SNP基因分型的高通量方法
生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)1 适用范围本标准为检验实验室进行药物靶点基因的检测提供技术指导。
本标准适用的样本包括:全血标本、石蜡包埋组织、干血片、口腔拭子、唾液等。
2 规范性引用文件下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
药物代谢酶和药物作用靶点基因检测技术指南(试行),(2015年国家卫生和计划生育委员会医政医管局国卫医医护便函〔2015〕240号)个体化医学检测微阵列基因芯片技术规范(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)感染性疾病相关个体化医学分子检测技术指南(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)农业部1782号公告-12-2012 转基因生物及其产品食用安全检测蛋白质氨基酸序列飞行时间质谱分析方法卫生部办公厅关于印发《医疗机构临床基因扩增检验实验室管理办法》的通知(卫办医政发〔2010〕194号)3、术语和定义3.1 rs和ss体系SNP由美国国立生物技术信息中心(national center for biotechnologyinformation,NCBI)建立、dbSNP数据库制定的SNP命名体系,rs体系的SNP代表已获得官方认可和推荐的参考SNP(reference SNP),ss体系的SNP代表用户新递交但尚未得到认可的SNP(submitted SNP)。
3.2 单核苷酸多态性(SNP)是指由单个核苷酸-A、T、C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。
3.3 等位基因(allele)一般是指位于一对同源染色体相同位置上控制某一性状的不同形态的一对基因。
若成对的等位基因中两个成员完全相同,则该个体对此性状来说是纯合子。
SNP分型技术简介

原理
质谱法是一种基于质谱技术的SNP分型方法。通过对PCR扩增产物进行
质谱分析,可以准确地确定SNP位点的碱基类型。
02
优点
质谱法具有高分辨率、高准确性和无需荧光标记的优点。该方法可以检
测多种类型的SNP,包括单核苷酸变异、插入/缺失等。
03
缺点
质谱法需要使用昂贵的质谱仪器,且对样本的纯度和质量要求较高。此
优点
TaqMan探针法具有高灵敏度、高特异性和可定量分析的 优点。同时,该方法可以实现高通量SNP分型,适用于大 规模样本的筛查和研究。
缺点
TaqMan探针法需要使用特定的荧光标记探针,成本较高。 此外,对于某些复杂的SNP位点或多态性区域,可能需要 设计多个探针以覆盖所有可能的变异类型。
质谱法
01
实验对照
设置合适的实验对照,以验证实验结果的可 靠性和准确性。
重复实验
进行必要的重复实验,以确保结果的稳定性 和可重复性。
质量控制
在实验过程中实施严格的质量控制措施,包 括试剂、仪器和实验操作等方面。
数据分析流程和方法选择
数据预处理
对原始数据进行清洗、整理和标准化 处理,以便于后续分析。
统计分析
采用适当的统计方法对数据进行分析, 如描述性统计、假设检验和方差分析 等。
亲子关系鉴定
通过分析被鉴定人的SNP信息,可以确定亲子关系,为家庭纠纷、 遗产继承等问题提供解决方案。
法医物证分析
SNP分型技术可以用于法医物证的分析和鉴定,如血迹、毛发等生 物样本的基因分型,为刑事案件的侦破提供证据。
05
实验设计与数据分
析方法论述
实验设计原则及注意事项
样本选择
确保样本具有代表性,避免选择偏差,同时 考虑样本量和多样性。
一种基于磁性纳米粒子PCR的高通量SNP分型方法

中 , 大多数 需要 对包 含有 S P位 点 的 P R产 物进行 纯 化 、浓 缩 j 既 费 时 , 费力 , 绝 N C , 又 很难 满 足 未来 对分 型 自动化 的要 求 .随着 纳 米技术 的迅速 发展 ,纳米 材 料逐 渐 被应 用 到 生 命科 学 领 域 , 其 研 究 和 为
量 、高灵敏 度 的 S P分 型方法 . N
1 材 料 与 方 法
1 1 材料 和仪 器 .
MT F H R基 因 C 7 T多 态 位 点 的 引 物 序 列 为 F r adpi e ( P :5 G A G G A G T T T 67 ow r r r F ) T A G A A G G C m
生和突变型样本正错配信 号比大于 90, . 杂合型正错配信 号 比接 近 10 . ,分型结 果经测 序验证 ,此 方法无须 产物 纯化 、浓缩 ,扫描分型结 果快 速 、 直观 , 是一种操作简单 、快速 、 高通量 、 高灵敏度 的分型方法.
