上海市上海中学2016-2017学年高一上数学周练08

合集下载

2016-2017年上海市上海中学高一上期中数学试卷

2016-2017年上海市上海中学高一上期中数学试卷

上海中学高一期中数学卷2016.11一. 填空题1. 设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =2. 已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =I3. “若1x =且1y =,则2x y +=”的逆否命题是4. 若2211()f x x x x +=+,则(3)f = 5. 不等式9x x>的解是 6. 若不等式2(1)0ax a x a +++<对一切x R ∈恒成立,则a 的取值范围是7. 不等式2(3)30x --<的解是8. 已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠U 且A B ≠∅I ,则m 的 取值范围是9. 不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 10. 设0a >,0b >,且45ab a b =++,则ab 的最小值为 11. 已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个 实数c ,使()0f c >,则实数p 的取值范围是 12. 已知0a >,0b >,2a b +=,则2221a b a b +++的最小值为二. 选择题1. 不等式||x x x <的解集是( )A. {|01}x x <<B. {|11}x x -<<C. {|01x x <<或1}x <-D. {|10x x -<<或1}x >2. 若A B ⊆,A C ⊆,{0,1,2,3,4,5,6}B =,{0,2,4,6,8,10}C =,则这样的A 的个数 为( )A. 4B. 15C. 16D. 323. 不等式210ax bx ++>的解集是11(,)23-,则a b -=( ) A. 7- B. 7 C. 5- D. 54. 已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等” 的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要三. 解答题1. 解不等式:(1)|2||23|4x x -+-<; (2)2232x x x x x -≤--;2. 已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ++≥+; (2)222a b c ab bc ca ++≥++;3. 已知二次函数2()1f x ax bx =++,,a b R ∈,当1x =-时,函数()f x 取到最小值,且 最小值为0;(1)求()f x 解析式;(2)关于x 的方程()|1|3f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;4. 设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根 的两倍,求p 的取值范围;5. 已知二次函数2()f x ax bx c =++(0)a ≠,记[2]()(())fx f f x =,例:2()1f x x =+, 则[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()fx x =; (2)记2(1)4b ac ∆=--,若[2]()fx x =有四个不相等的实数根,求∆的取值范围;参考答案一. 填空题1. {0,2,6,10}2. {1,0,1}-3. 若2x y +≠,则1x ≠或1y ≠;4. 75. (3,0)(3,)-+∞U6. 1(,)3-∞-7. (0,6)8. [6,8)- 9. 16 10. 25 11. 3(3,)2- 12. 2+二. 选择题1. C2. C3. C4. A三. 解答题1.(1)1(,3)3;(2)(1,0]{1}(2,)-+∞U U ;2. 略;3.(1)2()21f x x x =++;(2)3k <或134k =; 4. 107p <<; 5.(1)0x =或2x =;(2)4∆>;。

