土力学1第三章
土力学全知识点

第一章:土的物理性质及工程分类第二节、粒度成分的表示方法土的粒度成分是指土中各种不同粒组的相对含量(以干土质量的百分比表示),它用以描述土中不同粒径土粒的分布特征。
常用的粒度成分的表示方法有表格法、累计曲线法和二角坐标法。
2)累计曲线法:是——种图示的方法,通常用半对数纸绘制,横坐标(核对数比例尺)表示某—粒径,纵坐标表示小于某一粒径的土粒的百分含量。
级配的指标:不均匀系数 C u=d60÷d10曲率系数C s=d302/﹙d60×d10﹚式中:d10、d20、d60—分别相当于累计百分含量为10%、30%和60%的粒径,d10称为有效粒径;d60称为限制粒径。
不均匀系数Cu反映大小不同粒织的分布情况,Cu<5的土称为匀粒土,级配不良;Cu越大,表示粒组分布范围比较广,Cu>=5,Cs=1~3的土级配良好。
但如cu过大,表示可能缺失中间粒径,属不连续级配,故需同时用曲率系数来评价。
曲率系数则是报述累计曲线整体形状的指标。
土粒的形状土粒形状对丁土的密实度和十的强度有显著的影响,棱角状的颗粒互相嵌挤咬合形成比较稳定的结构.强度较高;磨圆度好的颗粒之间容易滑动,土体的稳定性比较差用体积系数和形状系数描述土粒形状体积系数Vc=6V/﹙πd m3﹚式中:V———土粒体积(mm3);dm——土粒的最大粒径(mm)。
V愈小,土粒愈接近于圆形。
圆球状的Vc=1,立方体的Vc=o.37:棱角状的土粒Vc更小形状系数FF=AC/B2式中:A、B、C分别为土粒的最大、中间和最小粒径第三节土的三相比例指标一、试验指标1.土的密度是单位体积土的质量,ρ=m/V由土的质量产生的单位体积的重力称为重力密度γ,简称为重度γ=ρg=W/V2.土粒比重Gs 土粒质量m s同体积4℃时纯水的质量之比Gs=m s/﹙Vsρw1﹚=ρs/ρw13.土的含水量ω是土中水的质量m w与团体(土粒)质量m s之比,ω=m w/m s×100%二、换算指标1.干密度ρd是土的颗粒质量m s与土的总体积V之比,ρd=m s/V土的干密度越大,土越密实,强度就越高,水稳定性也好。
《土力学第三章》课件

应力张量的表达与分解
探讨三维应力状态下应力张量的 表达与分解。
主应力和主应力方向
解释主应力和主应力方向在土力 学中的重要性。
应力圆及其相关概念
介绍应力圆以及与之相关的概念。
六、摩尔圈法
1
摩尔圈法概述
讲解摩尔圈法在土壤力学中的应用。
2
内部摩尔圈与外部摩尔圈
阐述内部摩尔圈和外部摩尔圈的构成与特点。
七、黑尔圈法
《土力学第三章》PPT课 件
土力学第三章PPT课件,通过引人入胜的图片和简洁明了的内容,一起来学习 土壤的应力应变关系、固结与恢复、应力状态、摩尔圈法等知识。
一、Hale Waihona Puke 言本章内容概述并设定学习目标。
二、土体的应力应变关系
应力及其类型
介绍土体的应力以及不同类型的应力。
应变及其类型
讲解土体的应变以及不同类型的应变。
应力应变关系
探讨土体中应力和应变之间的关系。
三、一维固结与恢复
固结与恢复的定义和特点
解释一维固结和恢复的概念及其特点。
费马原理
介绍费马原理在土壤固结与恢复中的应用。
四、二维应力状态
1
圆心角法
2
介绍使用圆心角法确定平面应力状态。
平面应力状态与类型
阐述土壤中的平面应力状态及其不同类 型。
五、三维应力状态
1
黑尔圈法概述
解释黑尔圈法在土力学中的应用和原理。
水平裂缝与权重线
2
探讨黑尔圈法中水平裂缝和权重线的重 要性。
八、库仑圈法
1
库仑原理
介绍库仑原理在土壤力学中的应用。
2
库仑圈法综述
总结库仑圈法的要点和作用。
九、总结
《土力学》1-6章作业参考答案

