ,sinφ),则丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,=丨cos(φ+α)﹣4丨=4﹣cos(φ+α)(tanα=),当cos(φ+α)=1时,|x﹣y﹣4|取最小值,最小值为4﹣,∴|x﹣y﹣4|的最小值为4﹣.【点评】本题考查直线的极坐标方程,椭圆的参数方程,辅助角公式及余弦函数的最值,考查转化思想,属于中档题.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.【分析】(1)利用抛物线的定义求解抛物线方程;(2)利用椭圆的性质列出方程求解a,b,然后得到椭圆方程.(3)利用双曲线的性质,求出双曲线的实半轴与虚半轴的长,得到双曲线方程.【解答】解:(1)准线方程为x=﹣1的抛物线;可得p=2,所求的抛物线方程为:y2=4x.(2)离心率为,准线方程为y=±4的椭圆;可得,解得a=2,c=1,则b=,所求椭圆方程为:.(3)焦点在y轴上,一条渐近线方程为,实轴长为12.可得a=6,,解得b=8,所求的双曲线方程为:.【点评】本题考查椭圆,双曲线,抛物线的简单性质,三种曲线方程的求法,考查计算能力.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.【分析】(1)将点M分别直线方程及椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线m的方程,代入椭圆方程,利用韦达定理及直线的斜率公式求得k MA+k MB=0,即可求得△MEF为等腰三角形.【解答】解:(1)由直线l:bx﹣ay=0都经过点,则a=2b,将代入椭圆方程:,解得:b2=4,a2=16,∴椭圆C的方程为;(2)证明:设直线m为:,A(x1,y1),B(x2,y2)联立:,整理得x2+2bx+2b2﹣8=0,∴x1+x2=﹣2b,x1x2=2b2﹣8,设直线MA,MB的斜率为k MA,k MB,要证△MEF为等腰三角形,只需k MA+k MB=0,由,==0,所以△MEF为等腰三角形.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.【分析】(1)根据题意,由椭圆的定义分析可得4a=4,又由直线的斜率分析可得b、c的值,将a、b的值代入椭圆方程即可得答案;(2)根据题意,联立直线与椭圆的方程,解可得N的坐标,由分析可得|QF1|=2|PF1|,按直线的斜率存在与否分2种情况讨论,分析求出m的值,综合即可得答案.【解答】解:(1)根据题意,因为△F1MN的周长为,所以,即,由直线MF1的斜率1,得,因为a2=b2+c2,所以b=1,c=1,所以椭圆的标准方程为.(2)由题意可得直线MF1方程为y=x+1,联立得,解得,所以,因为,即,所以|QF1|=2|PF1|,当直线l的斜率为0时,不符合题意,故设直线l的方程为x=my﹣1,P(x1,y1),Q(x2,y2),由点P在点Q的上方,则y2=2y1,联立,所以(m2+2)y2﹣2my﹣1=0,所以,消去y2得,所以,得,又由画图可知不符合题意,所以,故直线l的斜率为.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是求出椭圆的标准方程.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O 的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.【分析】(1)根据中点坐标公式及向量的坐标运算即可求得x02+y02=5,利用两点之间的距离公式即可求得丨AB丨的长.(2)根据题意求得直线AB的方程,根据x02+y02=5,即可求得A点坐标,代入即可求得a和b的值,求得椭圆的方程,要证直线MA,MB与x轴始终围成一个等腰三角形,只需证直线MA,MB的倾斜角互补即可,也即直线MA,MB的斜率互为相反数.可分别用A,B点坐标表示直线MA,MB的斜率,再计算k1+k2,消去参数,看结果是否为0.若是0,则问题得证.【解答】解:(1)由题意可知:2c=2,c=,设F(,0),A(x0,y0),B (﹣x0,﹣y0),则M(,),N(,﹣),由•==,则x02+y02=5,则丨AB丨=2=2,(2)由直线l的斜率k=时,且l′∥l,则l:y=x,设l′:y=x+m,y0=x0,由x02+y02=5,则A(2,1),由c=,代入椭圆方程解得:a=2,c=,∴椭圆的方程:,联立,整理得x2+2mx+2m2﹣4=0,设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2﹣4=0,可得x1+x2=﹣2m,x1x2=2m2﹣4,k1+k2=•=====0.