上海市2016_17学年高一数学上学期周练一

上海市2016_17学年高一数学上学期周练一

上海市2016-2017学年高一数学上学期周练01一. 填空题1. 用恰当的符号填空:(1; (21,1}-;(3)(1,1)- 2{(,)|}x y y x =; (4)2{|2320}x x x --= Q ;2. 已知全集{0,1,2,3,4,5,6,7,8,9}U =,集合{0,1,3,5,8}A =,集合{2,4,5,6,8}B =, 则()()U U C A C B =I3. 已知集合2{|1}P x x =≤,{}M a =,若P M P =U ,则a 的取值范围是4. 已知集合{||2|3}A x x =+<,集合{|()(2)0}B x x m x =--<,且 {|1}A B x x n =-<<I ,则m = ,n =5. 已知集合{1,2,3}A =,{2,4,5}B =,则集合A B U 的子集的个数为6. 设2{|2}M x y x ==+,2{|28}N x y x ==-+,则M N =I7. 已知非空集合*S N ⊆,满足条件“若x S ∈,则16S x ∈”,则集合S 的个数是 8. 已知集合2{(,)|}A x y y x ==, 11{(,)|}12y B x y x -==-,则A B =I 9. 用||S 表示集合S 中元素的个数,设,,A B C 为集合,称(,,)A B C 为有序三元组,如果集 合,,A B C 满足||||||1A B B C C A ===I I I ,且A B C =∅I I ,则称有序三元组 (,,)A B C 为最小相交,由集合{1,2,3,4}的子集构成的所有有序三元组中,最小相交的有序 三元组的个数为10. 设{1,2,3,,2024,2025}M =⋅⋅⋅,A 是M 的子集且满足:当x A ∈时,15x A ∉,则A 中元素最多有 个11.设集合{1,2,3,,1000}A =⋅⋅⋅,若B ≠∅且B A ⊆,记()G B 为B 中元素的最大值与最 小值之和,则对所有的B ,()G B 的平均值为二. 选择题12. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U C M =( )A. UB. {1,3,5}C. {3,5,6}D. {2,4,6}13. 现有以下四个判断:(1){质数}{⊆奇数};(2)集合{1,2,3}与集合{4,5,6}没有相同的子集;(3)空集是任何集合的真子集;(4)若A B ⊆,B C ⊆,则A C ⊆;其中,正确的判断的个数为( )A. 0B. 1C. 2D. 314. 下列表示图形中的阴影部分的是( )A. ()()A C B C U I UB. ()()A B A C U I UC. ()()A B B C U I UD. ()A B C U I15. 满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A. 14B. 13C. 12D. 1016. 若集合{(,,,)|04,04,04E p q r s p s q s r s =≤<≤≤<≤≤<≤且,,,}p q r s N ∈, {(,,,)|04,04F t u v w t u v w =≤<≤≤<≤且,,,}t u v w N ∈,用()card X 表示集合X 中 的元素个数,则()()card E card F +=( )A. 50B. 100C. 150D. 200三. 解答题17. 已知集合2{|560}A x x x =-+=,{|10}B x mx =+=,且A B A =U ,求实数m ;18. 已知集合2*{|1,}A m m n n N ==+∈,2*{|22,}B y y x x x N ==-+∈,探究A 、B 之间的关系,并证明你的结论;19. 设123{,,,,}n A a a a a M =⋅⋅⋅⊆*(,2)n N n ∈≥,若1212n n a a a a a a ++⋅⋅⋅+=⋅⋅⋅,则称A为集合M 的n 元“好集”;(1)写出实数集R 的一个二元“好集”;(2)问:正整数集*N 上是否存在二元“好集”?说明理由;(3)求出正整数集*N 上的所有“好集”;参考答案一. 填空题1. ∈、∈、∉、⊆2.{7,9} 3. [1,1]- 4. 1-、1 5. 32 6. [2,4]- 7. 7 8. 11{(,)}24- 9. 96 10. 1899 11. 1001二. 选择题12. C 13. B 14. A 15. B 16. D三. 解答题17.12m=-或13-或0; 18. A真包含于B;19.(1)1{1,}2-;(2)不存在;(3){1,2,3};。