关键 词 磁性 纳米粒子 ; C 双色荧光杂交 ;S P分 型 P R; N 0 5 67 文献标识码 A 文章编 号 0 5 -70(07 0 —0 50 2 1 9 2 0 613 -4 0 J 中图分 类号
维普资讯
Vo . 8 12
2 0 0 7 年 6月
高 等 学 校 化 学 学 报
CIEMI t CAI J OURNAL OF CHI NES E UNI VERS T ES II
NO 6 .
13 0 5~1 3 08
一
种 基 于磁 性 纳 米 粒 子 P R 的 C 高通 量 S P分 型 方 法 N
刘洪娜 李 松 王志飞 , , 一, 何农跃 贺全 国 ,
人类基因组研究中的SNP分析

人类基因组研究中的SNP分析随着现代科技的快速发展,人类已经进入了基因组时代。
在这个时代里,基因组研究是关键的一环,因此,人类基因组研究已成为当前热门科学研究领域。
SNP是人类基因组研究中非常重要的一种基因类型,其全称为“单核苷酸多态性”(Single nucleotide polymorphisms),是指基因组DNA序列上的单个核苷酸发生突变的现象。
这些突变可能会对个体的遗传特征、代谢和疾病易感性产生影响,因此,SNP分析被广泛应用于人类基因组的研究。
SNP分析的意义SNP分析作为一种高效而有效的基因分析方法,其应用范围非常广泛。
除了帮助人们更好地了解人类基因组的不同特征外,SNP分析也可以被应用于以下领域:1. 遗传病研究基因突变是遗传病发生的原因之一,而SNP的变异也可能引起明显的遗传病症状。
SNP分析可以帮助科学家更好地了解这些突变与遗传病之间的关系,从而提供更有效的治疗方法。
2. 药物研究SNP分析在药物研究过程中也可以发挥重要作用。
因为不同人群人体内的代谢和反应机制是不一样的,因此,在开发新药物的过程中,SNP分析可以提供更全面的信息,从而提高药物的效率和安全性。
3. 个性化医疗随着SNP分析的应用越来越广泛,越来越多的医疗机构开始使用它来提供更精准的治疗方案。
根据患者的基因信息,医生可以制定更适合个人的治疗方法,从而提高治疗效果和疗效持续时间。
SNP分析的方法SNP分析的方法有很多,其中最常见的两种方法是Sanger测序和芯片技术。
1. Sanger测序Sanger测序是SNP分析的传统方法,之所以广泛应用,是因为它是一种基于荧光技术的自动测序方法。
Sanger测序的具体原理如下:首先,将DNA样本与引物一起反应,通过PCR技术扩增目标基因区域。
然后,将PCR产物分离并富集,通过荧光标记的引物在ABI 3730 DNA自动测序仪上进行自动测序。
最后,通过电脑软件将测序结果转化为DNA碱基序列。
SNP分析原理方法及其应用

SNP分析原理方法及其应用SNP(Single Nucleotide Polymorphism,单核苷酸多态性)是指在基因组中的一些位置上,不同个体之间存在的碱基差异,是常见的遗传变异形式之一、SNP分析是研究SNP在基因与表型之间关联性的方法,用于揭示SNP与遗传疾病、药物反应性等的关系。
本文将介绍SNP分析的原理、方法以及其应用。
一、SNP分析原理1.SNP检测技术:SNP检测技术包括基于DNA芯片的方法、测序技术、实时荧光PCR等。
其中,高通量测序技术是最常用的SNP检测方法,可以同时检测数千个SNP位点。
2.数据分析与统计学方法:通过SNP检测技术获得的数据可以分为基因型数据(AA、AB、BB等)和等位基因频率数据(A频率、B频率等)。
统计学方法常用的有卡方检验、线性回归、逻辑回归等,用于研究SNP与表型之间的关联性。
二、SNP分析方法1.关联分析:关联分析是研究SNP与表型之间关联性的基本方法。
常用的关联分析方法包括单基因型分析、单SNP分析、基因组关联分析(GWAS)等。
单基因型分析主要是比较单个SNP的基因型在表型不同组之间的差异;单SNP分析是研究单个SNP是否与表型相关;GWAS是通过分析数万个SNP与表型之间的关系来找到与表型相关的SNP。
2. 基因型预测:基因型预测是根据已有的SNP数据,通过统计模型来预测个体的基因型。
常用的基因型预测方法有HapMap、PLINK等。
3. 功能注释:功能注释是研究SNP位点的生物学功能,揭示SNP与基因功能、表达水平之间的关系。
常用的功能注释工具有Ensembl、RegulomeDB等。
三、SNP分析应用1.遗传疾病研究:SNP与遗传疾病之间存在着密切的关系。
通过SNP分析可以发现与遗传疾病相关的SNP位点,进一步揭示疾病发生的机制,为疾病的诊断、治疗提供依据。
2.药物反应性研究:个体对药物的反应性往往存在较大差异,这与个体的遗传背景密切相关。
snp芯片的原理及应用

SNP芯片的原理及应用1. 引言单核苷酸多态性(Single Nucleotide Polymorphism,SNP)是基因组中最常见的变异形式,它在人类疾病的研究中起着重要的作用。
SNP芯片是一种高通量基因分型技术,可以用来检测个体基因组中的上万个SNP位点。
本文将介绍SNP芯片的原理以及其在各个领域的应用。
2. SNP芯片的原理SNP芯片是一种将DNA序列多态性引入到DNA芯片上的高通量基因分型工具。
其基本原理如下:1.选择SNP位点:根据研究目的和基因组数据库的数据,选择与感兴趣的生物学过程或疾病相关的SNP位点。
2.设计引物:根据选择的SNP位点序列设计引物,通常采用探针杂交的方式。
引物的设计需要考虑SNP的位点和碱基对应情况。
3.制备芯片:将设计好的引物固定在芯片表面上,并将每个SNP位点的引物排列成阵列状,以便同时检测多个SNP位点。
4.样品准备:从被检测的个体中提取DNA样品,并使用PCR扩增目标SNP位点的DNA片段。
5.杂交:将扩增好的DNA样品加入到芯片上,利用引物与样品中相应DNA片段的互补序列形成特异性的杂交。
6.洗涤:通过洗涤过程去除未结合的DNA片段,使只有与芯片上相应引物杂交的DNA片段留在芯片上。
7.形成芯片图像:利用特定的扫描仪扫描芯片,根据芯片上不同位置的荧光信号强度来分析每个SNP位点上的基因型。
3. SNP芯片的应用SNP芯片在各个领域的应用非常广泛,下面列举了几个典型的应用示例:3.1. 人类遗传疾病研究SNP芯片在人类遗传疾病研究中发挥着重要作用。
通过比较病例组和对照组的SNP芯片数据,可以发现与疾病相关的SNP位点,进而研究疾病的致病机制和发展规律。
例如,在癌症研究中,SNP芯片常用于寻找与癌症发生和进展相关的遗传变异。
3.2. 农业育种SNP芯片在农业育种中的应用越来越广泛。
农业科学家可以利用SNP芯片分析大量的植物或动物个体,筛选出具有优良基因型的品种或个体,从而加快优质农产品的培育速度。
高通量、低成本SNP、突变或甲基化检测方法—HRM 技术应用

高通量、低本钞票SNP、突变或甲基化检测方法—HRM技术应用HRM介绍HRM技术是high-resolutionmeltinganalysis即高分辨熔解曲曲折折曲曲折折折折线分析技术,是近年国外兴起的一种全新的突变扫描和基因分型的遗传分析方法。
基于高效稳健的PCR技术,HRM不受突变碱基位点与类型局限,无需序列特异性探针,在PCR结束后直截了当运行高分辨熔解,即可完成对样品突变、单核苷酸多态性-SNP、甲基化、HLA配型等的分析。
因操作简便快速,使用本钞票低,结果正确,实现了真正的闭管操作,HR M技术受到普遍关注。
HRM原理HRM的要紧原理是依据DNA序列的长度,GC含量以及碱基互补性差异,应用高分辨率的熔解曲曲折折曲曲折折折折线对样品进行分析,极高的温度均一性和温度分辨率使分辨精度到达对单个碱基差异的区分。
随着高精度PCR仪〔L ightCycler®480和Rotor-Gene6000〕和饱和染料〔LCGreen、EvaGreen等〕的出现,HRM技术的普及使用成为可能。
HRM应用• SNP〔单核苷酸多态性〕的筛查。
•基因突变扫描,包括缺失、重复、点突变。
•新突变的筛查。
•甲基化的筛查。
•遗传育种中特定突变的筛查、未知突变的发现。
• HLA基因组配型、等位基因频率分析、物种鉴定、品种鉴定、甲基化研究。
•法医学鉴定、亲子鉴定。
•动植物品质相关多态性位点的研究等。
植物抗逆性,突变与性状关联性研究。
HRM特点•高通量:1次可同时检测10-384样本,适合大样本、多SNP、多突变位点及多位点甲基化的扫描。
•高敏度:肿瘤研究中低突变率样品基因突变检测,最低检测到0.1%的突变样品基因突变,即检测到1000个正常细胞中1个突变细胞,适用于手术和其它微量组织中突变检测。
检测灵敏性远高于“PCR+测序〞的25%,即100个正常细胞中至少有25个突变细胞,测序仅适用手术组织。
•特异性好:PCR产物无需后续处理,特异性高达100%。
snp基因分型原理

snp基因分型原理SNP(Single Nucleotide Polymorphism,单核苷酸多态性)是人类基因组中最常见的遗传变异形式之一。
