清华大学土力学课件第一章
合集下载
土力学课件清华大学变形与强度工管

pmax F G M
pmin
bl
W
M (N G)e
W bl2 6
e M N G
pmax pmin
F G bl
1
6e l
土力学与地基基础
若 pmin 0
pmax
2(F G) 3ab
3 土的压缩性与地基沉降计算
土力学与地基基础
3.5.3 基础底面附加压力
础自重计算的基底均布压力为140kPa。试求基础中心O点下
及A点下、H点下z=1m深度处的竖向附加应力。
【解】 (1)先求基底净压力(基底附加压力) pn,由已知条件知
pn=p-γod=140-18×0.5=131kPa
(2)求O点下1m深处地基附加应力σzo。 O点是矩形面积OGbE,OGaF,OAdF,
OAcE的共同角点。这四块面积相等,长
度l、宽度b均相同,故其附加应力系数αc 相同。根据l,b,z的值可得
土力学与地基基础
3 土的压缩性与地基沉降计算
l/b=2 /1=2;z /b=1/1=1;查表得
Ks=0.1999,所以σzo=4 αcpn
=4×0.1999 ×131=104.75kPa
(3)求A点下1m深处竖向附加应力σzA
3.3 侧限条件下土的压缩性
3.3.1 侧限压缩试验
(1)试验仪器
——压缩仪(Oedometer)
(2)试验方法 (3)试验结果
●变形在各级荷载下都可趋于稳定 ●变形随荷载的增大而逐渐增大 ●孔隙比随荷载的增大而逐渐减小
土力学与地基基础
3 土的压缩性与地基沉降计算
(4)垂直压缩变形量(Vertical compression deformation)
土力学课件清华大学.ppt

二. 地基中常见的应力状态 4.侧限应力状态——一维问题
▪应变条件
y x 0;
xy yz zx 0
▪应力条件
xy yz zx 0;
x y;
x
x E
E
y z
0;
x y 1 z K0z;
▪独立变量 z , z F(z)
K0:侧压力系数
ij =
0 x 0xy 0xz 0yx 0 y 0yz
第三章
土体中的应力计算
§3 土体中的应力计算
地基中的应力状态 应力应变关系 土力学中应力符号的规定
强度问题 变形问题
应力状态及应力应变关系
自重应力 附加应力
建筑物修建以前,地基 中由土体本身的有效重 量所产生的应力。
基底压力计算 有效应力原理
建筑物修建以后,建筑物 重量等外荷载在地基中引 起的应力,所谓的“附加” 是指在原来自重应力基础 上增加的压力。
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
•与围压有关
•非线性
•剪胀性
v
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
u
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
施加围压,排水阀门始终打开, 充分固结
施加(1 -)时,排水阀门始终 打开,速度慢足以使孔压消散
▪应变条件
y x 0;
xy yz zx 0
▪应力条件
xy yz zx 0;
x y;
x
x E
E
y z
0;
x y 1 z K0z;
▪独立变量 z , z F(z)
K0:侧压力系数
ij =
0 x 0xy 0xz 0yx 0 y 0yz
第三章
土体中的应力计算
§3 土体中的应力计算
地基中的应力状态 应力应变关系 土力学中应力符号的规定
强度问题 变形问题
应力状态及应力应变关系
自重应力 附加应力
建筑物修建以前,地基 中由土体本身的有效重 量所产生的应力。
基底压力计算 有效应力原理
建筑物修建以后,建筑物 重量等外荷载在地基中引 起的应力,所谓的“附加” 是指在原来自重应力基础 上增加的压力。
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
•与围压有关
•非线性
•剪胀性
v
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
u
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
施加围压,排水阀门始终打开, 充分固结
施加(1 -)时,排水阀门始终 打开,速度慢足以使孔压消散
土力学-第一章(1)PPT课件

