中考数学真题分类汇编(第三期)专题1 有理数试题(含解析)
专题01:有理数-2021年广东地区中考数学真题与模拟试题精选汇编(解析版)

专题01:有理数-2021年广东地区中考数学真题与模拟试题精选汇编一、单选题1.(2021·广东中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【解析】由AB 的长度结合A 、B 表示的数互为相反数,即可得出A ,B 表示的数 【解答】解:∵0a b +=∴A ,B 两点对应的数互为相反数,∴可设A 表示的数为a ,则B 表示的数为a -, ∵6AB = ∴6a a --=, 解得:3a =-, ∴点A 表示的数为-3, 故选:A .【点评】本题考查了绝对值,相反数的应用,关键是能根据题意得出方程6a a --=. 2.(2021·广东中考真题)下列运算正确的是( ) A .()22--=- B .3333+= C .()22346a b a b =D .(a -2)2=a 2-4【答案】C【解析】利用绝对值符号化简可判断A ,利用同类项定义与合并同类项法则可判断B ,利用积的乘方运算法则可判断C ,利用完全平方公式可判断D .【解答】A . ()222--=≠-,选项A 计算不正确;B . 333333≠,选项B 计算不正确;C . ()223223246a b a b a b ⨯⨯==,选项C 计算正确;D . ()2222444a a a a -=-+≠-,选项D 计算不正确. 故选择C .【点评】本题考查绝对值化简,同类项、二次根式、积的乘方与完全平方公式等知识,掌握以上知识是解题关键.3.(2021·贵州黔东南苗族侗族自治州·中考真题)实数2021的相反数是( ) A .2021 B .2021- C .12021D .12021-【答案】B【解析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案. 【解答】解:2021的相反数是:2021-. 故选:B .【点评】本题主要考查相反数的定义,正确掌握其概念是解题关键.4.(2021·广东中考真题)若0a -+=,则ab =( )A B .92C .D .9【答案】B【解析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【解答】∵0a -≥0≥,且0a -+=∴0a =0==即0a -=,且320a b -=∴a =b =∴922ab == 故选:B .【点评】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.5.(2021·广东佛山市·九年级一模)数轴上表示﹣6和4的点分别是A 和B ,则线段AB 的长度是( ) A .﹣2 B .2C .﹣10D .10【答案】D【解析】先根据A 、B 两点所表示的数分别为-6和4,得出线段AB 的长为4-(-6),然后进行计算即可. 【解答】解:∵A 、B 两点所表示的数分别为-6和4, ∴线段AB 的长为4-(-6)=10. 故选D .【点评】此题考查了两点间的距离,关键是根据两点在数轴上表示的数,列出算式,此题较简单,是一道基础题.6.(2021·广东广州市·九年级一模)下列算式中,计算正确的是( ) A .2(3)-=﹣3 B .|3﹣π|=3﹣π C .(﹣3ab )2=6a 2b 2 D .3﹣3=127【答案】D【解析】根据二次根式的化简、绝对值的化简、积的乘方以及负整数指数幂进行判断即可; 【解答】A 、()23=3- ,故该选项错误;B 、3=3ππ-- ,故该选项错误;C 、()22239ab a b -= ,故该选项错误; D 、313=27- ,故该选项正确; 故选:D .【点评】本题考查了二次根式的化简、绝对值的化简、积的乘方以及负整数指数幂,正确掌握计算方法是解题的关键.7.(2021·广东九年级二模)﹣|﹣2021|等于( ) A .﹣2021 B .2021C .﹣12021D .12021【答案】A【解析】根据绝对值的性质“负数的绝对值是它的相反数”去绝对值即可. 【解答】由绝对值的性质可知,|﹣2021|=2021, ∴﹣|﹣2021|=﹣2021, 故选:A .【点评】本题考查了绝对值的性质,准确掌握概念法则是解题的关键.8.(2021·广东惠州市·九年级二模)实数,a b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||b a <B .a b -<C .0a b +>D .||a b >【答案】D【解析】首先根据数轴,写出a ,b 的取值范围,然后根据四个选项进行逐个判断即可得到答案; 【解答】解:解:根据数轴得到,-4<a <-3,2<b <3, ∵-4<a <-3,2<b <3,∴||b a >,故A 错误;∵-4<a <-3,2<b <3,∴a b ->,故B 错误; ∵-4<a <-3,2<b <3,∴0a b +<,故C 错误; ∵-4<a <-3,2<b <3,∴||a b >,故D 正确. 故选:D .【点评】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键. 9.(2021·广东深圳市·九年级其他模拟)在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ). A .3- B .2- C .1-D .2【答案】B【解析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【解答】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1. 因为CO =BO ,所以|a -1| =3, 解得a =-2或4, ∵a <0, ∴a =-2. 故选B .【点评】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键. 10.(2021·广东广州市·九年级二模)下列四个数中,最大的数是( ) A .1 B .0 C .|2|- D .-3【答案】C【解析】根据理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数可得答案. 【解答】最大的数是|-2|=2, 故选C .【点评】本题考查了有理数的比较大小,关键是掌握理数大小比较的法则.二、填空题11.(2021·广东惠州市·|1|0b -=,则2()a b +=______.【答案】4【解析】根据算术平方根的非负数性质以及绝对值的非负数的性质求出a 、b 的值,再代入所求式子计算即可.【解答】解:|1|0b -=,∴10a bb-=⎧⎨-=⎩,解得11 ab=⎧⎨=⎩,22()24a b∴+==.故答案为:4.【点评】本题考查了非负数的性质,包括绝对值和算术平方根的非负性,注意:互为相反数的两个数的和为0.12.