它指的是单个核苷酸在DNA 链中的突变,通常体现为碱基的替换。
SNP的存在可以导致个体之间基因序列的差异,进而影响个体对疾病的易感性、药物反应以及其他生理特征。
SNP基因分型原理是通过检测SNP位点上的碱基发生变异来确定个体的基因型。
人类基因组中共有数百万个SNP位点,每个位点可能有两种或更多的碱基替代选择。
基于现代高通量测序技术的快速发展,我们能够对大规模的SNP位点进行检测和分型。
SNP基因分型的方法有多种,其中最常用的方式是通过PCR扩增和测序来检测SNP位点上的碱基。
通过与参考基因组序列比对,我们可以确定个体在该位点上拥有的是哪种碱基,并据此判断其基因型。
另外,还可以利用芯片技术进行SNP分析,该技术能够同时检测数万个SNP位点,大大提高了分型的效率。
SNP基因分型的应用非常广泛。
首先,SNP在疾病易感性研究中具有重要意义。
通过分析大规模的人群样本,可以发现某些SNP位点与特定疾病之间存在相关性。
这些位点常被称为疾病相关SNP(disease-associated SNP),通过进一步的研究我们可以了解这些位点对疾病的发生机制和进展起到的作用。
其次,SNP基因分型对药物反应的个体差异研究也具有重要意义。
不同个体对药物的代谢和吸收能力存在差异,这些差异通常与SNP位点上的碱基变异有关。
基于SNP基因分型结果,我们可以确定个体对某种药物的敏感性、代谢速度等因素,从而为个体化治疗和药物剂量的选择提供依据。
此外,SNP基因分型还在人类进化研究、亲子鉴定、种群遗传学研究等领域发挥着积极作用。
通过对多个SNP位点的分型结果进行比对和分析,可以推断个体之间的亲缘关系、种群之间的遗传关系,帮助我们更好地了解人类进化和种群形成的过程。
总之,SNP基因分型技术的发展为人类遗传学和生物医学研究提供了无限可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter16High-Throughput Methods for SNP GenotypingChunming Ding and Shengnan JinAbstractSingle nucleotide polymorphisms(SNPs)are ideal markers for identifying genes associated with complex diseases for two main reasons.Firstly,SNPs are densely located on the human genome at about one SNP per approximately500–1,000base pairs.Secondly,a large number of commercial platforms are available for semiautomated or fully automated SNP genotyping.These SNP genotyping platforms serve different purposes since they differ in SNP selection,reaction chemistry,signal detection,throughput,cost,and assay flexibility.This chapter aims to give an overview of some of these platforms by explaining the technologies behind each platform and identifying the best application scenarios for each platform through cross-comparison.The readers may delve into more technical details in the following chapters.Key words:Whole genome association,fine mapping,single nucleotide polymorphism,copy number variation,haplotyping.1.IntroductionSingle nucleotide polymorphisms(SNPs)are best known asgenetic markers in disease-association studies to identify genesassociated with complex diseases(1,2).However,SNPs are alsoused in many other clinically and biologically important applica-tions(3).A large variety of commercial platforms are available forsemiautomated or fully automated SNP genotyping analysis.Onthe basis of the purposes of the study,SNP genotyping can bedivided into two domains:whole genome association(WGA)andfine mapping(Fig.16.1).Most of the genotyping platforms canbe classified accordingly.This chapter aims to briefly explain theprinciples behind various platforms which lead to a comparison ofthese platforms so that the readers will get a quick overview beforedelving into the technical details of some of these methods in thefollowing chapters.A.A.Komar(ed.),Single Nucleotide Polymorphisms,Methods in Molecular Biology578,DOI10.1007/978-1-60327-411-1_16,ªHumana Press,a part of Springer Science+Business Media,LLC2003,20092452.Chemistries and Detection Methods for SNP GenotypingOver the years,a number of chemistries were developed for dis-tinguishing two alleles of a SNP.The key for their adoption in high-throughput studies is dependent on the suitability for auto-mation.An ideal chemistry has to be universally applicable to any SNP (or to a substantial proportion of all human SNPs).Addi-tionally,high automation demands minimum steps in genotyping.It may be fair to say that no single SNP genotyping platform is good enough to serve all purposes.Generally,the chemistries for SNP genotyping can be roughly divided into two types based on the key reaction allowing for the SNP detection:(1)nonenzymatic differential hybridization (see Chapters 18and 19in this volume);(2)enzymatic reactions (see Chapter 23in this volume).Differential hybridization relies on different melting tempera-tures for matched and mismatched