即k1+k2=0.直线AP,AQ与x轴围成一个等腰三角形.【点评】本题考查直线与椭圆的位置关系,考查中点坐标公式及向量的坐标运算,韦达定理及直线斜率公式的应用,考查计算能力,属于中档题.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.【分析】(1)设AB的中点为M,则M(1,),由,得=0,即可得k AB=﹣,线段AB的垂直平分线的斜率即可;(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①;由A(x1,y1),B(x2,y2)是椭圆E上位于x轴上方两点,∴k<0,m>0…②结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.【解答】解:(1)设AB的中点为M,则M(1,)由,得=0∴⇒即k AB=﹣,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y﹣=,即9x﹣2y﹣8=0为所求.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,∴k<0,m >0…②△=(18km)2﹣4(1+9k2)(9m2﹣9)>0⇒9k2﹣m2+1>0…③,结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.此时,k=﹣满足③.∴直线AB在y轴上截距的最小值为.【点评】本题考查了点差法,直线与椭圆的位置关系,考查了计算能力,属于中档题.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.【分析】(1)由题意方程求出右焦点坐标,即抛物线焦点坐标,进一步可得抛物线方程;(2)设出直线方程,与抛物线方程联立,化为关于y的一元二次方程,利用根与系数的关系求得|y1﹣y2|,代入三角形面积公式,利用二次函数求最值;(3)分直线AB的斜率存在与不存在,证明有,可得CA⊥CB,又D为线段AB的中点,则|AB|=2|CD|.【解答】(1)解:由椭圆,得a2=10,b2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y2=2px的焦点为(1,0),则,p=2,∴Γ的方程为y2=4x;(2)解:设直线l:x=my+2,联立,得y2﹣4my﹣8=0.则y1+y2=4m,y1y2=﹣8.∴==,即△OAB的面积的最小值为;(3)证明:当AB所在直线斜率存在时,设直线方程为y+2=k(x﹣5),即y=kx ﹣5k﹣2.联立,可得ky2﹣4y﹣20k﹣8=0.,.=.===.∵C(1,2),∴,,则=(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1x2﹣(x1+x2)+1+y1y2﹣2(y1+y2)+4=,当AB所在直线斜率不存在时,直线方程为x=5,联立,可得A(5,﹣),B(5,2),,,有,∴CA⊥CB,又D为线段AB的中点,∴|AB|=2|CD|.【点评】本题考查椭圆与抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查向量垂直与数量积间的关系,是中档题.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).【分析】(1)利用椭圆的定义,即可求得a的值,则b2=a2﹣c2=3,即可求得椭圆的方程;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,求出椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),运用三角函数的平方关系和诱导公式,以及基本不等式,即可得到.【解答】解:(1)由题意可知:椭圆的左焦点F1(﹣1,0),右焦点F2(1,0),则|PF1|+|PF2|=2a,则+=+=4=2a,则a=2,b2=a2﹣c2=3,∴椭圆C的标准方程为;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),则|AB|2=|OA|2+|OB|2=ρ12+ρ22=+=+,=[(b2cos2θ+a2sin2θ)+(b2sin2θ+a2cos2θ)](+)=(2++)≥,∴|AB|的最小值为.【点评】本题考查椭圆的方程的运用,考查椭圆的极坐标方程的应用,考查三角函数的化简及求值,考查基本不等式的运用,考查化简运算能力,属于中档题.22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.