(2021·广东佛山市·九年级一模)已知(a﹣3)2+|b﹣4|=0,则a的值是_____.【答案】5【解析】根据非负数性质求出a与b的值,然后将a与b代入原式即可求出答案.【解答】解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴a=3+2=5,故答案为:5.【点评】本题考查了实数的运算,解题的关键是根据几个非负数和为0,则这几个非负数均为0,正确求出a与b的值.13.(2021·广东佛山市·九年级二模)如果水位升高2m时,水位变化记作2m+,那么水位下降3m时,水位变化记作__________m.【答案】3-【解析】根据正数和负数表示相反意义的量,水位上升记为正,可得水位下降的表示方法.【解答】如果水位升高2m时,水位变化记作+2m,那么水位下降3m时,水位变化记作:-3m,故答案为:-3.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.14.(2021·广东惠州市·九年级一模)若|a,则a2-2b=______.【答案】-2【解析】首先根据非负数的性质,得|a-2|=0,由此即可求出a、b的值,再代入所求代数式中解答即可.【解答】解:∵,∴a-2=0,b-3=0,∴a=2,b=3,∴a2-2b=-2.故结果为:-2.【点评】此题主要考查非负数的性质,解题时注意题目中隐藏条件,掌握绝对值,平方根的非负性. 15.(2021·广东肇庆市·九年级一模)若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值是1,则2()2021a b cd m +-+的值是__________.【答案】2020;【解析】根据题意得到20,1,1a b cd m +===,代入计算即可. 【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值是1, ∴0,1,1a b cd m +===±, ∴21m =,∴2()2021a b cd m +-+=0-1+2021=2020, 故答案为:2020.【点评】此题考查已知字母的值求代数式的值,相反数的定义,倒数的定义,绝对值的性质,正确得到0,1,1a b cd m +===±是解题的关键.16.(2021·东莞外国语学校九年级一模)若()2210a b -++=,则3a b +=_________. 【答案】1【解析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【解答】解:∵()220a -≥,10b +≥且相加得零, ∴20a -=,10b +=, 解得2a =,1b =-,所以,()3321211a b +=+-=-=. 故答案为:1.【点评】本题考查了非负数的性质,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.(2021·广东九年级其他模拟)若x ,y 为实数,且|2x +y0,则x y 的值是_____.【答案】2【解析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. 【解答】解:根据题意得:2010x y y +=⎧⎨+=⎩,解得:121x y ⎧=⎪⎨⎪=-⎩,则x y =-11()2=2故答案是:2【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,掌握负整数指数幂是解决本题的关键.18.(2021·广东江门市·九年级一模)若2a ++(b ﹣3)2=0,则a b =_____. 【答案】-8【解析】根据绝对值的非负性,平方的非负性求出a=-2,b=3,再代入计算. 【解答】∵2a ++(b ﹣3)2=0,且2a 20,(3)0b +≥-≥, ∴a+2=0,b-3=0, ∴a=-2,b=3, ∴a b =(-2)3=-8, 故答案为:-8.【点评】此题考查绝对值的非负性,平方的非负性,有理数的乘方运算.19.(2021·阳江市阳东区大八镇大八初级中学九年级一模)已知a 、b 满足(a ﹣1)2,则a+b=_____.【答案】﹣1【解析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【解答】∵(a ﹣1)2, ∴a=1,b=﹣2, ∴a+b=﹣1, 故答案为﹣1.【点评】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.20.(2021·广东九年级一模)若x ,y 为实数,且|x ﹣2|+(y+1)2=0的值是__.【解答】解:由题意得:x -2=0,y +1=0,∴x =2,y =-1,== 点睛:本题考查了非负数的性质:几个非负数的和为0,则每一个非负数都是0. 三、解答题21.(2021·广东惠州市·九年级一模)计算:0113tan30(4)()2|2π-︒--++.【答案】3.【解析】直接利用特殊角的三角函数值以及绝对值的性质和负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式3122=-++122=++-3=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(2021·广东阳江市·九年级一模)计算:21|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭. 【答案】4-【解析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.【解答】21|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭12142=-⨯+-114=--4=-【点评】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键.23.(2021·东莞市东莞中学初中部九年级一模)计算:011(2021)1()2cos 453π--++-︒. 【答案】3【解析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=11322++-⨯113=+=3.【点评】本题考查零指数幂与负整指数幂、化简绝对值、余弦等知识,是重要考点,难度较易,掌握相关知识是解题关键.24.(2021·阳江市阳东区大八镇大八初级中学九年级一模)计算:202001(1)2sin 302-+-+︒-. 【答案】32【解析】根据绝对值的性质、有理数的乘方、特殊的三角函数值、零指数幂化简计算即可. 【解答】解:原式=1112122++⨯- =32. 【点评】本题考查了含绝对值、有理数乘方、特殊三角函数值、零指数幂的混合运算;掌握好相关的基础知识是解决本题的关键.25.