probes binding to the target DNA sequences.The Affymetrix SNP microarray employs this principle.For each SNP,four to six probes (25-mers each)are used.Affymetrix arrays can achieve very high density to accommodate millions of probes on a single chip.The newest Affymetrix Human SNP Array 6.0contains probes for 906,600SNPs and an additional 946,000probes for asses-sing copy number variations (CNVs).All the few million probes will be hybridized to their target sequences under the same temperature and buffer condition for the same amount of time,which is ideal for automated high-throughput SNP genotyping.However,the probes have to be effective in110100100010000SNP NumberSample SizeFig.16.1.An overview of platforms with regard to throughput of single nucleotide polymorphisms and sample size.Platforms are selected on the basis of reasonable running costs.246Ding and JinHigh-Throughput Methods for SNP Genotyping247 differentiating matched and mismatched targets.The probe sequences are determined by the local SNP sequences.Con-sequently,certain SNPs with‘‘odd’’local sequences cannot be selected,even if they are crucial tagging SNPs,SNPs in reg-ulatory regions,or SNPs that can change protein coding sequences(see Note1).Another example of differential hybridization is the Taq-Man SNP assay(see Chapters18and19for details).For each SNP,two TaqMan probes specific for each allele are used. These two probes carry different fluorescent dyes.The pre-sence of an allele(or both alleles for heterozygotes)is detected by the corresponding fluorescence signal(s)generated via5’-exonuclease cleavage of the probe(s).The main draw-back for the TaqMan SNP assay is its incapability to achieve even a very modest multiplex level.However,collaboration between Applied Biosystems and BioTrove(with their Open-Array platform)has enabled3,072TaqMan reactions(each reaction has a volume of only33nL)on a single slide.This platform may be particularly powerful when an extremely high number of samples is tested.Biomark(Fluidigm)is another system capable of miniaturized TaqMan assays to enable high throughput genotyping.For SNP genotyping based on enzymatic selectivity,there are mainly two types of assays.The first one is the primer extension(or single base extension,or minisequencing;see Chapter23in this volume).An extension primer annealing to the50end of a SNP site is extended by one or just a few bases.SNP calling is based on either the incorporated fluorescent nucleotide(SNPstream)or the extension product molecular weight(MassArray iPlex Gold assay). These assays provide a low background noise since the enzymatic fidelity in incorporating the right nucleotide is extremely high. The second one is based on DNA ligation.Molecular inversion probe technology(4)developed by ParAllele Biosciences(now part of Affymetrix,and used in the Affymetrix GeneChip custom SNP kits)is one example.Another example is SNPlex(Applied Biosystems).SNPlex achieves up to48-plex by including a series of unique ZipCode TM sequences in the allele-specific probes.The corresponding ZipChute TM probes of different lengths hybridize to the ZipCode TM sequences,and are subsequently separated and detected by capillary electrophoresis.In general,differential hybridization based platforms rely entirely on hybridization thermodynamic difference between matched and mismatched pairing of probes and targets.The selec-tion of analyzable SNPs is highly dependent on the local SNP sequence.Enzymatic selectivity based platforms are less dependent on SNP local sequences and are likely to be applicable to more SNPs.However,there are often more steps involved in SNP analysis,making full automation more complicated.3.Genotyping Platforms3.1.Genotyping Platforms for WGA Studies In earlier WGA