第一章 土的物理性质及其工程分类P 60[2-2] 解:V=21.7cm 3,m=72.49-32.54=39.95g ,m S =61.28-32.54=28.74g ,m W =72.49-61.28=11.21g7.2195.39==V m ρ=1.84g/ cm 3,74.2821.11==sw m m w =39% 07.1184.1)39.01(174.21)1(=-+⨯⨯=-+=ρωρW S d eP 60[2-3] 解:963.0185.1)34.01(171.21)1(=-+⨯⨯=-+=ρωρWS d e 963.01963.071.21++=++=e e d s sat ρ=1.87 g/ cm 3,87.0187.1=-=-='W sat ρρρ g/ cm 3g ργ'='=0.87×10=8.7 kN/m 3P 60[2-4] 解:已知77.1=ρg/cm 3, w =9.8%,s d =2.67,461.0min =e ,943.0max =e∴656.0177.1)098.01(167.21)1(=-+⨯⨯=-+=ρωρW S d e ,∈=--=--=6.0461.0943.0656.0943.0min max max e e e e D r (0.33,0.67)∴该砂土处于中密状态。
P 60[2-5] 解:已知s d =2.73,w =30%,=L w 33%,=P w 17%土样完全饱和→1=r S ,sat ρρ=819.073.23.01=⨯=⇒==e e wd S S r ,819.01819.073.21++=++=e e d s sat ρ=1.95 g/ cm 3 3.0195.11+=+=w d ρρ=1.5 g/ cm 3,161733=-=-=P L p w w I 81.0161730=-=-=P P LI w w I 10<16=p I ≤17→该土为粉质粘土0.75<81.0=L I ≤1→该土处于软塑状态[附加1-1]证明下列换算公式:(1)w s d e d ρρ+=1;(2)γee S sw r ++=1γγ;(3)n n w S w s r γγ)1(-=(1)证明:设e V V V V V Ve V S V V SV S +=+===⇒=1,1w s s w s s s s d ed V V d V V V m ρρρρ+====1 (2)证明:设e V V V V V Ve V S V V SV S +=+===⇒=1,1V g V V V g m m V mg V G s s w w s w )()(ρργ+=+===ee S V V V S sw r s s w v r ++=+=1γγγγ (3)证明:设n V n V n VVV s v v -==⇒==1,,1∴nn w gV gV w V V w V V m m V m V V S w s v w s s v w s s ss v w s wv w w v w r γγρρρρρρρ)1(-====== [附加1-2]解:V=72cm 3,m=129.5g ,m S =121.5g ,m W =129.5-121.5=8g%6.65.1218===⇒S W m m ω 6.0172/5.129)066.01(17.21)1(=-+⨯⨯=-+=ρωρW S d e %7.296.07.2066.0=⨯==e d S S r ω 0.1872105.129=⨯===V mg V G γkN/m 36.20106.16.07.21=⨯+=++=W S sat e e d γγkN/m 36.10106.20=-=-='W sat γγγkN/m 39.16106.17.21=⨯=+=W S d e d γγkN/m 3∴γγγγ'>>>d sat[附加1-3]解:已知s d =2.68,w =32%,土样完全饱和→1=r S86.068.232.01=⨯=⇒==e ed S Sr ω02.1986.1)32.01(1068.286.01)1(=+⨯⨯=⇒=-+=γγωγW S d e kN/m 3[附加1-4]解:已知66.1=ρg/cm 3,s d =2.69,(1)干砂→w =0 ∴62.0166.1)01(169.21)1(=-+⨯⨯=-+=ρρw d e W S(2)置于雨中体积不变→e 不变∴%2.969.262.04.04.0=⨯=⇒==w e wd S S r [附加1-5]解:已知m=180g ,1w =18%,2w =25%,sss s s w m m m m m m m w -=-==18011=18%→s m =152.54g∴)(12w w m m s w -=∆=152.54×(0.25-0.18)=10.68g[附加1-6]实验室内对某土样实测的指标如下表所示,计算表土中空白部分指标。