(2021·广东惠州市·0o(2020)3tan 301π--.【答案】【解析】根据二次根式,零指数幂,特殊三角函数值,绝对值的运算法则计算即可.0o (2020)3tan 301π--+131-【点评】本题考查了二次根式,零指数幂,特殊三角函数值,绝对值,掌握运算法则是解题关键. 26.(2021·广东九年级二模)若a,b,c 为△ABC 的三边长 (1)化简:-+2+-||a b c a b c b a c -+---(2)若a,b ()220b -=,且c 是整数,求c 的值. 【答案】(1)2a ;(2)1<c<5.【解析】(1)由a ,b ,c 为三角形ABC 的三边,利用三角形的两边之和大于第三边列出关系式,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.(2)根据非负数的性质列式求出a 、b ,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可.【解答】(1)∵a ,b ,c 为△ABC 的三边, ∴a+b>c ,即−a−b+c<0,a+c>b ,即a−b+c>0,b−a−c<0,则|−a−b+c|+2|a−b+c|−|b−a−c|=a+b−c+2(a−b+c)+b−a−c=a+b−c+2a−2b+2c+b−a−c=2a ; (2)由题意得,a−3=0,b−2=0, 解得a=3,b=2, ∵3−2=1,3+2=5, ∴1<c<5.【点评】此题考查二次根式的性质,绝对值,三角形三边关系的应用,解题关键在于利用两边之和大于第三边.。
最新初中数学试卷分类汇编有理数解答题(附答案)

最新初中数学试卷分类汇编有理数解答题(附答案)一、解答题1.已知点在数轴上对应的数为,点对应的数为,且 G为线段上一点,两点分别从点沿方向同时运动,设点的运动速度为点的运动速度为,运动时间为 .(1)点对应的数为________,点对应的数为________;(2)若,试求为多少时,两点的距离为;(3)若,点为数轴上任意一点,且,请直接写出的值. 2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.4.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.5.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.6.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
2022年中考数学真题分类汇编:有理数

2022年中考数学真题分类汇编:有理数一、单选题(共15题;共45分)1.(3分)(2022·贺州)下列各数中,-1的相反数是()A.-1B.0C.1D.2【答案】C【解析】【解答】解:由相反数的定义可得:-1与1互为相反数.故答案为:C.【分析】根据只有符号不同的两个数互为相反数进行解答.2.(3分)(2022·北部湾)如图,数轴上的点A表示的数是−1,则点A关于原点对称的点表示的数是()A.-2B.0C.1D.2【答案】C【解析】【解答】解:∵数轴上的点A表示的数是−1,∴点A关于原点对称的点表示的数为1.故答案为:C.【分析】由题意可得数轴上的点A表示的数是-1,则点A关于原点对称的点在原点的右侧,且距离原点1个单位长度,据此解答.3.(3分)(2022·海南)为了加快构建清洁低碳、安全高效的能源体系,国家发布《关于促进新时代新能源高质量发展的实施方案》,旨在锚定到2030年我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标.数据1200000000用科学记数法表示为()A.1.2×1010B.1.2×109C.1.2×108D.12×108【答案】B【解析】【解答】解:1200000000=1.2×109.故答案为:B.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.4.(3分)(2022·黔东南)下列说法中,正确的是()A.2与-2互为倒数B.2与12互为相反数C.0的相反数是0D.2的绝对值是-2【答案】C【解析】【解答】解:A. 2与-2互为相反数,故答案为:A不正确B. 2与12互为倒数,故答案为:B不正确;C. 0的相反数是0,故答案为:C正确;D. 2的绝对值是2,故答案为:D不正确.故答案为:C.【分析】利用倒数的定义可对A作出判断;利用只有符号不同的两个数互为相反数,可对B作出判断;根据0的相反数是0,可对C作出判断;利用正数的绝对值等于它本身,可对D作出判断.5.(3分)(2022·绥化)化简|−12|,下列结果中,正确的是()A.12B.−12C.2D.-2【答案】A【解析】【解答】解:|−12|=12故答案为:A.【分析】利用绝对值的性质求解即可。
2023年湖南省中考数学真题分类汇编:有理数(含答案)

;2023年湖南省中考数学真题分类汇编:有理数一、选择题1.(2023·常德)3的相反数是( )A.3B.―3C.13D.―132.(2023·邵阳)2023的倒数是( )A.―2023B.2023C.12023D.―120233.(2023·株洲)计算:(―4)×32=( )A.―6B.6C.―8D.8 4.(2023·岳阳)2023的相反数是( )A.12023B.―2023C.2023D.―120235.(2023·衡阳)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )A.7.358×107B.7.358×103C.7358×104D.7.358×106 6.(2023·衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作+500元,则支出237元记作( )A.+237元B.―237元C.0元D.―474元7.(2023·怀化)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1068.(2023·长沙)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×10119.(2023·张家界)12023的相反数是( )A.12023B.―12023C.2023D.―202310.(2023·郴州)―2的倒数是( )A.2B.―12C.―2D.1211.(2023·邵阳)党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区(点)2022年接待游客约165000000人次,则165000000用科学记数法可表示为( )A.0.165×109B.1.65×108C.1.65×107D.16.5×107二、填空题12.