【分析】(1)根据抛物线y2=4x的焦点为F(1,0),求出c,再根据离心率求出a,再根据b2=a2﹣c2得:b2=4;问题得以解决,(2)求出直线方程,代入椭圆方程,根据韦达定理和弦长公式即可求出.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c∵抛物线y2=4x的焦点为F(1,0),∴c=1,又离心率,则:再由b2=a2﹣c2得:b2=4;所求椭圆标准方程为:,(2)由(1)知,左焦点为F1(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=【点评】本题考查了抛物线与椭圆的标准方程及其性质,弦长公式,直线的点斜式,考查了推理能力和计算能力,属于中档题.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),与椭圆方程联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,得,得出a2=4,b2=1,由此椭圆C的方程为.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,=﹣1解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,…①∵直线P2A与P2B直线的斜率的和为﹣1,∴==…②①代入②得:又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【分析】(1)由题意可知:b=4,根据椭圆离心率公式即可求得b的值,求得椭圆方程;(2)由点斜式方程求得直线AB方程,代入椭圆方程,求得A和B点坐标,利用中点坐标公式,即可求得AB的中点坐标.【解答】解:(1)由椭圆C:+=1(a>b>0)过点A(0,4),则b=4,椭圆离心率为e===,则a=5,∴C的方程为+=1;(2)过点(3,0)且斜率为的直线方程为y=(x﹣3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入C的方程,得x2﹣3x﹣8=0,解得:x1=,x2=,∴AB的中点M(x0,y0)坐标x0==,y0==(x1+x1﹣6)=﹣,即中点为(,﹣).【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,中点坐标公式,考查计算能力,属于中档题.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.【分析】(1)根据椭圆的焦距为2,离心率为,求出a,b,即可求椭圆C 的方程;(2)设直线l方程为y=kx+1,代入椭圆方程,由若可得x1=﹣2x2,利用韦达定理,化简可得,求出k,即可求直线l的方程.。

全国一卷圆锥曲线高考题汇编含答案#(精选.)

全国一卷圆锥曲线高考题汇编含答案#(精选.)

高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。

3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。

圆锥曲线大题20道(含答案)

圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前xxx 学校_____学年度数学(理)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息,请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本题共12道小题,每小题0分,共0分)1.已知椭圆222120x y m +=(0m >)与双曲线2214x y n-=(0n >)有相同的焦点,则m n +的取值范围是( ) A . B .[4,8]C .D .(3,5]2.已知椭圆22221(0)x y a b a b+=>>的上下左右顶点分别为A ,B ,C ,D ,且左右焦点为F 1,F 2,且以F 1F 2为直径的圆内切于菱形ABCD ,则椭圆的离心率e 为( ) (A )12(B (C(D3.已知F 1,F 2是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A △PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为 A.23B .12C .13D .144.