土力学-第三章-超静孔隙水压力和孔压系数1 张丙印

智者乐水 仁者乐山
三轴应力状态
不固结不排水试验
• 关闭排水阀门,连接孔压
传感器,施加围压,量
测超静孔隙水压力 uB
• 施加(1 -)进行剪切时,
关闭排水阀门。用孔压传 感器量测剪切过程中产生 的超静孔隙水压力 uA
百分表
围压
力3
阀门
横梁 量力环
量 水 管
孔压
试
量测
样
马达
阀门
附加应力情况 – 三轴应力状态
B是一个反映土饱和程度的指标
附加应力情况 – 三轴应力状态
12
§3.6 超静孔隙水压力与孔压系数–孔压系数A
智者乐水 仁者乐山
偏差应力状态
1-3
体积V 孔隙率n
0
0 uA
1-3
孔隙流体和土骨架为弹 性体,其体积压缩系数 分别为Cf 和Cs
• 孔隙流体产生超静孔压uA • 孔隙流体的体积变化:
ΔV C f ΔuA Vv C f ΔuA nV
p
智者乐水 仁者乐山
初始状态 边界条件 一般方程
侧限条件 土骨架 孔隙水
排水顶面 渗透性大小
钢筒 弹簧 水体 带孔活塞 活塞小孔大小
渗透固结过程
附加应力情况 – 侧限压缩
5
§3.6 超静孔隙水压力与孔压系数–一维渗流固结模型
侧限应力状态 – 太沙基渗压模型
p
h p
γw
h h
智者乐水 仁者乐山
h0
等向压缩应力状态
3
体积V 孔隙率n
3
uB
3
ΔuB
nC
f
Cs Δσ3
孔压系数B: ΔuB BΔσ3
B
nC f Cs
土力学-第三章-地基中的应力状态、有效应力原理1 张丙印

智者乐水 仁者乐山
应力状态及应力应变关系
有效应力原理 自重应力 基底压力计算 附加应力
修建筑物以前,地基中由 土体重量所产生的应力
建筑物重量等外荷载在地 基中引起的应力增量
土体中的应力计算
3
第三章:本章概要
智者乐水 仁者乐山
3-1(假定水位骤降后,黏土和粉质黏土
层中孔隙水压力近似为0)
3-2 3-3 3-4
智者乐水 仁者乐山
z zx xz x
εy γ yx γ yz
地基中的应力状态(2)
9
§3.1 地基中的应力状态
智者乐水 仁者乐山
二维应力状态(平面应变状态)
应变条件 εy
γ yx γ yz
εx
εij
0
0
γ
xz
0
0
γ
xz
0
εz
应力条件
εy
σy E
ν E
σx σz
独立变量 εx εy ; εz
σc 0
σ ij
0
σc
0 0
试 样
y
x
σx σy σc
0
εx 0 0
0
εij
0
εx
0
σz
0 0 εz
地基中的应力状态(1) 8
§3.1 地基中的应力状态
二维应力状态(平面应变状态)
o
y
z
x
y
z zx xy
yz
x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,l/b≧10 在x, z平面内可以变形,但在y方向没有变形
13
§3.1 应力状态及应力应变关系
智者乐水 仁者乐山
土力学-第三章-土体中的应力计算 习题课 张丙印

L B
,
z B
)p
4F(12.5,2)p
p
x
C点:矩形荷载CDFH的附加应力
zC
Ksp
F(
L B
,
z B
)p
F(12.5,2)p
0.25zA 13.73kPa
y
L B
z
M
z 18
方法及讨论 –有效应力计算
课堂讨论题4:有效应力计算
板桩 基坑
k=5.0×10-6 m/s sat=1.8g/cm3
《土力学1》之习题课2
第三章习题讨论课
张丙印
清华大学土木水利学院 岩土工程研究所
第三章:习题讨论课
主要内容: • 习题讨论 • 小测验(30分钟) • 方法讨论 • 概念及难点
• 作业中的问题评述
• 附加应力计算 • 有效应力计算 • 太沙基固结模型
• 其它问题讨论
小测验 30分钟
3
方法及讨论 –有效应力计算与渗流固结
A点总应力:A=110kPa 孔隙水压力:u=60+10h kPa 有效应力:A=50-10h
粘土层发生流土: A=50-10h=0 h=5m
14
方法及讨论 – 附加应力计算
智者乐水 仁者乐山
课堂讨论题3:附加应力计算法
对如图所示的条形基础,作用有均布荷载p。已知A(基础中心 点)和B两点以下4m处的垂直附加应力分别为zA=54.9kPa和 zB=40.9kPa。求C点以下4m和8m处的垂直附加应力是多少?