(2023·岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 .13.(2023·张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 .14.(2023·常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 .三、计算题15.(2023·郴州)计算:(12)―1―3tan30°+(π―2023)0+|―2|.16.(2023·邵阳)计算:tan45°+(12)―1+|―2|.四、综合题17.(2023·长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足a2―c1+(b2+b1)2+|c2﹣a1|=0,b1―b22023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x的二次函数y1=2x2+kx+3与y2=m x2+x+n互为“美美与共”函数,求k,m,n的值;(2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,函数y1与y2互为“美美与共”函数.①求函数y2的图像的对称轴;②函数y2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x的二次函数y1=a x2+bx+c与它的“美美与共”函数y2的图像顶点分别为点A,点B,函数y1的图像与x轴交于不同两点C,D,函数y2的图像与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】B11.【答案】B12.【答案】3.783×10513.【答案】8.64×10514.【答案】8×10915.【答案】解:原式=2―3×33+1+2=2―1+1+2=4.16.【答案】解:tan45°+(12)―1+|―2|=1+2+2=5.17.【答案】(1)解:由题意可知:a2=c2,a1=c2,b1=―b2≠0,∴m=3,n=2,k=―1.答:k的值为―1,m的值为3,n的值为2.(2)解:①∵点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,∴对称轴为x=r+s2=―2r2,∴s=―3r,∴y2=s x2―2xx+1,∴对称轴为x=――2r2s =rs=―13.答:函数y 2的图像的对称轴为x =―13.②y 2=―3r x 2―2rx +1=―(3x 2+2x)r +1,令3x 2+2x =0,解得x 1=0,x 2=―23,∴过定点(0,1),(―23,1).答:函数y 2的图像过定点(0,1),(―23,1).(3)解:由题意可知y 1=a x 2+bx +c ,y 2=c x 2―bx +a ,∴A(―b 2a ,4ac ―b 24a),B(b 2c ,4ac ―b 24c ),∴CD =b 2―4ac |a|, EF =b 2―4ac 1―1,∵CD =EF 且b 2―4ac >0,∴|a|=|c|;①若a =―c ,则y 1=a x 2+bx ―a ,y 2=―a x 2―bx +a ,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则△CAD ,△CBD 为等腰直角三角形,∴CD =2|y A |,∴b 2+4a 2|a |=2⋅|―4a 2―b 24a |,∴2b 2+4a 2=b 2+4a 2,∴b 2+4a 2=4,∴S 正=12C D 2=12⋅b 2―4ac a 2=12⋅b 2+4a 2a2=2a 2,∵b 2=4―4a 2>0,∴0<a 2<1,∴S 正>2;②若a =c ,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.。
2020年中考数学试题汇编之1有理数试题及答案(共261题)初中数学

2020年中考数学试题汇编之1有理数试题及答案(共261题)初中数学一、选择题1.(2018年福建省泉州市)运算:=-0)5(〔 〕. A .1 B .0 C .-1 D .-5【答案】A2.(2018年梅州市)12-的倒数为〔 〕 A .12 B .2C .2-D .1- 【答案】C3.(2018年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为〔 〕A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元【答案】C4.(2018年抚顺市)2-的相反数是〔 〕A .2B .12-C .2-D .12 【答案】A5.〔2018年绵阳市〕2018年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究讲明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示那个数是A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×106【答案】C6.〔2018年绵阳市〕假如向东走80 m 记为80 m ,那么向西走60 m 记为A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 【答案】A7.〔2018呼和浩特〕2-的倒数是〔 〕A .12-B .12C .2D .2-答案:A8.〔2018年龙岩〕-2的相反数是〔 〕A .-2B .2C .21D .-21 【答案】B9.〔2018年铁岭市〕目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为〔 〕A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元 【答案】C 10.〔2018年黄石市〕12-的倒数是〔 〕 A .2 B .12 C .12- D .2- 【答案】D11.〔2018年广东省〕«广东省2018年重点建设项目打算〔草案〕»显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的选项是〔 〕A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元 【答案】A12.〔2018年枣庄市〕实数a ,b 在数轴上的对应点如下图,那么以下不等式中错误的选项是......〔 〕 A .0ab > B .0a b +< C .1a b <D .0a b -< 【答案】C 13.〔2018年枣庄市〕-12的相反数是〔 〕 A .2 B .2-C .12D .12- 【答案】C 14.〔2018年赤峰市〕景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 〔 〕A 、1.196×108立方米B 、1.196×107立方米C 、11.96×107立方米D 、0.1196×109立方米【答案】A15.