上海市2016-2017学年高一数学上学期周练09

上海市2016-2017学年高一数学上学期周练09

上海市2016-2017学年高一数学上学期周练09一. 填空题 1.函数y =的定义域为2. 二次函数221y x x =+-(1)x ≠的值域为3. 若(21)f x -的定义域为(1,2),则()f x 的定义域为4. 定义域为R 的函数()y f x =的值域为[,]a b ,则函数()y f x c =+的值域为5. 已知函数21ax by x +=+53,则a b += 6.已知函数y =M ,最小值为m ,则mM= 7. 定义运算,,x x yx y y x y≤⎧*=⎨>⎩,若|1||1|m m m -*=-,则m 的取值范围是8.函数y =的值域为9. 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米, 开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所 走的路程总和最小,这个最小值为10. 若a 是实常数,()f x 对于任何的非零实数x 都有1()()1f af x x x=--,且(1)1f =, 则当0x >时,不等式()f x x ≥的解集是11. 已知对任意实数a 、b 满足()()(21)f a b f a b a b -=--+且(0)1f =,则()f x 的函 数解析式为12. 将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积 之和最小,正方形的周长应为13.设函数()f x =(0)a <的定义域为D ,若所有点(,())s f t (,)s t D ∈构成一个正方形区域,则a =14. 实数集R 中定义运算“*”:(1)对任意,a b R ∈,a b b a *=*;(2)对任意a R ∈, 0a a *=;(3)对任意,a b R ∈,()()()()2a b c c ab a c b c c **=*+*+*-,则函数 1()f x x x=*(0)x >的值域为 15. 设1()|1|f x x =-,22()65f x x x =-+-,函数112212(),()()()(),()()f x f x f x g x f x f x f x ≥⎧=⎨<⎩,若方程()g x a =有四个不同的实数根,则实数a 的取值范围是 二. 选择题16. 据统计,一名工人组装第x件产品所用时间(单位:分钟)为()x A f x x A <=≥,A 、c 为常数,已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A. 75,25B. 75,16C. 60,25D. 60,16 17. 已知()y f x =的图像如图所示,则|(2)|1y f x =-+-的图像是( )A. B. C. D.18. 函数2()f x ax bx c =++与2()g x cx bx a =++的值域分别是M 与N ,其中0ac ≠,且a c ≠,则以下结论一定正确的是( )A. M N =B. M N ⊆C. N M ⊆D. MN ≠∅三. 解答题19. 求下列函数的值域:(1)22256x x y x x -=-+;(2)22124x y x x -=-+(1)x >;20.(1)若()f x 为一次函数,且(23)()2f x f x x ++-=+,求()y f x =的解析式; (2)设3()()1f x xf x=+(0,)x x R ≠∈,求()y f x =的解析式;21. 已知1()2bx f x x a +=+(,a b 是常数,2ab ≠),且1()()f x f k x =;(1)求k 的值; (2)若((1))2kf f =,求,a b 的值;参考答案一. 填空题1. {0}[1,)+∞2. [2,)-+∞3. (1,3)4. [,]a b5. 4或6.2 7. 1[,)2+∞ 8. [2,)+∞ 9. 2000 10. (0,1] 11. 2()1f x x x =++ 12. 44π+ 13. 4- 14. [3,)+∞ 15. (3,4)二. 选择题16. D 17. C 18. D三. 解答题19.(1)(,2)(2,1)(1,)-∞--+∞;(2)1(0,6+; 20.(1)1()2f x x =-;(2)11()22f x x =--; 21.(1)14k =;(2)7a =-,72b =-;。

上海市2016_2017学年高一数学上学期周练09

上海市2016_2017学年高一数学上学期周练09

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!上海市2016-2017学年高一数学上学期周练09一. 填空题1. 函数y =的定义域为2. 二次函数221y x x =+-(1)x ≠的值域为3. 若(21)f x -的定义域为(1,2),则()f x 的定义域为4. 定义域为R 的函数()y f x =的值域为[,]a b ,则函数()y f x c =+的值域为5. 已知函数21ax by x +=+53,则a b +=6. 已知函数y =M ,最小值为m ,则mM= 7. 定义运算,,x x yx y y x y ≤⎧*=⎨>⎩,若|1||1|m m m -*=-,则m 的取值范围是8. 函数y =的值域为9. 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米, 开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所 走的路程总和最小,这个最小值为10. 若a 是实常数,()f x 对于任何的非零实数x 都有1()()1f af x x x=--,且(1)1f =, 则当0x >时,不等式()f x x ≥的解集是11. 已知对任意实数a 、b 满足()()(21)f a b f a b a b -=--+且(0)1f =,则()f x 的函 数解析式为12. 将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积 之和最小,正方形的周长应为13. 设函数()f x =(0)a <的定义域为D ,若所有点(,())s f t (,)s t D ∈构成一个正方形区域,则a =14. 实数集R 中定义运算“*”:(1)对任意,a b R ∈,a b b a *=*;(2)对任意a R ∈, 0a a *=;(3)对任意,a b R ∈,()()()()2a b c c ab a c b c c **=*+*+*-,则函数 1()f x x x=*(0)x >的值域为15. 设1()|1|f x x =-,22()65f x x x =-+-,函数112212(),()()()(),()()f x f x f xg x f x f x f x ≥⎧=⎨<⎩,若方程()g x a =有四个不同的实数根,则实数a 的取值范围是 二. 选择题16. 据统计,一名工人组装第x件产品所用时间(单位:分钟)为()x A f x x A <=≥,A 、c 为常数,已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A. 75,25B. 75,16C. 60,25D. 60,16 17. 已知()y f x =的图像如图所示,则|(2)|1y f x =-+-的图像是( )A. B. C. D.18. 函数2()f x ax bx c =++与2()g x cx bx a =++的值域分别是M 与N ,其中0ac ≠,且a c ≠,则以下结论一定正确的是( )A. M N =B. M N ⊆C. N M ⊆D. M N ≠∅I三. 解答题19. 求下列函数的值域:(1)22256x x y x x -=-+;(2)22124x y x x -=-+(1)x >;20.(1)若()f x 为一次函数,且(23)()2f x f x x ++-=+,求()y f x =的解析式; (2)设3()()1f x xf x=+(0,)x x R ≠∈,求()y f x =的解析式;21. 已知1()2bx f x x a +=+(,a b 是常数,2ab ≠),且1()()f x f k x=;(1)求k 的值; (2)若((1))2kf f =,求,a b 的值;参考答案一. 填空题1. {0}[1,)+∞U2. [2,)-+∞3. (1,3)4. [,]a b5. 4或7. 1[,)2+∞ 8. [2,)+∞ 9. 2000 10. (0,1] 11. 2()1f x x x =++ 12. 44π+ 13. 4- 14. [3,)+∞ 15. (3,4)二. 选择题16. D 17. C 18. D三. 解答题19.(1)(,2)(2,1)(1,)-∞--+∞U U ;(2); 20.(1)1()2f x x =-;(2)11()22f x x =--; 21.(1)14k =;(2)7a =-,72b =-;。