1.在填土工程中注意控制土的含水量,在土较干 或较湿时都不容易将土击实到最密实状态。 2.含水量过高或过低对填土工程都是不利的。
(二)击实功能的影响: 同一种土,压实功能小,则能达到的最大干密 也小,最优含水率大;压实功能大,则能达到 的最大干密度也大,最优含水率小
.
52
(三)土类和级配的影响
同样的含水率情况下,粘性土的粘粒含量越高或塑性指 数越大,越难于压实。
.
4
2.土的粒径分组 粒度:颗粒粒径的大小; 粒组:把粒度相近的颗粒合为一组。
《铁路桥涵地基和基础设计规范》 (TB1002.5-99)对粒组的划分见表1—1。
圆粒 卵石 漂石
黏土粒 粉粒 砂粒 角粒 碎石 块石 粒径
0.005 0.05 2
20 200 单位:mm
.
5
(二)用筛析法作土的颗粒大小分析
强度、节理
级配、形状
塑性指数 或塑性图
46
二、特殊土
红黏土:易引起不均匀沉降
湿陷性黄土:遇水易引起湿陷
特殊土
软土:压缩性高承载力与强度低 膨胀土:遇水膨胀,失水收缩
冻土:冻胀融沉
三、特殊土的野外鉴别方法
.
47
三、特殊土的野外鉴别方法
.
48
第六节 土的压实性
一、概述
土的压实性指在一定的含水率下,以人工或 机械的方法,使土体能够压实到某种密实程度 的性质。 土工建筑物,如土坝、土堤及道路填方是用 土作为建筑材料填筑而成,为了保证填土有足 够的强度,较小的压缩性和透水性。在施工中 常常需要压密填料,以提高土的密实度和均匀 性。填土的密实度常以其干密度来表示。 在实验室内研究土的密实性是通过击实试验 进行的。
孔隙中充满水时为饱和土,为二 相体系;
(二)击实功能的影响: 同一种土,压实功能小,则能达到的最大干密 也小,最优含水率大;压实功能大,则能达到 的最大干密度也大,最优含水率小
.
52
(三)土类和级配的影响
同样的含水率情况下,粘性土的粘粒含量越高或塑性指 数越大,越难于压实。
.
4
2.土的粒径分组 粒度:颗粒粒径的大小; 粒组:把粒度相近的颗粒合为一组。
《铁路桥涵地基和基础设计规范》 (TB1002.5-99)对粒组的划分见表1—1。
圆粒 卵石 漂石
黏土粒 粉粒 砂粒 角粒 碎石 块石 粒径
0.005 0.05 2
20 200 单位:mm
.
5
(二)用筛析法作土的颗粒大小分析
强度、节理
级配、形状
塑性指数 或塑性图
46
二、特殊土
红黏土:易引起不均匀沉降
湿陷性黄土:遇水易引起湿陷
特殊土
软土:压缩性高承载力与强度低 膨胀土:遇水膨胀,失水收缩
冻土:冻胀融沉
三、特殊土的野外鉴别方法
.
47
三、特殊土的野外鉴别方法
.
48
第六节 土的压实性
一、概述
土的压实性指在一定的含水率下,以人工或 机械的方法,使土体能够压实到某种密实程度 的性质。 土工建筑物,如土坝、土堤及道路填方是用 土作为建筑材料填筑而成,为了保证填土有足 够的强度,较小的压缩性和透水性。在施工中 常常需要压密填料,以提高土的密实度和均匀 性。填土的密实度常以其干密度来表示。 在实验室内研究土的密实性是通过击实试验 进行的。
孔隙中充满水时为饱和土,为二 相体系;
土力学课件(清华大学)_第1章

粒径级配曲线和指标的应用
§1.2 土的三相组成 – 固体颗粒
原生矿物 - 石英、长石、云母等
矿物质
固体成分 有机质
无定形氧化物胶体
次生矿物
可溶盐
粘土矿物
具有和原生矿物很不相同的特性 对粘土性质的影响很大
固体颗粒 - 矿物成分
§1.2 土的三相组成 – 固体颗粒
粘土矿物是一种复合的铝-硅盐晶体,颗粒呈片状,是由硅 片和铝片构成的晶包所组叠而成,可分成高岭石、伊利石和 蒙特石三种类型。
上升高度
T
2T cos hc r
毛细升高与孔径成反比
hc
2r
粘土 粉土 砂土 砾石
土中毛细水上升高度
§1.2 土的三相组成 – 土中水
T
毛细管中的 负静水压力
T
张力T
T
uc= -hcw hc 2r
uc
水压
2πrTcosα+ucπr2 = 0
+
水
则毛细压力:
uc hc
§1.2 土的三相组成 – 土中水
自由水:不受颗粒电场引 力作用的孔隙水
- 毛细水:由于土体孔隙的毛细作 用升至自由水面以上的水。毛细 水承受表面张力和重力的作用。 - 重力水:自由水面以下的孔隙自 由水,在重力作用下可在土中自 由流动。
毛细水
hc
重力水
土中水 – 自由水
§1.2 土的三相组成 – 土中水
§1.2 土的三相组成 – 土中气
自由气体:与大气连通的气体对土的性
质影响不大
封闭气体:被土颗粒和水封闭的气体
其体积与压力有关。会增加土的弹性; 阻塞渗流通道,降低渗透性
溶解在水中的气体 吸附于土颗粒表面的气体
土力学课件(清华大学)