studies,it was quite common that fewer than 100,000SNPs were analyzed,since the cost was too high to include more SNPs.However,the paradigm has shifted signifi-cantly,thanks to(1)detailed HapMap data guiding the selection of tagging SNPs,and(2)vastly improved ultrathroughput(in terms of SNP number,see Note2)genotyping platforms.At the moment,the Illumina BeadArray(newest version,High Density Human1M-Duo)and the Affymetrix SNP microarray(newest version,Human SNP Array6.0)are the most widely used plat-forms in WGA studies.Although both are named as‘‘array’’and have similar through-put,these two platforms differ substantially in many aspects.First of all,they use different methods for discriminating the two alleles of a SNP.The Affymetrix microarray technology uses differential hybridization between a set of25-mer probes matching to one of the two SNP alleles.As discussed earlier,this may limit the selec-tion of SNPs.However,since the human genome contains over five million SNPs,the Affymetrix SNP array can still include close to one million SNPs.The Illumina BeadArray technology uses primer extension to distinguish the two SNP alleles.Theoretically, the enzymatic fidelity in primer extension to distinguish the two SNP alleles is extremely high,regardless of local SNP sequences. Thus,BeadArray may be less limited in SNP selection.However, extra steps of primer extension and staining must be carried out before signals can be detected.Another important difference between the two platforms is the selection of SNPs.The Illumina system places more emphasis on tagging SNPs than the Affymetrix system.This may be due to the two constrains imposed on the Affymetrix system:(1)SNP local sequence content suitable for the universal hybridization condition;(2)a complexity-reduction step through selectively amplifying200–1,100-bp fragments generated by restriction enzyme digestion.However,whether a strictly tagging SNP based selection approach is superior to a hybrid selection approach (half tagging,half random SNPs)is still being debated.Rigorous comparison is not likely to be carried out given the prohibitive cost.Additionally,it is still not entirely clear how important are the SNPs that are not in the typical haplotype blocks for identifying genes associated with complex diseases.At any rate,with more SNPs detectable on a single chip,we may be able to analyze a sufficient number of tagging and random SNPs simultaneously.There are other technical differences that may not be relevant to the end users.For example,the Illumina BeadArray layout is unique for each chip.A decoding step is needed to determine248Ding and Jingeometrically how the beads specific for the SNPs are arranged on the chip.The Affymetrix SNP array uses25-mers for SNP calling via differential hybridization,while the Illumina BeadArray uses 50-mers for target capture and primer extension via hybridization.3.2.Genotyping Platforms for Fine Mapping Fine mapping here is defined as SNP genotyping analysis at a high density for selective genomic regions.Fine mapping often follows large-scale WGA studies to zoom into potential genes associated with the disease of interest.Fine mapping studies differ from WGA studies dramatically in many aspects,notably:1.Many fewer SNPs(e.g.,fewer than1,000)are genotyped.2.Such SNPs will be highly dependent on a particular disease ofinterest.Although one SNP array(Illumina,Affymetrix,or others)can be used for WGA studies of any disease,SNPs selected for fine mapping of one disease are likely to be mostly different from those selected for fine mapping of another disease3.Fine mapping may involve a larger sample size.In summary,fine mapping will require the genotyping of fewer (fewer than1,000)SNPs highly specific for each disease for