上海市2016_2017学年高一数学上学期周练012017092204109

上海市2016_2017学年高一数学上学期周练012017092204109

上海市 2016-2017学年高一数学上学期周练 01一. 填空题1. 用恰当的符号填空: (1) 2 R ;(2) 4 2 3 {1, 2, 3 1};(3) (1,1){(x , y ) | yx 2};(4){x | 2x 2 3x 2 0}Q ;2. 已知全集U {0,1, 2,3, 4,5, 6, 7,8,9},集合 A {0,1, 3, 5, 8},集合 B{2, 4,5, 6,8},则 (C A )(C B )UU3. 已知集合 P {x | x 21}, M{a },若 P MP ,则 a 的取值范围是4. 已知集合 A{x || x 2 |3},集合 B {x | (x m )(x 2) 0},且A B {x | 1 x n }mn,则,5. 已知集合 A {1, 2,3}, B {2, 4, 5},则集合 AB 的子集的个数为 6. 设 M{x | y 2 x 2}, N{x | y 22x8},则 MN7. 已知非空集合 S N * ,满足条件“若 xS ,则16 S ”,则集合 的个数是S x8. 已知集合 A {(x , y ) | y x 2},{( , ) | 1 1},则B x yyA B9. 用| S |表示集合 S 中元素的个数,设 A , B ,C 为集合,称 (A , B ,C ) 为有序三元组,如果集 合 A , B ,C 满足| AB | | BC | | C A | 1,且 A B C,则称有序三元组(A , B ,C ) {1, 2,3, 4}为最小相交,由集合的子集构成的所有有序三元组中,最小相交的有序三元组的个数为 10. 设 M{1, 2, 3,, 2024, 2025}, A 是 M 的子集且满足:当 x A 时,15x A ,则 A中元素最多有 个11.设集合 A{1, 2, 3,,1000},若 B且 B A ,记G (B ) 为 B 中元素的最大值与最小值之和,则对所有的 B ,G (B ) 的平均值为二. 选择题 12. 设集合U {1, 2,3, 4,5, 6}, M{1, 2, 4},则C M()UA. UB. {1, 3, 5}C. {3, 5, 6}D. {2, 4, 6}13. 现有以下四个判断:- 1 -(1){质数}{奇数};(2)集合{1,2,3}与集合{4,5,6}没有相同的子集;(3)空集是任何集合的真子集;(4)若A B,B C,则A C;其中,正确的判断的个数为()A. 0B. 1C. 2D. 314. 下列表示图形中的阴影部分的是()A. (A C)(B C)B. (A B)(A C)C. (A B)(B C)D. (A B)C15. 满足a,b{1,0,1,2},且关于x的方程ax22x b0有实数解的有序数对(a,b)的个数为()A. 14B. 13C. 12D. 1016. 若集合E{(p,q,r,s)|0p s4,0q s4,0r s4且p,q,r,s N},F{(t,u,v,w)|0t u4,0v w4t,u,v,w N}card(X)X且,用表示集合中的元素个数,则card(E)card(F)()A. 50B. 100C. 150D. 200三. 解答题17. 已知集合A{x|x25x60},B{x|mx10},且A B A,求实数m;18. 已知集合A{m|m n21,n N*},B{y|y x22x2,x N*},探究A、B 之间的关系,并证明你的结论;- 2 -19. 设,若,则称A{a,a,a,,a}M(n N*,n2)a a a a aa A123n12n12n为集合M的n元“好集”;(1)写出实数集R的一个二元“好集”;(2)问:正整数集N*上是否存在二元“好集”?说明理由;(3)求出正整数集N*上的所有“好集”;参考答案一. 填空题1. 、、、2. {7,9}3. [1,1]4. 1、15. 326. [2,4]7. 78. {(1,1)}9. 10. 11.961899100124- 3 -二. 选择题 12. C13. B14. A15. B16. D三. 解答题m1 1A B17.或或 ;18. 真包含于 ;2 3119.(1);(2)不存在;(3);{1, }{1, 2, 3}2- 4 -。