已知椭圆和双曲线有共同焦点F 1,F 2,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则121e e 的最大值是( ) A .B . C.2 D .3 5.已知92=+=+∈+t n s m n m R t s n m ,,、、、,其中n m 、为常数,且t s +的最小值是,94若点()n m ,是椭圆12422=+y x 一条弦的中点,则此弦所在的直线方程为________. 6.设椭圆C :2222by a x + =1(a >b >0)的左、右焦点分别为F 1、F 2,P 是C 上的点PF 2⊥F 1F 2,∠PF 1F 2=30°,则C的离心率为( ) A .66 B .31 C .21D .33 7.已知椭圆C 1和双曲线C 2焦点相同,且离心率互为倒数,F 1,F 2是它们的公共焦点,P 是椭圆和双曲线在第一象限的交点,若∠F 1PF 2=60°,则椭圆C 1的离心率为( ) A .33 B .23 C .22D .218.已知椭圆)0(12222>>=+b a by a x ,点A ,B 是长轴的两个端点,若椭圆上存在点P ,使得0120=∠APB ,则该椭圆的离心率的最小值为( ) A .22 B .23 C .36D .439.设P 是椭圆22221+=x y a b上任一点,F 1,F 2是椭圆的两个焦点,若∠F 1PF 2≤2π,则这个椭圆的离心率e 的取值范围是( )A .0<e <1; B. 0<e ≤22; C.22≤e <1; D. e =2210.设点P 是椭圆22221x y a b+=(0a b >>)上一点,F1,F 2分别是椭圆的左、右焦点,I 为△PF 1F 2的内心,若 S △IPF 1+S △IPF 2=2S △IF 1F 2,则该椭圆的离心率是 A . 12 B. D. 1411.有一类双曲线E 和椭圆222:213C x y +=有相同的焦点,在其中有一双曲线1E 且过点3(1,2P -,则在E 中任取一条双曲线其离心率不大于1E 的概率为( )A .12B .13 C. D 12.已知椭圆()222210x y a b a b+=>>与抛物线()220x py p =>的交点为A ,B ,A ,B 连线经过抛物线的焦点F ,且线段AB 的长度等于椭圆的短轴长,则椭圆的离心率为( )A .4 B .12 C.2D .2第II 卷(非选择题)二、填空题(本题共5道小题,每小题0分,共0分)13.椭圆42x +22y =1中过点P(1,1)的弦恰好被P 点平分,则此弦所在直线的方程是 ;14.过点(1,1)M 作斜率为13-的直线l 与椭圆C :22221x y a b+=(0)a b >>相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为 . 15.已知F 是椭圆C :2212516x y +=的右焦点,P 是椭圆上一点,36(0,)5A ,当△APF 周长最大时,该三角形的面积为__________________. 16.已知椭圆)0(12222>>=+b a b y a x 的短轴长为2,离心率为22,设过右焦点的直线l 与椭圆C 交于不同的两点B A ,,过B A ,作直线2=x 的垂线BQ AP ,,垂足分别为Q P ,,记PQBQAP +=λ,若直线l 的斜率32≤≤k ,则λ的取值范围为___________. 17.已知P 是椭圆141222=+y x 上的动点,21,F F 是椭圆的两个焦点,则→→⋅21PF PF的取值范围是___________ . 三、解答题(本题共5道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,共0分)18.设椭圆E 的方程为2221x y a+=(1a >),点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB上,满足||2||BM MA =,直线OM 的斜率为14. (1)求椭圆E 的方程;(2)若斜率为k 的直线l 交椭圆E 于C ,D 两点,交y 轴于点(0,)T t (1t ≠),问是否存在实数t 使得以CD 为直径的圆恒过点B ?若存在,求t 的值,若不存在,说出理由.19.已知椭圆2222:1x y C a b+=的离心率为121,2F F 是椭圆的两个焦点,P 是椭圆上任意一点,且12PF F ∆的周长是6.(1)求椭圆C 的方程;(2)设圆:()224:9T x t y -+=,过椭圆的上顶点作圆T 的两条切线交椭圆于E ,F 两点,当圆心在x 轴上移动且()0,1t ∈时,求EF 的斜率的取值范围.20.已知椭圆C :22221x y a b+=(0a b >>)的右焦点在直线l 30y --=上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为14-.