纳米材料论文
纳米材料论文

纳米材料论文纳米材料具有独特的尺度效应和界面效应,具备出色的物理、化学和生物学性能,在材料科学领域引起了广泛的关注和研究。
本文将针对纳米材料的合成、性质及其在各领域的应用进行综述,探讨其在未来的发展方向和前景。
一、纳米材料的合成方法纳米材料的制备方法多种多样,常见的包括溶液法、气相法、固相法和凝聚法等。
其中,溶液法是一种常用且有效的纳米材料合成方法,通过调控反应条件、控制反应物浓度和温度等因素,可以实现纳米颗粒的可控合成。
气相法则适用于制备高纯度和无杂质的纳米材料,通过在适当的温度和压力下使气体反应生成纳米材料。
固相法主要适用于制备纳米线或纳米晶,通过热处理、溶解、沉淀等方法得到纳米尺度的材料颗粒。
凝聚法则是通过凝聚剂的作用使纳米颗粒形成物质的凝聚态,如通过热处理使纳米材料形成块状材料。
二、纳米材料的性质研究纳米材料的性质研究是纳米科学和纳米技术的基础,通过对纳米材料的结构、形貌、成分和性能进行表征和分析,可以深入了解其特殊性质及其产生机制。
常用的表征手段包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和原子力显微镜(AFM)等。
透射电子显微镜可以观察到纳米颗粒的形貌和尺寸,并通过选区电子衍射(SAED)分析纳米材料的晶体结构。
扫描电子显微镜则可以获取纳米颗粒的表面形貌和形状信息。
X射线衍射用于分析纳米材料的晶体结构和晶格常数。
原子力显微镜则可以获得纳米颗粒的表面形貌和力学性质等。
纳米材料的性质主要包括光学性质、电子性质、磁性质和力学性质等。
光学性质是纳米材料研究的重要方向之一,由于其尺寸效应和界面效应的存在,纳米材料在可见光和红外光谱范围内显示出独特的吸收、发射和散射性质。
电子性质方面,纳米材料的载流子输运性质、电学性质和电磁性质都与其尺寸和结构密切相关。
磁性是纳米材料的另一个重要性质,由于表面自旋和量子尺寸效应的存在,纳米材料具有较高的磁响应性能。
力学性质主要研究纳米材料的硬度、断裂强度和弹性模量等力学特性。
[纳米材料与纳米技术论文]纳米技术的应用论文
![[纳米材料与纳米技术论文]纳米技术的应用论文](https://img.taocdn.com/s3/m/b21e9c57a26925c52cc5bfc9.png)
[纳米材料与纳米技术论文]纳米技术的应用论文纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,下面小编给大家分享一些纳米材料与纳米技术论文,大家快来跟小编一起欣赏吧。
纳米材料与纳米技术论文篇一纳米材料的生物安全性摘要:随着纳米科技的迅猛发展,纳米材料得到广泛应用。
本文通过对其生物安全性问题的提出及现今我国面临的问题的分析,希望纳米科技可以得到更好的发展以及纳米材料能更好地应用于生活的各个领域。
关键词:纳米材料;生物安全;应用中图分类号:G301 文献标志码:A 文章编号:1674-932409-0082-02一、什么是纳米材料纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,根据物理形态划分,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体和纳米相分离液体等五类。
由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应等,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。
1984年,德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
1990年7月在美国召开的第一届国际纳米科学技术会议上,正式宣布纳米材料科学为材料科学的一个新分支。
二、纳米材料生物安全性问题的提出进入21世纪以来,纳米科技发展迅猛,大规模生产的各种人造纳米材料已经在生活消费品和工业产品中广泛使用。
据统计,纳米材料已经应用在近千种消费类产品中,来提高原有的功能或获得崭新的新功能,包括化妆品、食品、服装、生活日用品、医药产品等领域。
然而,近年来的研究发现,由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有很强的“双刃剑”特性,即在提高原有材料功能同时也存在巨大的安全风险。
例如,美国科学家让一组小鼠生活在含20纳米特氟隆颗粒的空气里,结果小鼠在4小时内全部死亡;而另一组生活在含120纳米特氟隆颗粒的空气里的小鼠,却安然无恙。
纳米材料与技术论文

纳⽶材料与技术论⽂ 纳⽶技术的开发,纳⽶材料的应⽤,推动了整个⼈类社会的发展,也给市场带来了巨⼤的商业机遇。
下⾯⼩编给⼤家分享⼀些纳⽶材料与技术论⽂,⼤家快来跟⼩编⼀起欣赏吧。
纳⽶材料与技术论⽂篇⼀ 纳⽶技术与纳⽶材料在纤维中的应⽤ 摘要: 本⽂介绍了纳⽶技术在化学纤维中的应⽤⽅式,并阐述了纳⽶技术在功能性纤维和其他特种纤维中的应⽤情况,以及纳⽶材料在应⽤中存在的问题及解决⽅法,最后展望了纳⽶技术的应⽤前景。