上海市上海中学2016-2017学年高一上学期数学周练11 含

上海市上海中学2016-2017学年高一上学期数学周练11 含

上海中学高一周练数学卷2016.12.01一. 填空题1. 函数3()8f x x =-的零点为2. 设函数(1)()()x x a f x x++=为奇函数,则a = 3. 若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 4. 命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是5. 函数,0()1,0x a x f x x x -+≥⎧=⎨--<⎩是R 上的减函数,则实数a 的取值范围是6. 函数y =的最大值为7. 设()f x ()x R ∈为奇函数,1(1)2f =,(2)()(2)f x f x f +=+,则(5)f = 8. 若()f x 是定义在R 上的偶函数,在(,0]-∞上是减函数,且(2)0f =,则使()0f x <的 x 的取值范围是9. 已知2()y f x x =+是奇函数,且(1)1f =,若()()2g x f x =+,则(1)g -=10. 已知函数1()42x f x =+,若函数1()4y f x m =+-为奇函数,则实数m =11. 已知函数()f x =(1)a ≠,若()f x 在区间(0,1]上是减函数,则实数a 的取值 范围是 12. 对于函数1()42x x f x m +=-⋅,若存在实数0x ,使得00()()f x f x -=-,则实数m 的取值范围是二. 选择题 13. 已知函数()f x 、()g x 定义在R 上,()()()h x f x g x =⋅,则“()f x 、()g x 均为奇函 数”是“()h x 为偶函数”的( )条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. 若函数1()21x f x =+,则该函数在R 上( ) A. 单调递减无最小值 B. 单调递减有最小值C. 单调递增无最大值D. 单调递增有最大值15. 设奇函数()f x 在(0,)+∞上为增函数且(1)0f =,则不等式()()0f x f x x --<的解集 为( )A. (1,0)(1,)-+∞B. (,1)(0,1)-∞-C. (,1)(1,)-∞-+∞D.(1,0)(0,1)-16. 设()f x 是偶函数,且当0x ≥时,()f x 是单调函数,则满足3()()4x f x f x +=+的所有 x 之和为( )A. 3-B. 3C. 8-D. 8三. 解答题17. 根据函数单调性的定义,证明:函数31y x =-是R 上的递减函数;18. 已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围;19. 已知函数2()4x f x x =-; (1)指出函数()f x 的单调性,并予以证明;(2)画出函数()f x 的大致图像;20. 已知2()a f x x x=+()a R ∈; (1)判断函数()f x 的奇偶性,说明理由;(2)若()f x 在区间[1,)+∞上是增函数,求实数a 的取值范围;21. 设函数()f x =,其中2k <-;(1)求函数()f x 的定义域;(2)写出()f x 的单调区间;参考答案一. 填空题1. 22. 1-3. 10[2,]34. 若()f x 不是奇函数,则()f x -不是奇函数5. 1a ≤-52 8. (2,2)- 9. 1- 10. 12 11. (,0)(1,3]-∞ 12. 12m ≥二. 选择题 13. A 14. A 15. D 16. C三. 解答题17. 略;18. ([1,)-∞+∞; 19.(1)在(,2)-∞-、(2,2)-和(2,)+∞上单调递减,证明略;(2)略;20.(1)当0a =,偶函数,当0a ≠,非奇非偶函数;(2)2a ≤;21.(1)(,1(12,1)(1,12)(12,)k k k -∞--------+---+-+∞;(2)在(,1-∞-上单调递增,在(11)--单调递减,在(1,1--上单调递增,在(1)-+∞单调递减;。