〔2018年赤峰市〕3(3)-等于〔 〕 A 、-9 B 、9 C 、-27 D 、2716.〔2018贺州〕运算2)3(-的结果是〔 〕.A .-6B .9C .-9D .6 【答案】B17.〔2018年浙江省绍兴市〕甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为〔 〕A .8.1×190-米B .8.1×180-米C .81×190-米D .0.81×170-米【答案】B18.〔2018年江苏省〕2-的相反数是〔 〕 a b 0A .2B .2-C .12D .12- 【答案】A19.〔2018贵州黔东南州〕以下运算正确的选项是〔 C 〕A 、39±=B 、33-=- C 、39-=- D 、932=- 【答案】B20.〔2018年淄博市〕假如2()13⨯-=,那么〝〞内应填的实数是〔 D 〕 A . 32 B . 23 C .23- D .32- 21.〔2018襄樊市〕通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的操纵,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为〔 B 〕A .53.110-⨯B .63.110-⨯C .73.110-⨯D .83.110-⨯ 解析:此题考查科学记数法,0.0000031=63.110-⨯,应选B 。
初三数学有理数试题答案及解析

初三数学有理数试题答案及解析1.计算:.【答案】2.【解析】针对特殊角的三角函数值,绝对值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=.【考点】1.实数的运算;2.特殊角的三角函数值;3.绝对值;4.零指数幂;5.二次根式化简.2.计算:【答案】.【解析】分别求出特殊角的三角函数,负指数次幂,零指数次幂,立方根,负数的偶次幂,再依据实数的运算法则计算即可.试题解析:原式=.【考点】1.特殊角的三角函数2.负指数次幂3.零指数次幂4.立方根.3.-3的倒数等于()A.-B.C.3D.-3【答案】A.【解析】倒数的定义:乘积为1的两个数互为倒数;注意0没有倒数.-3的倒数是,故选A.【考点】倒数的定义.4.计算:.【答案】2014【解析】原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.试题解析:原式=5-3-1+2013=2014.【考点】实数的运算;零指数幂.5.定义新运算“”,a b=a-4b,则12(-1)=________.【答案】8【解析】根据已知可将12(-1)转换成a-4b的形式,然后将a=12,b=-1代入计算即可:12(-1)=×12-4×(-1)=8.6.﹣3的相反数是.【答案】3.【解析】一个数的相反数就是在这个数前面添上“-”号.试题解析:-(-3)=3,故-3的相反数是3.考点: 相反数.7. -2的相反数是()A.2B.-2C.D.【答案】A.【解析】∵﹣2<0,∴﹣2相反数是2.故选A.【考点】相反数.8.-2的相反数是【】A.2B.-2C.D.【答案】A。
【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-2的相反数是2。
故选A。
9.﹣3的相反数是A.B.C.D.【答案】A【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
浙江省2021年中考数学真题分项汇编-专题01 有理数(含答案解析)

专题01有理数一、有理数的应用1.(2021·浙江衢州市)21的相反数是( )A .21B .-21C .-121D .121 【答案】B【分析】依据相反数的定义求解即可.【详解】21的相反数是-21,故选:B .【点睛】本题考查了相反数的知识;解题的关键是熟练掌握相反数的性质,从而完成求解.2.(2021·浙江杭州市)()2021--=( )A .2021-B .2021C .12021-D .12021【答案】B【分析】由去括号法则,即可得到答案.【详解】解:()20212021--=.故选:B .【点睛】本题考查了去括号法则,解题的关键是掌握去括号法则进行计算.3.(2021·浙江宁波市)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2 【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .4.(2021·浙江金华市)实数12-,2,3-中,为负整数的是( )A .12-B .C .2D .3- 【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数 故选D .【点睛】本题考查了实数的分类,比较简单.5.(2021·浙江温州市)计算()22-的结果是( )A .4B .4-C .1D .1-【答案】A【分析】直接利用乘方公式计算即可.【详解】解:∵()()()22224-=-⨯-=,故选:A .【点睛】本题考查了有理数的乘方运算,解决本题的关键是牢记乘方概念和计算公式,明白乘方的意义是求n 个相同因数积的运算即可.6.(2021·浙江绍兴市)实数2,0,3- )A .2B .0C .3-D 【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵302-<<<,∴所给的实数中,最小的数是-3;故选:C .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.(2021·浙江)实数2-的绝对值是( )A .2-B .2C .12D .12- 【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.8.(2021·浙江省丽水市)-2的倒数是( )A .-2B .12-C .12D .2 【答案】B【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握二、科学记数法9.(2021·浙江衢州市)2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000,其中数据1412000000用科学记数法表示为( )A .814.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:91412000000=1.41210⨯.故选:C .【点睛】本题主要考查了科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.10.