(1)求椭圆C 的方程;(2)若直线t 经过点(10)P ,,且与椭圆C 有两个交点A ,B ,是否存在直线0l :0x x =(其中02x >)使得A ,B 到0l 的距离A d ,B d 满足||||A B d PA d PB =恒成立?若存在,求出0x 的值,若不存在,请说明理由. 21.已知椭圆C :22221(0)x y a b a b +=>>,圆Q :()(222=2x y -+的圆心Q 在椭圆C 上,点P (0椭圆C (I )求椭圆C 的方程;(II )过点P 作互相垂直的两条直线l 1,l 2,且l 1交椭圆C 于A ,B 两点,直线l 2交圆Q 于C ,D 两点,且M 为CD 的中点,求△MAB 的面积的取值范围.22.已知椭圆M a>b>0,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+(1)求椭圆M的方程;=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.(2)设直线l:x ky m试卷答案1.C双曲线的焦点坐标为椭圆的焦点坐标为∵两曲线有相同的焦点∴,即∴令,,∴∵∴∴∴故选C2.D菱形ABCD一边AD 所在直线方程为,即bx+ay−ab=0,由题意,坐标原点O到AD 的距离,整理可得,即:,解得:(舍去),∴椭圆的离心率.本题选择D选项. 3.D因为为等腰三角形,,所以PF2=F1F2=2c,由AP斜率为得,,由正弦定理得,所以,选D.4.A如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:,,设,则,在中根据余弦定理可得到∴化简得:该式可变成:,故选A5.6.D【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c ∴2a=3x,2c=x,∴C的离心率为:e==.故选D.7.A【分析】设椭圆C1:=1(a>b>0),双曲线C2:=1(m,n>0),由题意可得a2﹣b2=m2+n2=c2,运用椭圆和双曲线的定义,以及离心率公式,结合条件,化简整理,可得a=3m,c=m,由离心率公式可得.【解答】解:设椭圆C1:=1(a>b>0),双曲线C2:=1(m,n>0),由题意可得a2﹣b2=m2+n2=c2,e1=,e2=,由e1e2=1,可得am=c2,设PF1=s,PF2=t,由余弦定理可得,4c2=s2+t2﹣2st•=s2+t2﹣st,由椭圆的定义可得s+t=2a,由双曲线的定义可得,s﹣t=2m,可得s=a+m,t=a﹣m,即有4c2=(a+m)2+(a﹣m)2﹣(a+m)(a﹣m),即为4am=a2+3m2,解得a=m(舍去)或a=3m,c=m,则e1==.故选:A.8.C9.B在三角形F1PF2中,由余弦定理可得cos∠F1PF2= ,所以,则椭圆的离心率e的取值范围是0<e≤10.A11.A由椭圆方程,易知双曲线E1中,,,又,解得,双曲线E1的离心率为,由题意,双曲线E 的离心率为,则,即,又,故所求概率为,所以正确答案为A.12.B分析:由题意求得点A,B 的坐标后代入椭圆的方程,可得间的关系式,于是可得椭圆的离心率.详解:由题意得抛物线的焦点为,∵连线经过抛物线的焦点,且,∴点的坐标分别为,不妨设点B 坐标为.由点B 在抛物线上可得,∴,故点B 坐标为,又点B 在椭圆上,∴,整理得,∴.故选B.13.x+2y﹣3=0解:直线与椭圆的两个交点坐标为(x1,y1);(x2,y2)则两式相减得∵P(1,1)为中点∴∴直线的斜率为∴此弦所在直线的方程是即x+2y﹣3=014.设,由题得故填.15.514416.⎥⎦⎤⎢⎣⎡3,36217.[]4,4-18.解:(1)设点M的坐标00(,)x y,11(,)333aAM AB==-u u u u r u u u r,21(,)33aOM OA AM=+=u u u u r u u u r u u u u r,023ax=,13y=,014yx=,∴2a=,∴椭圆E的方程2214xy+=.(2)设直线l 方程:y kx t =+,代入2214x y +=,得222(41)8440k x ktx t +++-=, 设11(,)C x y ,22(,)D x y ,则122841kt x x k +=-+,21224441t x x k -=+, 假设存在实数t 使得以CD 为直径的圆恒过点B ,则BC BD ⊥u u u r u u u r.