8
方法及讨论 –有效应力计算与渗流固结
智者乐水 仁者乐山
d) 如发生渗流固结现象,画出t=0时的超静孔隙水压力分布。
T=0
T= 超静孔隙 (稳定渗流) 水压力
土力学 第1-4章习题

第1章土的组成一、填空题1.若某土样的颗粒级配曲线较缓,则不均匀系数数值较,其夯实后密实度较。
2.级配良好的砂土是指不均匀系数≥且曲率系数为的土。
3.利用曲线可确定不均匀系数Cu;为了获得较大密实度,应选择Cu值较的土作为填方工程的土料。
4.能传递静水压力的土中水是水和水。
5.影响压实效果的土中气是与大气的气体,对工程性质影响不大的土中气是与大气的气体。
6.对于粒径小于0.075mm的颗粒分析应采用法,对于粒径大于0.075mm的颗粒分析应采用法。
7.粘性土越坚硬,其液性指数数值越,粘性土的粘粒含量越高,其塑性指数数值越。
8.小于某粒径土的质量占土总质量10%的粒径,称为粒径,小于某粒径土的质量占土总质量60%的粒径,称为粒径。
二、名词解释1.土的结构2.土的构造3.结合水4.强结合水5.颗粒级配三、单项选择题1.对工程会产生不利影响的土的构造为:(A)层理构造(B)结核构造(C)层面构造(D)裂隙构造您的选项()2.土的结构为絮状结构的是:(A)粉粒(B)碎石(C)粘粒(D)砂粒您的选项()3.土粒均匀,级配不良的砂土应满足的条件是(C U为不均匀系数,C C为曲率系数):(A)C U< 5(B)C U>10(C)C U> 5 且C C= 1へ3(D)C U< 5 且C C= 1へ3您的选项()4.不能传递静水压力的土中水是:(A)毛细水(B)自由水(C)重力水(D)结合水您的选项()第1章土的物理性质及工程分类一、填空题1.处于半固态的粘性土,其界限含水量分别是、。
2.根据塑性指数,粘性土被分为土及土。
3.淤泥是指孔隙比大于且天然含水量大于的土。
4.无粘性土根据土的进行工程分类,碎石土是指粒径大于2mm的颗粒超过总质量的土。
5.冻胀融陷现象在性冻土中易发生,其主要原因是土中水分向冻结区的结果。
6.粘性土的灵敏度越高,受后其强度降低就越,所以在施工中应注意保护基槽,尽量减少对坑底土的扰动。
土力学与地基基础(一)X 课程 第三章 土的压缩性与地基沉降计算

第三章土的压缩性与地基沉降计算填空题:1、地下水位的升降会引起土中自重应力的变化,地下水位升高则引起土体中的有效自重应力__________,地下水位下降引起土体中的有效自重应力__________。
2、计算自重应力时,地下水位以下的重度应取__________。
3、为了简化计算,基底压力常近似按__________分布考虑。
4、某均质地基,已知其重度γ=17.6kN/m3,则地面下深度为3m处由上部土层所产生的竖向自重应力为__________kPa。
5、均布矩形荷载作用于地表,矩形荷载中心和角点的附加应力分别为σ0和σ1,则σ0和σ1的关系是__________。
6、在相同的压力作用下,饱和粘性土压缩稳定所需时间t1与饱和砂土压缩稳定所需时间t2的关系是__________。