关键词:纳⽶技术;纳⽶材料;功能性纤维;特种纤维 近年来,纳⽶技术与纳⽶材料正引起⼈们的极⼤关注。
纳⽶材料凭借其内部所特有的表⾯效应、体积效应、量⼦尺⼨效应、宏观量⼦隧道效应等四⼤效应,从⽽拥有完全不同于常规材料的奇特的⼒学性能、光学性能、热⼒性能、磁学性能、催化性能和⽣物活性等性能。
这些都为纳⽶材料在纺织⼯业的应⽤奠定了基础。
可以说,纳⽶材料是21 世纪最有前途的材料,在功能性纺织品和⾼分⼦科学领域有着⼴阔的应⽤前景。
[1] 1 纳⽶技术在化学纤维中的应⽤⽅式 纳⽶粒⼦的奇特性质为纳⽶技术的⼴泛应⽤奠定了基础,应⽤纳⽶技术开发功能性化学纤维主要有两个途径[2]。
1.1 纤维超细化 使纤维达到纳⽶级,以满⾜特殊⽤途领域的需要。
1.2 共混纺丝法 共混纺丝法是指在化纤聚合、熔融阶段或纺丝阶段加⼊功能性纳⽶材料粉体,以使⽣产出的化学纤维具有某些特殊的性能。
此法是⽣产功能性化纤的主要⽅法。
由于纳⽶粉体的表⾯效应,其化学活性⾼,经过分散处理后,容易与⾼分⼦材料相结合,较普通微粉体更容易共熔混纺;⽽且纳⽶粉体粒径⼩,能较好地满⾜纺丝设备对添加物粒径的要求,在化纤⽣产过程中能较好地避免对设备的磨损、堵塞及纤维可纺性差、易断丝等问题;对化纤的染⾊、后整理加⼯及服⽤性能等也不会造成很⼤的影响。
该法的优点在于纳⽶粉体均匀地分散在纤维内部,因⽽耐久性好,其赋予织物的功能具有稳定性。
⽬前化纤产品中复合型纤维的⽐例不断扩⼤,如果在不同的原液中添加不同的纳⽶粉体,可开发出具有多种功能的纺织品。
纳米技术的论文(精选五篇)

纳米技术的论文(精选五篇)第一篇:纳米技术的论文纳米技术在新型建筑材料中的应用纳米技术作为一门新兴的技术,在多个范畴具有十分重要的应用,特别是极大地推进了新型建材的开展,引见了纳米技术在新型建筑涂料、复合水泥、自洁玻璃、陶瓷、防护资料等方面的应用,经过阐述可知,纳米资料在新型建材范畴具有很好的开展应用前景。
纳米技术;新型建材;应用;前景 1 纳米涂料的应用通常传统的涂料都存在悬浮稳定性差,耐老化、耐洗刷性差,光亮度不够等缺陷。
而纳米涂料则能较好的处理这一问题,纳米涂料具有下述优越的性能:(1)具有很好的伸缩性,可以弥盖墙体细小裂痕,具有对微裂痕的自修复作用。
(2)具有很好的防水性,抗异物粘附、沾污性能,抗碱、耐冲刷性。
(3)具有除臭、杀菌、防尘以及隔热保温性能。
(4)纳米涂料的色泽鲜艳温和,手感温和,漆膜平整,改善建筑的外观等。
固然国内外对纳米涂料的研讨还处在初步阶段,但是已在工程上得到了较普遍的应用,如北京纳美公司消费的纳米系列涂料已大量应用于北京建欣苑、建东苑等住宅区的外墙粉刷,效果良好。
在首体改造工程中,运用纳米涂料1700吨,涂刷6万平方米。
复旦大学教育部先进涂料工程研讨中心的专家已研发出了“透明隔热玻璃涂料”。
2 纳米水泥的应用普通水泥混凝土因其刚性较大而柔性较小,同时其本身也存在一些固有的缺陷,使其在运用过程中不可防止地产生开裂并毁坏。
为理解决这一问题就必需加速对具有特殊性能混凝土的研发,而纳米混凝土就能有效的处理这样问题,纳米混凝土,与普通混凝土相比,纳米混凝土的强度、硬度、抗老化性、耐久性等性能均有显着进步,同时还具有防水、吸声、吸收电磁波等性能,因此可用于一些特殊的建筑设备中(如国防设备)。
通常在普通混凝土中参加纳米矿粉(纳米级SiO2、纳米级CaCO3)或者纳米金属粉末已到达纳米混凝土的性能,而且经过改动纳米资料的掺量还能配置出防水砂浆等。
目前开发研制的纳米水泥资料包括纳米防水复合水泥,纳米敏感水泥、纳米环保复合水泥以及纳米隐身复合水泥。
纳米材料制备分析论文

纳米材料制备分析论文纳米材料是指尺寸在1至100纳米之间的材料,具有与其它普通材料不同的特殊物理和化学性质,广泛应用于电子、材料、医学等领域。
制备纳米材料的方法有很多,包括溶胶-凝胶、热处理、高能球磨、溶剂热法、化学还原法等。
本篇文档主要介绍制备纳米材料的分析论文,以帮助研究人员更好地了解和应用纳米材料。
一、论文选题论文的选题需根据当前研究热点和前沿来确定,如纳米材料在生物医学方面的应用、纳米材料的复合应用等。
同时还需充分考虑到实验条件、材料选择和论文结构的合理性等影响选题的因素。
二、材料准备制备纳米材料需要合适的前驱体,多数前驱体都需要化学合成。
例如,通过阴离子OA-AcOH压缩法含上硫化镉的溶胶得到硫化镉纳米材料。
在准备过程中还需要优化反应条件、控制反应速率等以增加材料的纯化程度和产率。
三、合成方法制备纳米材料的方法有多种,例如溶胶-凝胶法、湿化学法、物理法等。
溶胶-凝胶法分为凝胶法和溶胶法两大类,前者需要将材料的凝胶前驱体加入溶液中,再将混合溶液沉淀经过干燥等后得到纳米凝胶;后者是将纳米粒子的溶液浸渍在固体表面上,溶液中的纳米粒子逐渐成为固体材料的一部分,形成有序立方结构的纳米材料。
湿化学法包括还原、沉淀、包覆等各种方法,其中最为常用的是还原法。
还原法在低温下加入还原剂来还原金属离子,最终形成纳米材料。