∴11(,1)BC x y =-u u u r ,22(,1)BD x y =-u u u r ,1212(1)(1)BC BD x x y y ⋅=+--u u u r u u u r0=,即1212(1)(1)0x x kx t kx t ++-+-=,得221212(1)(1)()(1)0k x x k t x x t ++-++-=, 整理得224(1)(1)0t t -+-=,∴35t =-(∵1t ≠),当35t =-时,符合题意. 19. 解:(1)由12e =,可知2a c =, 因为12PF F ∆的周长是6,所以226a c +=,所以2,1a c ==,所求椭圆方程为22143x y +=; (2)椭圆的上顶点为(M ,设过点M 与圆T相切的直线方程为y kx =,由直线1y kx =+与T()222,942303t k =-++=,∴121222394k k k k t +==-,由122143y k x x y ⎧=+⎪⎨+=⎪⎩得()2211340k x x ++=,∴12134E x k =-+,同理22234F x k =-+,((1212E F E F E F EFE F E F E Fk x k x y y k x k xk x x x x x x ---===---, ()1221233410427k k k k t+=--, 当01t <<时,()f t =为增函数,故EF的斜率的范围为⎛ ⎝⎭. 20.解:(1)设椭圆焦距为2c (0c >),右焦点 为(0)c ,, ∵直线l 与x轴的交点坐标为0)∴c =.设椭圆上任意一点()Q x y ,和关于原点对称的两点()M m n ,,()N m n --,, 则有22221m n a b +=,22221x y a b +=∴2222220x m y n a b --+=又∵14y n y n x m x m -+⋅=--+即222214y n x m -=--∴2214b a =又2223c a b =-=,∴24a =,21b =.∴椭圆的方程为2214x y +=.(2)存在04x =符合题意,理由如下:当直线t 的斜率存在时,设直线t 的方程为(1)y k x =-,设11()A x y ,,22()B x y ,联立22(1)44y k x x y =-⎧⎨+=⎩,得2222(41)8440k x k x k +-+-=2222(8)4(41)(44)0k k k =--+->△恒成立2122841k x x k +=+,21224441k x x k -=+ 不妨设121x x >>,∴012021||||||1||||1|]A B d PB d PA x x x x x x --⋅---⋅-001212(1)()2]0x x x x x x -+++=∴2200228(1)8(1)204141x k k x k k +--+=++,整理得0280x -=,即04x =满足条件 当直线t 的斜率不存在时,显然04x =满足条件综上,04x=时符合题意.21.(1)圆Q:(x﹣2)2+(y﹣)2=2的圆心为(2,),代入椭圆方程可得+=1,由点P(0,)到椭圆C的右焦点的距离为,即有=,解得c=2,即a2﹣b2=4,解得a=2,b=2,即有椭圆的方程为+=1;(2)当直线l2:y=,代入圆的方程可得x=2±,可得M的坐标为(2,),又|AB|=4,可得△MAB的面积为×2×4=4;设直线y=kx+,代入圆Q的方程可得,(1+k2)x2﹣4x+2=0,可得中点M (,),|MP|==,设直线AB的方程为y=﹣x+,代入椭圆方程,可得:(2+k2)x2﹣4kx﹣4k2=0,设(x1,y1),B(x2,y2),可得x1+x2=,x1x2=,则|AB|=•=•,可得△MAB的面积为S=•••=4,设t=4+k2(5>t>4),可得==<=1,可得S<4,且S>4=综上可得,△MAB的面积的取值范围是(,4].22.(Ⅰ)由题意,可得24622+=+ca,即3a c+=+3ca=所以,3a=,c=2221b a c=-=所以,椭圆M的方程为1922=+yx. ………4分(Ⅱ)由22,1,9x ky mxy=+⎧⎪⎨+=⎪⎩消去x得222(9)290k y kmy m+++-=. ……5分设),(11yxA,),(22yxB,有12229kmy yk+=-+,212299my yk-=+. ①……6分因为以AB为直径的圆过椭圆右顶点(3,0)C,所以0CA CB⋅=. ...............…7分由11(3,)CA x y=-,22(3,)CB x y=-,得1212(3)(3)0x x y y--+=.……8分将1122,x ky m x ky m=+=+代入上式,得221212(1)(3)()(3)0k y y k m y y m++-++-=, ………………………10分将①代入上式,解得125m=,或3m=………………………………12分。

相关文档
最新文档