(2021·浙江杭州市)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜纪录,数据10909用科学记数法可表示为( )A .50.1090910⨯B .41.090910⨯C .310.90910⨯D .2109.0910⨯ 【答案】B【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n a <⨯<为正整数,据此解题.【详解】解:10909用科学记数法可表示为41.090910⨯,故选:B .【点睛】本题考查用科学记数法表示绝对值大于1的数,是基础考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江宁波市)2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为( )A .73210⨯B .83.210⨯C .93.210⨯D .90.3210⨯ 【答案】B【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 3.2a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到3的后面,所以8.n =【详解】解:8320000000=3.210.⨯本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.12.(2021·浙江金华市)据科学家估计,太阳与地球的平均距离大约是150000000千米,现将数字150000000用科学记数法表示应为( )A .71510⨯B .71.510⨯C .90.1510⨯D .81.510⨯【答案】D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将150000000用科学记数法表示为:1.5×108. 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.(2021·浙江温州市)第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为( )A .621810⨯B .721.810⨯C .82.1810⨯D .90.21810⨯ 【答案】C【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:8218000000=2.1810⨯,故选:C .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 和n 的值是解题关键.14.(2021·浙江绍兴市)第七次全国人口普查数据显示,绍兴市常住人口约为5 270 000人,这个数字5270 000用科学记数法可表示为( )A .70.52710⨯B .65.2710⨯C .552.710⨯D .75.2710⨯【答案】B【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将5270 000用科学记数法表示为:5.27×106.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.(2021·浙江嘉兴市)2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为( )A .65510⨯B .75.510⨯C .85.510⨯D .80.5510⨯ 【答案】B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:55000000=5.5×107.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.。
中考数学专题复习《有理数的运算》测试卷-附带答案

中考数学专题复习《有理数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是()A.−4是16的一个平方根B.两个无理数的和一定是无理数C.无限小数是无理数D.0没有算术平方根2.现规定一种运算:a∗b=ab−a−b,其中a,b为有理数,则2∗(−1)=()A.−6B.−3C.5D.113.小夕学习了有理数运算法则后,编了一个计算程序.当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的3倍与-2的差.当他第一次输入-6,然后又将所得的结果再次输入后,显示屏上出现的结果应是()A.-46B.-50C.-58D.-664.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9−32÷8=0÷8=0.乙:24−(4×32)=24−4×6=0.丙:(36−12)÷32=36×23−12×23=16.丁:(−3)2÷13×3=9÷1=9.A.甲B.乙C.丙D.丁5.下列说法正确的是()A.有理数与数轴上的点一一对应B.若a,b互为相反数,则ab=−1C.√16的算术平方根为4D.3.40万是精确到百位的近似数6.定义一种关于整数n的“F”运算:⑴当n是奇数时,结果为3n+5⑴当n是偶数时,结果是k2n (其中k是使k2n是奇数的正整数),并且运算重复进行.例如:取n=58 第一次经F运算是29 第二次经F运算是92 第三次经F运算是23 第四次经F运算是74… 若n=9 则第2023次运算结果是()A.6B.7C.8D.97.对于若干个数先将每两个数作差再将这些差的绝对值相加这样的运算称为对这若干个数进行“绝对运算”.例如对于123进行“绝对运算” 得到:|1−2|+|2−3|+|1−3|=4.①对13510进行“绝对运算”的结果是29②对x−25进行“绝对运算”的结果为A则A的最小值是7③对a b b c进行“绝对运算” 化简的结果可能存在8种不同的表达式以上说法中正确的个数为()A.0B.1C.2D.38.如图所示数轴上A,B两点分别对应有理数a,b则下列结论正确的是()A.b−a<0B.a−b>0C.a+b>0D.|a|−|b|>09.用“⑴”定义一种新运算:对于任意有理数x和y x⑴y=a2x+ay+1(a为常数)如:2⑴3=a2⋅2+ a⋅3+1=2a2+3a+1.若1⑴2=3 则3⑴6的值为()A.7B.8C.9D.1310.已知有理数a,b,c满足abc<0则a|a|+|b|b+c|c|−|abc|abc的值是()A.±1B.0或2C.±2D.±1或±2二填空题11.定义一种新运算“⑴” 规定有理数a⊕b=4ab−b如:2⊕3=4×2×3−3=21根据该运算计算3⊕(−3)=.12.定义新运算:对于任意有理数a b 都有a⊕b=12(|a−b|+a+b)例如4⊕2=12(|4−2|+4+2)=4.