平方根和立方根培优练习题汇编
平方根培优好题

平方根、立方根、实数培优一、填空题1的算术平方根是。
2、已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为米。
32(1)0,b -==。
4、已知x y y +=则=。
5=a 、x 、y 是两两不相等的实数,则22223x xy y x xy y +--+的值是。
6、已知a 、b 为正数,则下列命题成立的:若32,1;3,6, 3.2a b a b a b +=≤+=+=≤若;若根据以上3个命题所提供的规律,若a+6=9≤。
7、已知实数a 满足21999,1999a a a -=-=则。
8、已知实数211,,a-b 0,24c a b c c c ab-+=满足则的算术平方根是。
9、已知x 、y 是有理数,且x 、y 满足22323x y ++=-,则x+y=。
10、由下列等式:===…… 所揭示的规律,可得出一般的结论是。
11、已知实数a 满足0,11a a a +=-++=那么。
12、设A B ==则A 、B 中数值较小的是。
1312 5.28,y -=则x=,y=.14有意义的x 的取值范围是。
15、若101,6,a aa += 且 16、一个正数x 的两个平方根分别是a+1和a-3,则a=,x=.17、写出一个只含有字母的代数式,要求:(1)要使此代数式有意义,字母必须取全体实数;(2)此代数式的值恒为负数。
二、选择题:18( )A 、-6 B 、6 C 、±6 D19、下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-23;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( )A 、1个B 、2个C 、3个D 、4个20、若3,b a b +a ,则的值为( )A 、0B 、1C 、-1D 、221,a b ===( )A 、10abB 、310abC 、100abD 、3100ab22、使等式2(x =成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定23、如果0,a ( ) A 、 B 、- C 、 D 、-24、下面5个数:13.1416,1ππ-,其中是有理数的有( )A 、0个B 、1个C 、2个D 、3个25、已知0,0,150,x y x y -= 且26、已知:27、在实数范围内,设20064(1x a x =++,求a 的各位数字是什么?28\已知x 、y 是实数,且2(1)x y -+29、解方程⑴、3x 2-27=0 ⑵、(2x +3)2=1630、若,622=----y x x 求y x 的立方根.31、已知,21221+-+-=x x y 求y x 的值.32、已知互为相反数,求a ,b 的值。
《平方根》《立方根》习题精选精练

学习好帮手14A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个 C .5个 D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根 23.下列命题正确的是( ) A .49.0的平方根是0.7 B .0.7是49.0的平方根 C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( ) A .1917±=x B .1917=xC .1817=x D .1817±=x26.下列各式中,正确的是( )A.2)2(2-=- B. 9)3(2=-C. 39±=±D. 393-=- 27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 31.满足x 是 32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是a学习好帮手16(7(8(9(10)已知22b a ++|b 2-10|=0,求a +b 的值.(11)阅读下列材料,然后回答问题。
完整版)平方根立方根提高练习题

完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。
2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。
3.一个数的立方根是它本身,则这个数是(A)。
4.数n的平方根是x,则n+1的算术平方根是(C)。
5.如果y=6+2,那么xy的算术平方根是(D)。
6.若a-b=3,则xy的值为(B)。
7.已知:a-b=2,那么xy的算术平方根是(C)。
8.若a<b<c,化简3a-b+c的结果为(B)。
二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。
10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。
11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。
解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。
解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。
平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。
而在数学中,平方根和立方根是我们常常会遇到的概念。
它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。
下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。
一、平方根练习题1. 计算下列各数的平方根:a) 9b) 16c) 25d) 36e) 49答案:a) √9 = 3b) √16 = 4c) √25 = 5d) √36 = 6e) √49 = 72. 计算下列各数的平方根(保留两位小数):a) 2b) 5c) 8d) 10e) 13答案:a) √2 ≈ 1.41b) √5 ≈ 2.24c) √8 ≈ 2.83d) √10 ≈ 3.16e) √13 ≈ 3.613. 判断下列各数是否为完全平方数:a) 16b) 21c) 36d) 42e) 49答案:a) 是b) 否c) 是d) 否e) 是二、立方根练习题1. 计算下列各数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 5e) ∛216 = 62. 计算下列各数的立方根(保留两位小数):a) 1b) 10c) 25d) 50e) 100答案:a) ∛1 = 1b) ∛10 ≈ 2.15c) ∛25 ≈ 2.92d) ∛50 ≈ 3.68e) ∛100 ≈ 4.643. 判断下列各数是否为完全立方数:a) 8b) 27c) 36d) 49e) 64答案:a) 否b) 是c) 是d) 否e) 是通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。
同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。
在实际生活中,平方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们常常需要用到这些概念。
初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
平方根立方根综合提高训练题