7、若土的初始孔隙比为0.8,某应力增量下的压缩系数为0.3MPa-1,则土在该应力增量下的压缩模量等于__________。
8、按照土体前期固结压力与现有自重应力的关系,可将土分为正常固结土、__________和__________三大类。
9、从应力转化的观点出发,可以认为饱和土的渗透固结无非是:在有效应力原理控制下,土中孔隙压力消散和__________相应增长的过程。
10、在其他条件相同的情况下,固结系数增大,则土体完成固结所需时间的变化是__________。
11、常见的地基最终沉降量的计算方法有__________、__________和弹性力学法。
12、建筑物地基变形的特征有__________、__________、__________和__________四种类型。
选择题:1、自重应力在均匀土层中呈()分布。
(A)、折线(B)、曲线(C)、直线(D)、均匀2、地下水位升高会引起自重应力()。
(A)、增大(B)、减小(C)、不变(D)、不能确定3、某场地自上而下的土层分布为:第一层粉土,厚3m,重度Y为18kN/m3;第二层粘土,厚5m,重度为18.4kN/m3,饱和重度γsat=19.0kN/m3,地下水位距地表5m,则地表下6m 处的竖向自重应力等于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向下渗流
A
H wh
渗透压力,向下渗流使得有效应力增加 可导致土层发生压密变形,称渗流压密
仁者乐山 智者乐水
第三章:土和地基中的应力及分布
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7 §3.8
y 0 yx yz 0
二维应力状态(平面应变状态)
应变条件 y 0
yx yz 0
x
ij
1 2
0 xz
0
0 0
1 2
xz 0
z
应力条件
y
y E
E
x
z
0
y x z
x 0 xz
ij
0 zx
y 0
0
z
独立变量 x ,z ,xz ; x ,z ,xz ; x ,z
ij
yx
y
yz
zx zy z
ij
x
1 2
xy
1 2
xz
1 2
xy
y
1 2
yz
1 2 1 2
xz yz
z
三维应力状态(三轴应力状态)
应变条件 x y xy yz zx 0
轴向力F
z
应力条件 x y c
试 样
xy yz zx 0 水压
力c
独立变量 x y c; z
土中应力状态及应力平衡方程 饱和土有效应力和孔隙水压力 非饱和土有效应力和孔隙水压力(自学) 孔隙压力系数(自学) 在简单受力条件下地基中的应力分布 地基的接触应力 刚性基础基底压力简化算法 弹性半无限体内的应力分布
§3.2 饱和土有效应力和孔隙水压力
土体是由固体颗粒骨架、孔隙流 体(水和气)三相构成的碎散材 料,受外力作用后,总应力由土 骨架和孔隙流体共同承受
讨论:
海底与土粒间的接触压力 哪一种情况下大?