上海市2016_2017学年高一数学上学期周练1

上海市2016_2017学年高一数学上学期周练1

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!上海市2016-2017学年高一数学上学期周练14一. 填空题1.函数()f x =(0)x ≤的反函数是1()fx -= 2. 若4log 124x =,则x = 3. 函数2()lg(23)f x x x =--的递减区间是4. 函数21()12f x x =+(2)x <-的反函数是1()f x -= 5. 若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1)a ≠的值域是[4,)+∞,则实数a 的取值范 围是 6. 若函数()8x f x =的图像经过点1(,)3a ,则1(2)f a -+=7. 若函数24,3()(1)1,3x x f x a x x ⎧-≥=⎨-+<⎩存在反函数,则实数a 的取值范围为8. 如果log 41a b =-,则a b +的最小值为9. 若实数t 满足()f t t =-,则称t 是函数()f x 的一个次不动点,设函数()ln f x x =与反函 数的所有次不动点之和为m ,则m =10. 设lg lg lg 111()121418x x x f x =+++++,则1()()f x f x+= 11. 设方程24x x +=的根为m ,方程2log 4x x +=的根为n ,则m n +=12. 对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的 函数()y f x =有反函数1()y f x -=,且1([0,1))[1,2)f -=,1((2,4])[0,1)f -=,若方程 ()0f x x -=有解0x ,则0x =二. 选择题13. 如果23499log 3log 4log 5log 100x =⋅⋅⋅⋅⋅⋅⋅,则x ∈( )A. (1,2)B. (2,3)C. (5,6)D. (6,7)14. 函数2x xe e y --=的反函数是( )A. 奇函数,在(0,)+∞上是减函数B. 偶函数,在(0,)+∞上是减函数C. 奇函数,在(0,)+∞上是增函数D. 偶函数,在(0,)+∞上是增函数15. 已知函数()f x 为R 上的单调函数,1()f x -是它的反函数,点(1,3)A -和点(1,1)B 均在函数()f x 的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D.2(1,log 3)16. 设,,0x y z >,且12xyz y z ++=,则422log log log x y z ++的最大值为( )A. 3B. 4C. 5D. 6三. 解答题17. 已知910390x x -⨯+≤,求函数111()4()242x x y -=-+的最大值和最小值;18. 给定实数a ,0a ≠且1a ≠,设函数11x y ax -=-;(1)求证:经过这个函数图像上的任意两个不同的点的直线不平行于x 轴;(2)判断此函数的图像是否关于直线y x =对称,说明你的理由;19. 作出下列函数的大致图像;(1)3|log |||y x =;(2)12log (24)y x =+;20. 设a 是实数,函数()4|2|x x f x a =+-;(1)求证: ()f x 不是奇函数;(2)当0a >时,求()f x 的值域;21. 设函数()n n f x x bx c =++,*n N ∈,b 、c R ∈;(1)设2n ≥,1b =,1c =-,证明:()n f x 在区间1(,1)2内存在唯一的零点;(2)设2n =,若对任意12,[1,1]x x ∈-,有2122|()()|4f x f x -≤,求b 的取值范围;参考答案一. 填空题1. 2x -(0)x ≤2. 116 3. (,1)-∞- 4. (3)x >5. (1,2]6. 23 7. (1,2] 8. 1 9. 0 10. 311. 4 12. 2二. 选择题13. D 14. C 15. C 16. A三. 解答题17. max ()(0)2f x f ==,min ()(1)1f x f ==;18.(1)略;(2)1()()f x f x -=,是; 19. 略;20.(1)略;(2)当102a <<,值域为2[,)a +∞;当12a ≥,值域为1[,)4a -+∞;21.(1)单调递增,1()02n f <,(1)0n f >;(2)[2,2]-;。