a larger sample size.Once a WGA study has been done and potential targets have been identified,fine mapping should be performed immediately. Additionally,since potentially any SNP can be directly disease causing,it is essential to achieve a high call rate(call rate is defined as the success rate for correctly genotyping the entire SNP panel). Additionally,cost is also an issue to consider(see Note3).For these reasons,a good genotyping platform for fine mapping should achieve a high call rate for all selected SNPs,without time-consuming assay optimization processes,and at a relatively high multiplex level(e.g.,more than24SNPs for each individual reaction).SNP calling based entirely on differential hybridization is unli-kely to be highly successful in fine mapping.It may be very difficult if one needs to design discriminating probes for all1,000selected SNPs as the local sequences of these SNPs may have very different thermodynamic profiles(see Note4).Possibly for this reason, Affymetrix acquired ParAllele Biosciences for its molecular inver-sion probe technology for custom SNP genotyping arrays.The custom SNP genotyping arrays do not rely on differential hybridi-zation for SNP calling.Primer extension and allele-specific ligation-based platforms are more suitable for fine mapping applications.A number of commercial platforms are available(Table16.1).Since systematic and direct comparison of these platforms is not available,we will have to rely on company application notes and publications report-ing use of each technology for a rough comparison.High-Throughput Methods for SNP Genotyping249T a b l e 16.1C o m p a r i s o n o f f i n e -m a p p i n g g e n o t y p i n g p l a t f o r m sP l a t f o r mP r o v i d e r C h e m i s t r y D e t e c t i o n N u m b e r o f S N P sN u m b e r o f s a m p l e sN o t eU R LS N P s i n g l e n u c l e o t i d e p o l y m o r p h i s m aN o t t r u e m u l t i p l e x i n g ,64u n i p l e x T a q M a n S N P a s s a y s i n 64d i f f e r e n t n a n o h o l e s .250Ding and JinHigh-Throughput Methods for SNP Genotyping251Two platforms actually significantly surpass the arbitrary1,000SNPs cutoff mentioned earlier.The Illumina iSelectBeadArray uses single base extension,the same underlying chem-istry and detection as the High Density Human1M-Duo array,for genotyping up to60,800user-selected SNPs from12sampleson a single chip.The Affymetrix GeneChip custom SNP kits usethe molecular inversion probe technology acquired from ParAlleleBiosciences.These custom arrays can analyze3,000,5,000,or10,000user-selected SNPs for a single sample.One drawback forthese two platforms is the turnaround time,since at least3monthsis required for assay designs and array delivery.For a typical fine mapping project following a WGA study,itmight not be necessary to analyze tens of thousands of SNPs.Thus,a higher sample number throughput at a reasonable SNP numberthroughput(fewer than1,000SNPs)may be preferred.To this end,a few platforms are great choices for fine mapping,including theMassArray system(Sequenom)(see Chapter20in this volume),SNPlex(Applied Biosystems),and SNPstream(Beckman Coulter,in collaboration with Orchid Cellmark).These platforms can allachieve multiplex genotyping at20-plex or more routinely for96or384different reactions on a single plate.They are highly flexiblein several ways.Firstly,the throughput of SNP number and samplesize can be balanced at the users’discretion.Secondly,the turn-around time for assay design and delivery of reagents is much fasterthan the custom arrays from Illumina and Affymetrix(Table16.1).Failed SNP assays can be redesigned and reordered quickly.Unlessthe SNP number to be analyzed is well above1,000,these platformsmay be the first choices.4.New Advancesand