物理法包括高能球磨、反应喷雾干燥等,高能球磨是将钨束、束顶、碾磨体、袋壳和压力等置于一定温度、气氛和功率的环境中,进行球磨加工,得到毫微米和纳米粒子材料;反应喷雾干燥则是通过细密喷雾应用相分离法制备纳米颗粒,具有较好的分散性和表面有机修饰优点。
四、纳米材料的表征方法在制备纳米材料后,需要进行详细的性能和形态表征,常用的表征方法有X射线衍射、透射电镜、扫描电子显微镜、拉曼光谱等。
X射线衍射可以得到样品的晶体结构和粒度;透射电镜能用于表征金属或非金属纳米材料的粒度和形貌;扫描电子显微镜可以得到样品形态和结构的表征;拉曼光谱则可用于材料的分析、表征以及在分子、原子水平上的信息的获取。
纳米材料论文

纳米材料论文篇一:纳米材料的论文纳米材料论文题目:纳米科技及纳米材料学院:专业:学号: 学生姓名:指导教师:日期: 材料与冶金学院无机非金属材料工程 202202128064 周鸣赵惠忠2022 .11.2【摘要】纳米技术是当今世界最有前途的决定性技术。
文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。
【关键词】纳米技术;纳米材料;结构;性能;应用;前景【Abstract】Nanotechnology is the world's most promising decisive technology. The article briefly outlines the nanometer technology, the structure and nano-materials and nano-materials special nature of the performance of various aspects of the application in practice, and the prospect of nano-materials applications.【Key words】 nanotechnology; Nano materials; Structure; Performance; Application; Prospects1.纳米科学和技术1.1 纳米科技的定义纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。
其涵义是人类在纳米尺寸〔10-9--10-7m〕范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。
纳米科技是现代物理学与先进工程技术相结合的根底上诞生的,是一门根底研究与应用研究紧密联系的新兴科学技术。
纳米材料技术论文(2)

纳米材料技术论文(2)纳米材料技术论文篇二探析纳米技术及纳米材料的应用摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。
关键词:纳米材料;应用;前景展望中图分类号:S219.04 文献标识号:A 文章编号:2306-1499(2013)03-(页码)-页数1.纳米技术引起纳米材料的兴起1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。
80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。
由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。
1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。
1999年,纳米产品的年营业额达到500亿美元。
2.纳米材料及其性质表现2.1纳米材料纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
纳米材料技术论文

纳米材料技术论文纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,下面小编给大家分享一些纳米材料技术论文,大家快来跟小编一起欣赏吧。
纳米材料技术论文篇一纳米材料综述【摘要】本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。
【关键词】纳米、纳米技术、纳米材料、纳米结构1 引言著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。
他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。
”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。
”[1]1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
[2]2 纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