上海市上海中学2016-2017学年高一上学期数学周练02

上海市上海中学2016-2017学年高一上学期数学周练02

上海中学高一周练数学卷2016.09.18一. 填空题1. 已知{|2,}E x x x R =≥∈,{|8,}F x x x R =<∈,{|06,}G x x x R =≤≤∈,则 E F = ; F G = ;R C E F = ; R R C E C G = ; F C G = ; ()F C G E = ;2. 用列举法表示集合*12{|,}5a N a Z a∈∈=- 3. 若“x a ≥”是“||2x ≤”的必要条件,则实数a 的取值集合是4. 命题“若x A ∈或x B ∈,则x A B ∈”的否命题是5. 某校一年级的200人中,爱好数学的有95人,爱好体育的有156人,则数学体育都爱好 的人数的最小值是6. 集合2{|(1)0}A x k x x k =++-=有且仅有两个子集,则实数k 的值为7. 非空集合{|121}A x a x a =+≤<-,{|25}B x x =-≤≤,若A AB ⊆,则a 的取值范围是8. 关于x 的方程26(2)50x a x b ++++=的解集是N ,关于x 的方程220x ax b -+=的 解集是M ,1{}2M N =,则集合M 为 9. 集合*{|2,,50}A m m k k N k ==∈≤,集合{|,,,}B n n i j i j i A j A ==+<∈∈,则B 中元素的个数是10. 若“存在{|12}x x x ∈≤≤使得310x a ++≥”是真命题,则a 的取值范围是11. 设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则称k 是A 的 一个“孤立元”,给定{1,2,3,4,5,6}S =,在S 的所有3元子集中,含“孤立元”的集合共 有 个12. 若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠; 有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是13. 非空集合{|2}A x x a =-≤≤,{|23,}B y y x x A ==+∈,2{|,}C z z x x A ==∈,若C B ⊆,则a 的取值范围是二. 选择题14. 对于集合A 和B ,令{|,,}A B x x a b a A b B +==+∈∈,如果{|2,}S x x k k Z ==∈, {|21,}T x x k k Z ==+∈,则S T +=( )A. 整数集ZB. SC. TD. {|41,}x x k k Z =+∈15. 已知真命题“a b c d ≥⇒>”和“a b e f <⇒≤”,则“c d ≥”是“e f ≤”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件16. 在下面的三个命题中,正确的个数是( )①“△ABC 和△111A B C 都是直角三角形”的否定形式是“△ABC 和△111A B C 都不是直角 三角形”;② 命题“若0xyz <,则,,x y z 中至少有两个负数”的逆否命题是“若,,x y z 中 至多有一个负数,则0xyz ≥”;③ 命题“两个无理数的积仍是无理数”的逆命题是“乘 积为无理数的两数都为无理数”;A. 0B. 1C. 2D. 317. 设Q 是有理数集,集合{|,,0}X x x a a b Q x ==+∈≠,在下列集合中:①{2|x }x X ∈;②|}x X ∈;③1{|}x X x ∈;④2{|}x x X ∈;与X 相同的集合有( ) A. ①② B. ②③ C. ①②④ D. ①②③18. 设集合0123{,,,}S A A A A =,在S 上定义运算⊕为:i j k A A A ⊕=,其中k 为i j +被4 除的余数,,{0,1,2,3}i j ∈,则满足关系式20()x x A A ⊕⊕=的x ()x S ∈的个数为( )A. 4B. 3C. 2D. 1三. 解答题19. 设2()f x x ax b =++,{|()}{}A x f x x a ===,求a 、b 的值;20. 求证:222()()()a b b c c a -=-=-的充要条件是a b c ==;参考答案一. 填空题1. {|28}x x ≤<、{|8}x x <、{|8}x x <、{|2x x <或6}x >、{|68x x <<或0}x <、{|2x x <或68}x << 2. {7,1,1,2,3,4}-- 3. {|2}a a ≤-4. 若x A ∉且x B ∉,则x A B ∉5. 516. 1-或12- 7. 23a <≤ 8. 1{,4}2- 9. 97 10. 7a ≥-11. 16 12. 6 13. 132a ≤≤二. 选择题14. C 15. A 16. C 17. D 18. C三. 解答题 19. 13a =,19b =;20. 略;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海中学高一周练数学卷
2016.11.03
一. 填空题
1. 求出下列不等式的解集:
(1)||0a > (2)2103624x x ≤-+< (3)32x x
<- (4)25||60x x -+>
(5x < (6)22110x x x x --
+≤
(756x <-
2. 已知集合8{|1}2
A x x =>+,{|||}
B x x a b =-≥,若A B R =,A B =∅,则 a = ,b =
3. 若函数12y x b =
+的图像与以(1,1)A 、(2,3)B 为端点的线段相交,则常数b 的取值范围 是
4.在maths 先生的数学班的所有学生中,对于问题“你喜欢数学吗?”在学年开始时,有 50%回答“是”,有50%回答“不”,学年结束时,有70%回答“是”,有30%回答“不”, 在全部学生中,有x %的学生在学年开始和结束时给出了不同的回答,则x 的最大值和最小 值的差是
5. 对任意正数x 和y ,不等式1
()()9a x y x y
++≥恒成立,则常数a 的取值范围是 6. 令,,,a b c d 是集合{3,2,2,4}--中的不同的元素,则22()()a b c d +++的最大值与最小
值之差为
7. 关于x 的方程2
(2)210x m x m +-+-=有一个根属于(0,1),则m 取值范围是
8. 若||2m ≤时不等式2210mx x m -+-<恒成立,则x 的取值范围是
9. 若关于x 的不等式组22202(25)50x x x a x a ⎧--≥⎪⎨+++≤⎪⎩的解集中有且仅有两个整数,则a 的取值 范围是
10. 函数4
2321
x y x =+的最小值是
11. 若正实数a 和b 满足5a b +=的最大值是
二. 选择题
1.“0.53k <<”是“关于x 的不等式42
88(2)50x k x k +-+->的解集为R ”的( ) A. 充分不必要条件 B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
2. 若面积为S 的正三角形其外接圆的半径是r ,则( )
A. 2S =
B. 2S =
C. 2S =
D. 2S =
3. 已知集合{|||1}A x x =<,对任意的a A ∈,B A ∈,则1a b ab ++和1a b
ab --(