OtherOutstanding IssuesThere are at least two exciting features about genomic research.One is the constant development of better and more affordabletechnologies(just like personal computers).The other feature isthe acquisition of new insights into gene structure and func-tion.One such example is the Vs are much lessfrequently found in the human genome than SNPs,with prob-ably around a few thousand to tens of thousand CNVs in theentire human genome.However,these variations involve muchlarger DNA segments,ranging from a few kilobases to a fewmegabases(5).Their importance in human health is manifestedby a number of diseases,such as CHARGE syndrome(6)andParkinson’s disease(7).252Ding and JinThe platform suppliers have taken notice of the importance ofCNVs.Both the Affymetrix Human SNP Array6.0and the IlluminaHigh Density Human1M-Duo offer good coverage for CNV analy-sis.For example,the Human SNP Array6.0targets3,182distinct,nonoverlapping segments with on average61probe sets per region.Earlier versions of these platforms have been used for CNV analysis(8–11).It is foreseeable that CNV analysis will be part of most,if not all,WGA studies.Other platforms are likely to follow the trend.Given thelimited number of CNVs in the human genome,fine mappinggenotyping platforms may also be useful for validation studies.Forexample,the MassArray iPlex platform will launch the CNV gen-otyping application by2008.Serious limitations in SNP genotyping are still present though.Atleast two of them are worth mentioning.The first one is SNP coveragefor different ethnic groups.The statistics provided by the best WGAplatforms are based on a very limited number of ethnic groups.Forexample,CHB(Han Chinese in Beijing)is not likely to represent allpeople in China,given that there are56distinct ethnic groups inChina.It may be necessary to include more SNPs for better coverageof other ethnic groups.Another limitation is on haplotype analysis.Allthe platforms mentioned in this chapter,when used in their standardformat,cannot achieve direct molecular haplotyping.Instead,statis-tical methods are used to infer haplotype information.Ultimately,the best solution to all the issues mentioned above,especially related to better and robust identification of the genesassociated with complex diseases,may come from the fourth-generation(see Note5and Chapter5in this volume),probablysingle molecule based,capable of sequencing the human genome forless than US$1,000.5.SummaryScientists and engineers have come a long way developing a wideselection of SNP genotyping platforms.It is now prime time tocarry out WGA studies to identify genes associated with complexdiseases,potentially yielding biomarkers for disease diagnosis andprognosis,and targets for drug development.Both a WGA plat-form and a fine mapping platform may be needed for a compre-hensive study.The technology will continue to be improved toinclude more SNPs.New technology(e.g.,for whole genomesequencing at low cost;see also Chapters5and6in this volume)will likely appear in the next5–10years and a paradigm shift inWGA studies may happen then.6.Notes1.At a fixed hybridization temperature,robust differential hybridi-zation may not be achieved for matched and mismatched targetsif a local SNP sequence has very high or very low GC content.2.Throughput is often defined by the number of SNPs that can begenotyped in one run,but this might not be entirely accurate as inmany situations(particularly when SNPs are served as biomarkersfor molecular diagnosis)DNA sample throughput may be moreimportant.3.Genotyping1,000SNPs for2,000samples(a total of twomillion SNP genotyping assays)is a lot more costly thangenotyping one million SNPs for two samples.In addition,since the1,000SNPs are highly dependent on the disease