3 纳米材料3.1纳米材料的概念纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院:机电工程学院专业年级:2009级机械五班学生姓名:刘威学号:******** 指导老师:***纳米材料与应用(中南林业科技大学机电工程学院机械专业20091347,湖南长沙,410004)摘要:简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。
分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。
关键词:纳米材料,性能,应用。
【Abstract】: Briefly introduces the classification of nanomaterials and its basic effect, explaining the nanometer material the special performance. A new energy nanomaterials analyzed in photoelectric conversion, hot conversion, super capacitors and battery electrodes nanometer material; Environmental purification of nanomaterials photocatalytic, adsorption, exhaust handling, etc.; The more specific about nano biological medicine materials nano ceramic material, nano carbon materials, nanometer high polymer materials, nano composite materials.【Keywords】: nanomaterials, performance ,the application.纳米是一个长度单位,1nm=10ˉ9m。
纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。
当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。
纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。
其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料)。
按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。
按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。
当纳米材料的结构进入纳米尺度调至范围时,会表现出小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。
表面效应是指纳米粒子表面原子数与总原子之比随粒径的变小而急剧增大后引起的性质上的变化。
随着粒径的减小,纳米粒子的表面原子数、比表面积、表面能及表面结合能都迅速增大。
表面原子处于裸露状态,周围缺少相邻的原子,有许多剩余键力,易与其他原子结合而稳定具有较高的化学活性。
纳米材料中界面原子所占的体积分数很大,它对材料性能的影响非常显著。
低温超塑性是纳米材料的一个重要特性,普通陶瓷只有在1 000℃以上,在小于一定的应变速率时才能表现出塑性,而许多纳米陶瓷在室温下就会发生塑性变形。
这种纳米陶瓷增韧效应主要归因于大量界面的存在。
而它的塑性变形主要是通过晶粒之间相对滑移而实现的。
而小尺寸效应纳米粒子的熔点可远低于块状本体,此特性为粉末冶金工业提供了新工艺,利用等离子共振频移随颗粒尺寸变化的性质,可通过改变颗粒尺寸,控制吸收边的位移,构造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。
对于量子尺寸而言,对于晶粒状态难以发光的间接带隙半导体,当其粒径减少到纳米量级时,会表现出明显的可见光发光现象,且随着粒径的进一步减少,发光强度逐渐增强,这是因为颗粒尺寸为纳米量级时,传统固体理论中量子跃迁选择定则的作用将大大减弱并逐渐消失,并且由于能级的分裂导致发光光谱逐渐蓝移。
微观粒子具有贯穿势垒的能力称为隧道效应。
用量子相干磁强计研究低温条件下纳米颗粒磁化率对频率的依赖性,证实了在低温确实存在磁的宏观量子隧道效应。
这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,先顶了采用磁带磁盘进行信息储存的最短时间。
当材料的结构具有纳米尺寸调制特征时,将呈现许多特异的性能。
陶瓷材料在通常情况下呈脆性,然而有纳米超微颗粒压制成的纳米材料却具有良好的韧性,这是因为纳米材料具有很大的界面和比表面积,界面的原子在外力变形的条件下具有很高的扩散速率,因而用纳米粉末进行烧结,致密化速度快,可降低烧结温度,并且表现出甚佳的韧性和一定的延展性,使陶瓷材料具有新奇的力学性能。