A. 一定都属于A
B. 至少有一个属于A
C. 至多有一个属于A
D.
是否属于A 不能确定
三. 解答题
1. 解关于x 的不等式2(1)10ax a x -++<;
2. 求函数
y =的定义域和值域;
3. 已知非空集合M R ⊆,定义域为R 的函数1,()0,M x M f x x M ∈⎧=⎨∉⎩
,若A 、B 是R 的两个 非空真子集,试求函数()1()()()1
A B A B f x F x f x f x +=
++的值域;
4. 列车提速可以提高铁路运输量,但并非列车速度越大,列车的流量Q (单位时间内通过 观测点的列车数量)就越大,因为列车运行时,前后两车必须要保持一个“安全间隔”,“安 全间隔”与列车的速度v 的平方成正比(比例系数0k 为定值,00k >),假设所有的列车长 度均为l ,问:列车车速多大时,列车的流量Q 最大;
5. 已知0x y >>
y x >;
参考答案
一. 填空题
1.(1)(,1)
(1,)-∞-+∞ (2)(3,1][4,6)-- (3)(2,)+∞ (4)(,3)(2,2)(3,)-∞--+∞ (5)R (6){1} (7)36(,)25
+∞ 2. 2a =,4b = 3. 1
[,2]2
4. 60
5. [4,)+∞
6. 60
7. 1(,62-
8. 11(
22
-++ 9. (2,1][4,5)- 10. 0
11.
二. 选择题 1. A 2. C 3. A
三. 解答题
1. 当0a <,1
(,)(1,)x a ∈-∞+∞;当0a =,(1,)x ∈+∞;当01a <<,1(1,)x a
∈; 当1a =,x ∈∅;当1a >,1
(,1)x a ∈;
2. 定义域:[1,2)
(2,)+∞,值域:(,8](0,)-∞-+∞; 3. 2
{,1}3
; 4. 20v Q l k v =+
,v =Q 最大; 5. 略;。

相关文档
最新文档