1m σz=u=0.01MPa
104m
σz=u=100MPa
四、饱和土孔压和有效应力计算
稳定渗流条件:向上渗流
• 总应力:单位土柱 和水柱的总重量
Δh
土水整体分析
σ = satH
• 孔隙水压力:净水压强
H
u = w(H+h)
sat
• 有效应力: σ = -u
§3.1 土中应力状态及应力平衡方程
一、土力学中应力符号的规定
zx z+
-
材料力学
xz x
- zx
z
+
土力学
xz
x
正应力 拉为正 压为负
压为正 拉为负
剪应力 顺时针为正 逆时针为负
逆时针为正 顺时针为负
二、地基中的应力状态
三维应力状态(一般应力状态)
o
y z
x
z
zx xy
yz x
y
x xy xz
y x 0 xy yz zx 0
xy yz zx 0
x
x E
E
y z
0
x y 1 z K0z
z; z F(z)
0 0 0 ij 0 0 0
0 0 z
ij
0x
0 y
0 0
0 0 z
侧压力系数
三、应力计算时的基本假定
碎散体
连续介质 (宏观平均)
加载
x y; z
y
x
x y c
c 0 0
x 0 0
ij
0 0
c 0
0
z
ij
0 0
x 0
0
z
二维应力状态(平面应变状态)
o
y
z
x
y
z zx xy
yz x
z zx xz
x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,L/B≧10 在x, z平面内可以变形,但在y方向没有变形
线弹性
非线性
线弹性体
弹塑性
(应力较小时)
成层土
均质各向同性体
卸载
各向异性 (土层性质变化不大)
E、与位置和方向无关
εp εe
理论:弹性力学解求解“弹性”土体中的应力 方法:解析方法优点:简单,易于绘成图表等
第三章:土和地基中的应力及分布
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7 §3.8
因而孔隙水压力对变形强度没有直 接影响,称为中性应力
孔隙水压 力的作用
有效应力 的作用
讨论
是土体发生变形的原因: 颗粒间克服摩擦相对滑移、 滚动以及在接触点处由于 应力过大而破碎均与有 关
是土体强度的成因:土的 凝聚力和粒间摩擦力均与 有关
孔隙水压 力的作用
有效应力 的作用
讨论
Psv Aw u
a
AA
1 有效应力σ
'u
a
Psv Ps
接触点
饱和土体内任一平面上受到的总应力可分为两部
分σ和u,并且: 'u
土的变形与强度都只取决于有效应力
一般地, u
x yx zx
xy y zy
xz yz
x '
yx
z zx
xy y' zy
xz
yz
z '
侧限应力状态:指侧向应变为零的一种应力状态
• 水平地基半无限空间体
• 半无限弹性地基内的自重 应力只与Z有关
o
x
• 土质点或土单元不可能有
y
侧向位移侧限应变条件
z
• 任何竖直面都是对称面
应变条件
y x 0 xy yz zx 0
侧限应力状态:侧向应变为零的一种应力状态
应变条件 应力条件 独立变量
的接触面进行应力的传递,称之 为粒间应力
由孔隙水来承担,通过连通的孔
隙水传递,称之为孔隙水压力。 孔隙水不能承担剪应力,但能承 受法向应力
外荷载 总应力
二、饱和土有效应力原理
A: 土单元的断面积 As: 颗粒接触点的面积 Aw: 孔隙水的断面积
A AS Aw
外荷载 总应力 A
a-a断面竖向力平衡: A Psv uAw
砂层(承压水)
A
H wh
= satH- wH-wh
向上渗流
=H - wh
渗透压力,向上渗流使得有效应力减小
稳定渗流条件:向下渗流 • 总应力: σ = satH
土水整体分析
• 孔隙水压力:
u = w(H-h) • 有效应力:
σ = -u = satH- wH+wh =H + wh
h H sat
u 0 0
0 u 0
0 0 u
总应力已知或易知 孔隙水压测定或计算
u
有效应力
三、有效应力原理的讨论
孔隙水压 力的作用
有效应 本身受到等向压力,不会使土颗粒 移动,导致孔隙体积发生变化。由 于颗粒本身压缩模量很大,故土粒 本身压缩变形极小
水不能承受剪应力,对土颗粒间摩 擦、土粒的破碎没有贡献
外荷载 总应力
• 对所受总应力,骨架和孔隙 流体如何分担?
• 它们如何传递和相互转化?
• 它们对土的变形和强度有何 影响?
Terzaghi的有效应力原理和固结理论
一、饱和土中的应力形态
饱和土是由固体颗粒骨架和充满 其间的水组成的两相体。受外力 后,总应力分为两部分承担:
由土骨架承担,并通过颗粒之间