ofinterest,custom designs and even assay optimization areneeded,which further adds to the cost and time.4.To design a hybridization-based SNP microarray for the selected1,000SNPs is a lot more difficult than for a panel of any1,000SNPs.For the latter,the designer can choose any1,000SNPsfrom more than five million SNPs available by selecting thoseSNPs located in sequences with similar thermodynamic profiles.5.We consider the slab gel sequencing the first generation,capillary sequencing the second generation,and the Roche454,Illumina Genome Analyzer,and Applied BiosystemsSOLiD platforms as the third generation. AcknowledgementsC.D.is supported by the Stanley Ho Centre for Emerging Infec-tious Diseases and the Li Ka Shing Institute of Health Sciences. References1.Glazier,A.M.,Nadeau,J.H.and Aitman,T.J.(2002)Finding genes that underlie complex traits.Science298,2345–2349. 2.Becker,K.G.,Barnes,K.C.,Bright,T.J.and Wang,S.A.(2004)The genetic associa-tion database.Nat.Genet.36,431–432. 3.Ding,C.(2007)’Other’applications of sin-gle nucleotide polymorphisms.Trends Bio-technol.25,279–283.4.Hardenbol,P.,Baner,J.,Jain,M.,Nilsson,M.,Namsaraev, E. A.,Karlin-Neumann,G.A.,Fakhrai-Rad,H.,Ronaghi,M.,Willis,T.D.,Landegren,U.and Davis,R.W.(2003)Multiplexed genotyping with sequence-tagged molecular inversion probes.Nat.Biotechnol.21,673–678.5.Iafrate, A.J.,Feuk,L.,Rivera,M.N.,Listewnik,M.L.,Donahoe,P.K.,Qi,Y.,High-Throughput Methods for SNP Genotyping253Scherer,S.W.and Lee,C.(2004)Detection of large-scale variation in the human gen-ome.Nat.Genet.36,949–951.6.Jongmans,M.C.,Admiraal,R.J.,van derDonk,K.P.,Vissers,L.E.,Baas,A.F., Kapusta,L.,van Hagen,J.M.,Donnai,D., de Ravel,T.J.,Veltman,J.A.,Geurts van Kessel,A.,De Vries,B.B.,Brunner,H.G., Hoefsloot,L.H.and van Ravenswaaij,C.M.(2006)CHARGE syndrome:the pheno-typic spectrum of mutations in the CHD7 gene.J.Med.Genet.43,306–314.7.Singleton, A. B.,Farrer,M.,Johnson,J.,Singleton,A.,Hague,S.,Kachergus,J.,Huli-han,M.,Peuralinna,T.,Dutra,A.,Nussbaum, R.,Lincoln,S.,Crawley,A.,Hanson,M., Maraganore,D.,Adler,C.,Cookson,M.R., Muenter,M.,Baptista,M.,Miller,D.,Blan-cato,J.,Hardy,J.and Gwinn-Hardy,K.(2003)alpha-Synuclein locus triplication causes Parkinson’s disease.Science302,841.8.Redon,R.,Ishikawa,S.,Fitch,K.R.,Feuk,L.,Perry,G.H.,Andrews,T.D.,Fiegler,H., Shapero,M.H.,Carson,A.R.,Chen,W., Cho,E.K.,Dallaire,S.,Freeman,J.L., Gonzalez,J.R.,Gratacos,M.,Huang,J., Kalaitzopoulos,D.,Komura,D.,MacDonald, J.R.,Marshall,C.R.,Mei,R.,Montgomery, L.,Nishimura,K.,Okamura,K.,Shen,F., Somerville,M.J.,Tchinda,J.,Valsesia,A., Woodwark,C.,Yang,F.,Zhang,J.,Zerjal, T.,Armengol,L.,Conrad,D.F.,Estivill,X., Tyler-Smith,C.,Carter,N.P.,Aburatani,H.,Lee,C.,Jones,K.W.,Scherer,S.W.andHurles,M.E.(2006)Global variation incopy number in the human genome.Nature444,444–454.9.Bae,J.S.,Cheong,H.S.,Kim,J.O.,Lee,S.O.,Kim,E.M.,Lee,H.W.,Kim,S.,Kim,J.W.,Cui,T.,Inoue I.,and Shin,H.D.(2008)Identification of SNP markers forcommon CNV regions and association ana-lysis of risk of subarachnoid aneurysmalhemorrhage in Japanese population.Bio-mun.373,593–596.10.Blauw,H.M.,Veldink,J.H.,van Es,M.A.,van Vught,P.W.,Saris,C.G.,van derZwaag, B.,Franke,L.,Burbach,J.P.,Wokke,J.H.,Ophoff,R.A.and van denBerg,L.H.(2008)Copy-number variationin sporadic amyotrophic lateral sclerosis:agenome-wide ncet Neurol.7,319–326.11.Gunnarsson,R.,Staaf,J.,Jansson,M.,Ottesen,A.M.,Goransson,H.,Liljedahl,U.,Ralfkiaer,U.,Mansouri,M.,Buhl,A.M.,Smedby,K. E.,Hjalgrim,H.,Syvanen,A.C.,Borg,A.,Isaksson,A.,Jurlander,J.,Juliusson,G.and Rosenquist,R.(2008)Screening for copy-number alterations andloss of heterozygosity in chronic lympho-cytic leukemia–a comparative study of fourdifferently designed,high resolutionmicroarray platforms.Genes ChromosomesCancer47,697–711.254Ding and Jin。