将1,2,3,4,⋯,50这50个自然数分成25组每组2个数进行a⊕b运算得到25个结果则这25个结果的和的最大值是.13.对于任意有理数a b 定义新运算:a⑴b=a2-2b+1 则2⑴(-6)=.14.a为有理数定义运算符号∇:当a>−2时∇a=−a当a<−2时∇a=a当a=−2时∇a=a根据这种运算则∇[4+∇(2−5)]的值为.15.在学习了有理数的运算后小明定义了新的运算:取大运算“V”和取小运算“Λ” 比如:3 V 2=3 3Λ2=2 利用“加减乘除”以及新运算法则进行运算下列运算中正确的是.①[3V(-2)]Λ4=4②(aVb)Vc=aV(bVc)③-(aVb)=(-a)Λ(-b)④(aΛb)×c=acΛbc16.已知a b c为非零有理数请你探究以下问题:(1)当a<0时a |a|=(2)ab|ab|+|bc|bc+ca|ca|+|abc|abc的最小值为.17.设有理数a b c满足a+b+c=0 abc> 0 则a b c中正数的个数为三计算题18.已知a b是有理数运算“⊕”的定义是:a⊕b=ab+a−b.(1)求2⊕(−3)的值(2)若x⊕34=1求x的值(3)运算“⊕”是否满足交换律请证明你的结论.19.学习了有理数的运算后王老师给同学们出了这样的一道题.计算:711516×(−8).解:=(72−116)×(−8)=72×(−8)−116×(−8)=−576+12=−57512.请你灵活运用王老师讲的解题方法计算:392326÷(−113).20.用“Δ”定义新运算对于任意有理数a b都有aΔb=a2−ab.例如:7Δ4=72−7×4=21.(1)求(−2)Δ5的值(2)若继续用“*”定义另一种新运算a∗b=3ab−b2例如:1∗2=3×1×2−22=2.求4∗(2Δ3).21.现定义一种新运算“*” 对任意有理数a b规定a*b=ab+a﹣b例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值(2)求(﹣3)*[(﹣2)*5]的值.22.已知a b为有理数现规定一种新运算⑴ 满足a※b=a×b+1例如:4※5=4×5+1= 21.(1)求2※(−4)的值(2)若a=5|b|=3且a×b<0求(a※b)※(−b)的值.23.实数运算:(1)√16+2×√9−√273(2)|1−√2|+√4−√−83.24.简便运算:(1)82022×(−0.125)2023(2)992−98×100.25.定义新运算:对于任意实数a b(a≠0)都有a*b= b a﹣a+b 等式右边是通常的加减除运算比如:2*1= 12﹣2+1=﹣12.(1)求4*5的值(2)若x*(x+2)=5 求x的值.26.a b为有理数且|a+b|=a−b试求ab的值.27.如果有理数a,b满足|ab−2|+(1−b)2=0试求1ab+1(a+1)(b+1)+1(a+2)(b+2)+⋅⋅⋅+1(a+2007)(b+2007)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数一.选择题1. (xx·广西梧州·3分)﹣8的相反数是()A.﹣8 B.8 C.D.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2. (xx·广西梧州·3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. (xx·湖北江汉·3分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.4. (xx·湖北江汉·3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.5. (xx·湖北荆州·3分)如图,两个实数互为相反数,在数轴上的对应点分别是点A.点B,则下列说法正确的是()A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上【解答】解:∵点A.点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A.点B的距离相等,∴原点在线段AB的中点处,故选:B.6. (xx·湖北十堰·3分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.(xx·四川省攀枝花·3分)如图,实数﹣3.x、3.y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.8.(xx·云南省曲靖·4分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.9.(xx·云南省曲靖·4分)截止xx年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.10.(xx·辽宁省沈阳市)(2.00分)辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将81000用科学记数法表示为:8.1×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(xx·重庆市B卷)(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A.﹣1是负整数,故选项错误;B.0是非正整数,故选项错误;C.是分数,不是整数,错误;D.1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.12.(xx·辽宁省盘锦市)﹣的绝对值是()A.2 B.C.﹣D.﹣2【解答】解:||=.故选B.13.(xx·辽宁省盘锦市)某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5【解答】解:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6.故选A.14.(xx·辽宁省葫芦岛市) 据旅游业数据显示,xx年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 1.29×108.【解答】解:129000000=1.29×108.故答案为:1.29×108.15.(xx·辽宁省葫芦岛市) 如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选D.16.(xx·辽宁省抚顺市)(3.00分)﹣的绝对值是()A.﹣ B.C.﹣ D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣的绝对值是:.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.17.(xx·辽宁省阜新市)﹣xx的相反数是()A.﹣xx B.xx C.