1、化简:=-2)3(π 。
2.2.676=,26.76=,则a 的值等于 。
3. 下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.下列运算中,错误的是( ) ①1251144251=, ②4)4(2±=-, ③22222-=-=-,④2095141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个5.若51=+m m ,则mm 1-的平方根是( ) (A) 2± (B) 1± (C) 1 (D) 2 6.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 57、若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义; 10.21++a 的最小值是________,此时a 的取值是________11. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤12. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +13. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >5.填写>号和<号,112___53 21___2310-6.化简:2773|31|2---++)( ()a b c a -c c -b b -a >>++四、解答题 1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值 2.332113x y --和互为相反数,则y x=( ) 3. 33y x +=0,则x 与y 的关系为________4.已知M=1a 8a ++是a+8的算术平方根,N=b 3b -是b-3的立方根,则M+N 的平方根为( ) 在数轴上画出表示的点和17-131.已知()0232212=++++-z y x ,求x+y+z 的值.2.若x ,y 满足52112=+-+-y x x ,求xy 的值.3.求55=-+x x 中的x .4.若115+的小数部分为a ,115-的小数部分为b ,求a+b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围.。
平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。
其中,平方根和立方根是我们常见的数学概念之一。
平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。
在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。
练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。
例如,对于4来说,2的平方等于4,所以4的平方根为2。
同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。
练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。
例如,对于8来说,2的立方等于8,所以8的立方根为2。
同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。
练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。
例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。
平方根和立方根的计算练习题

平方根和立方根的计算练习题在数学中,平方根和立方根是基本的运算,对于学习数学的人来说,熟练掌握计算平方根和立方根是非常重要的。
本文将给出一些平方根和立方根的计算练习题,帮助读者巩固和提高这两个运算的能力。
1. 计算以下数的平方根:a) 16b) 25c) 36d) 49e) 64f) 81g) 100解答:a) √16 = 4b) √25 = 5c) √36 = 6d) √49 = 7e) √64 = 8f) √81 = 9g) √100 = 102. 计算以下数的立方根:a) 8b) 27c) 64d) 125e) 216f) 343g) 512解答:a) ³√8 = 2b) ³√27 = 3c) ³√64 = 4d) ³√125 = 5e) ³√216 = 6f) ³√343 = 7g) ³√512 = 83. 计算以下数的平方根和立方根:a) 144c) 1296d) 4096e) 6561f) 10000解答:a) √144 = 12, ³√144 = 2b) √625 = 25, ³√625 = 5c) √1296 = 36, ³√1296 = 6d) √4096 = 64, ³√4096 = 8e) √6561 = 81, ³√6561 = 9f) √10000 = 100, ³√10000 = 104. 求以下数的平方根的近似值,取两位小数:a) 7b) 15c) 28d) 50e) 73f) 96a) √7 ≈ 2.65b) √15 ≈ 3.87c) √28 ≈ 5.29d) √50 ≈ 7.07e) √73 ≈ 8.54f) √96 ≈ 9.805. 求以下数的立方根的近似值,取两位小数:a) 9b) 20c) 37d) 64e) 91f) 125解答:a) ³√9 ≈ 2.08b) ³√20 ≈ 2.71c) ³√37 ≈ 3.30d) ³√64 ≈ 4.00e) ³√91 ≈ 4.50f) ³√125 ≈ 5.00通过以上练习题,我们可以加深对平方根和立方根的计算的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习-----好资料
平方根和立方根
姓名:分数:
1•请你观察思考下列计算过程:
7112=121,. V2A =11 ;同样,;1112 =12321 ; . ,12321 =111 ;•••
由此猜想.12345678987654321的值是多少?
2•不用计算器(1)比较2, 3, 3 20的大小(2)比较与2.3的大小(3)试比较315与6的大小。
*3 .已知.29的整数部分为a,小数部分为b,求3a-2b的值。
*4 •计算:|运+ 石—2〔+|—4 + 72+73
5•已知2a -1的平方根是-3 , 3a b -1的算术平方根是4,求a 2b的平方根。
6.已知m , n是有理数,且C-5 2)m • (3 -2、、5)n ^0,求m , n的值。
7.已知实数m满足2009-m +Jm - 2010 =m那么m-2009 2=( )
A 2008
B 2009
C 2010
D 2007
—2a xi a —3+J3—a 1993
8.已知x=(寸),求x的个位数字。
9.已知9 ■7与9 - -、7的小数部分分别为x , y,你能求出3x 2y的值吗?
学习-----好资料
10. 若.2 -x -2 -y =6,试求y x 的平方根。
11.
已知一个自然数的算术平方根是 a,则该自然数
的下一个自然数的算术平方根是( )
13.已知x y 3是x y - 3的算术平方根,B = x ^y 3 x 2y 是x 2y 的立方根,试求B - A 的 立方根。
*13.观察右图,每个小正方形的边长均为 1,
(1) 图中阴影部分的面积是多少?边长是多少?
(2) 估计边长的值在哪两个整数之间。
*12 .已知实数
5 5 5 5的小数部分为a , 7 5 7 — 小数部分为b ,求7a+5b 的值。
12.已知
J y 2x +x 求7(x • y) -20的立方根。
学习-----好资料
14 设2003x3 =2004y3 =2005z3, xyz . 0 ,且32—2 y2~2^z2^ 25. "
1 1 1 求的值。
xyz。