纳米材料的磁性性能拥有许多功效,利用磁性纳米颗粒具有高矫顽力的性能,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。
在低温或超低温下,纳米粒子几乎没有热阻,纳米银微粒的轻烧结体是良好的低温导热材料,超微细氮化铝的导热率即使在常温下也比大块氮化铝的导热率高4~5倍。
悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约1.5倍,这对提高冶金工业的热效率有重要意义。
纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。
纳米颗粒在电学性能方面也出现了许多独特性。
例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。
可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。
纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。
新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。
纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。
纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。
人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。
目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。
纳米光电材料是利用纳米材料的一系列介观或量子特性,大大提高光电转换效率、发现和制备新的转换装置或大大降低成本。
目前,纳米光电材料的研究已经在太阳能电池、光电开关、图像记录、光储存、光催化合成以及环境保护等方面取得了重要的进展,为太阳能及其他光能的利用开辟了广泛的途径。
热电材料时一种先进的能量转换材料,通过载流子的移动能静态的进行热能与电能相互转换。
利用热电材料制备的发电器、制冷器、传感器等组件具有体积小、质量轻、结构简单、无介质泄露、无噪声、无磨损、移动方便、使用寿命长等优点,在军事、航天等高科技领域,在废热发电、医学恒温、小功率电源、微型传感器等民用领域有着广泛的应用前景。
中美两国的科学家们合作研发出了具有更高的功率密度(power density)和能量密度(energy density)的超级电容器,该电容器中使用到了包含碳纳米管的复合纳米材料。
作为高效的电能储存装置,超级电容器对大规模网格储能(grid energy storage),电驱动汽车,电动工具,移动电子设备等都是不可或缺的。
超级电容器实际上就是具有高能量密度的电化学电容器。
它一般由两块导体材料(阴极和阳极),以及将两个电极隔开的绝缘体材料所构成。
传统的基于活性炭材料的对称超级电容器的能量密度往往比较有限。
提高能量密度的办法之一是制造以碳材料为阴极,以金属氧化物为阳极的非对称超级电容器。
但是,初步的尝试由于动力学的设计仅局限于很薄的电极薄膜,因而所获得的能量密度比较低。
所以研发同时具有高能量密度和高功率密度的级电容器仍然是材料科学家们所面临的一个难题。
来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。
这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。
其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。
由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。
同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。
金属空气电池(metal-air battery)被寄予厚望。
据了解,这类电池是特殊的燃料电池,是新一代绿色蓄电池,构造原理与干电池相同,所不同的只是它的去极剂取自空气中的氧。
它的制造成本低、无毒、无污染、比功率高、比能量高、原材料可回收再生利用,与燃料电池汽车(FCHV)所用氢燃料电池相比,结构简单,价格十分便宜,并且性能优越。
例如有一种空气电池,以锌为阳极,以氢氧化钠为电解液,而阴极是多孔的活性炭,因此能吸附空气中的氧以代替一般干电池中的去极剂(二氧化锰)。
此材料具有大比表面积、吸氧性强、优良的催化性和稳定性。
碳贮能材料随着市场对锂离子电池性能要求的不断提高,锂离子电池对负极材料活性物质的要求不断提高。
通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。
具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。
适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。