±xx D.﹣【解答】解:﹣xx的相反数是xx.故选B.18. (xx•呼和浩特•3分)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.19. (xx•呼和浩特•3分)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.20. (xx•乐山•3分)﹣2的相反数是()A.﹣2 B.2 C.D.﹣解:﹣2的相反数是2.故选B.21. (xx•广安•3分)﹣3的倒数是()A.3 B.C.﹣ D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.22. (xx•广安•3分)近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:65 000 000=6.5×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23. (xx•莱芜•3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.24. (xx•莱芜•3分)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()A.14.7×107B.1.47×107C.1.47×108D.0.147×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.47亿用科学记数法表示为1.47×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.25. (xx•陕西•3分)-的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.26.(xx·湖北咸宁·3分)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.27.(xx·吉林长春·3分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.28.(xx·吉林长春·3分)长春市奥林匹克公园即将于xx年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010 C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(xx·江苏常州·2分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.30.(xx·辽宁大连·3分)﹣3的绝对值是()A.3 B.﹣3 C.D.解:|﹣3|=﹣(﹣3)=3.故选A.31.(xx·江苏镇江·3分)0.000182用科学记数法表示应为()A.0182×10﹣3B.1.82×10﹣4C.1.82×10﹣5D.18.2×10﹣4【解答】解:0.000182=2×10﹣4.故选:B.32.(xx·湖北咸宁·3分)xx年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】123500000000的小数点向左移动11位得到1.235,所以 123500000000用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.填空题1. (xx·广西贺州·3分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为mm.【解答】解:0.00000029=2.9×10﹣7,故答案为:2.9×10﹣7.2. (xx·湖北十堰·3分)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为3.6×104km .【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:36000km=3.6×104km.故答案为:3.6×104km.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(xx·云南省昆明·3分)在实数﹣3,0,1中,最大的数是 1 .【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.4.(xx·云南省昆明·3分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(xx·云南省曲靖·3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m 时,水位的变化情况是﹣3m .【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.6.(xx·云南省·3分)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.(xx·云南省·3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(xx·浙江省台州·4分)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.9.(xx·辽宁省抚顺市)(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为8.27×109.【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8270000000=8.27×109,故答案为:8.27×109.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10. (xx•乐山•3分)计算:|﹣3|= .解:|﹣3|=3.故答案为:3.11. (xx•乐山•3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B 关于点A的对称点,则点C表示的数为.解:设点C所表示的数为x.∵数轴上A.B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.12.(xx·江苏镇江·2分)﹣8的绝对值是8 .【解答】解:﹣8的绝对值是8..13.(xx·江苏常州·2分)计算:|﹣3|﹣1= 2 .【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.(xx·江苏常州·2分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三.解答题1.2.3.4.5.6.7.8.9.10.如有侵权请联系告知删除,感谢你们的配合!精品。