SPT用测得的标准贯入垂击数N,判定砂土的 密实度或粘性土的密度,确定地基和单桩的承
载力;还可评定砂土的震动液化势。标准贯 入试验适用于砂性土与粘性土。
第十二页,共102页。
地基4勘触探 探 动力触探和静力触探
(1) 动力触探
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距,贯入深度
30cm的击数, N 63.5
(1) 动力触探Dynamic Penetration
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距, 贯入深度30cm的击数, N 63.5
锥状探头
轻型10 kg, 50cm落距,贯入深度30cm
中型 28kg 重型 63.5kg 碎石,砾石地层
特重型 120kg
第九页,共102页。
• 单桥探头 端部Ps=Q/A 比贯入阻力
双桥探头 端部和侧壁
• 土的密实度
• 压缩性
• 强度
• 桩和地基的承载力
电缆 传感器
传感器 传感器
单桥探头
第十五页,共102页。
双桥探头
地基勘探
示意图
静力触探是可以迅速、连续的反映土质变化 划分土层, 承载力、 压缩性、不排水抗剪强度、砂土密实度等 静力触探适用于粘性土和砂类土
第十六页,共102页。
地基勘探
5 现场试验 In situ testing
十字板 Vane Shear-饱和软粘土 载荷板试验Loading Plate-深浅均可 旁压仪 Pressuremeter -较深地基
第十七页,共102页。
地基勘探
十字板
F
F Mmax=F×D
f
Mmax D2 D
H
2. 极限承载力pu
载力;还可评定砂土的震动液化势。标准贯 入试验适用于砂性土与粘性土。
第十二页,共102页。
地基4勘触探 探 动力触探和静力触探
(1) 动力触探
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距,贯入深度
30cm的击数, N 63.5
(1) 动力触探Dynamic Penetration
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距, 贯入深度30cm的击数, N 63.5
锥状探头
轻型10 kg, 50cm落距,贯入深度30cm
中型 28kg 重型 63.5kg 碎石,砾石地层
特重型 120kg
第九页,共102页。
• 单桥探头 端部Ps=Q/A 比贯入阻力
双桥探头 端部和侧壁
• 土的密实度
• 压缩性
• 强度
• 桩和地基的承载力
电缆 传感器
传感器 传感器
单桥探头
第十五页,共102页。
双桥探头
地基勘探
示意图
静力触探是可以迅速、连续的反映土质变化 划分土层, 承载力、 压缩性、不排水抗剪强度、砂土密实度等 静力触探适用于粘性土和砂类土
第十六页,共102页。
地基勘探
5 现场试验 In situ testing
十字板 Vane Shear-饱和软粘土 载荷板试验Loading Plate-深浅均可 旁压仪 Pressuremeter -较深地基
第十七页,共102页。
地基勘探
十字板
F
F Mmax=F×D
f
Mmax D2 D
H
2. 极限承载力pu
清华大学版土力学(课堂PPT)

u(tz )4 ,πp i 1si n m 2πH π ex p m 2 π 4 2 T v m=1,3,5,7······
Tv
Cv H2
t
时间因数
反映孔隙水压力的消散程度-固结程度
固结度
固结度
0.0 0.2 0.4
1
0.6 0.8 1.0
0.001
2
3 透水边界
渗 流
不透水边界
孔压系数
土体在不排水和不排气条件下,由外荷载 引起的孔隙压力增量与应力增最的比值。
固结过程孔压系数的变化
外荷载 附加应力σz
土骨架:有效应力
孔隙水:孔隙水压力
应力历史
土在其形成的地质年代中所经受的应力变 化情况称为应力历史。
土的压缩性的地基沉降计算
固结
饱和土压缩的全过程叫做土的固结
土的固结状态
土力学重点知识点
土的三相性
土的物理性质指标
1)土的密度、重度 2)土粒的比重 3)土的饱和度 4)土的含水量 5)土的孔隙比和空隙率
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
(1)层状构造;(2)分散构造;(3)裂 隙构造(4)结核状构造
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
2
2
1f
450+/2
450+/2
c O 3
1f
图5-7 土的破裂面确定
挡土结构物上土压力
三种土压力的大小关系
静止土压力对应于图中A点,墙位移为0,墙后土体处于弹性 平衡状态 主动土压力对应于图中B点,墙向离开填土的方向位移,墙 后土体处于主动极限平衡状态 被动土压力对应于图中C点,墙向填土的方向位移,墙后土 体处于被动极限平衡状态
土力学课件清华大学绪论工管

土力学与地基基础
0 绪论
0.1.2 地基和基础 (1)建筑物组成:上部结构、基础和地基,是一整体
上部结构 基础
(a)水闸
(b)柱子
地基
土力学与地基基础
0 绪论
阿联酋迪拜全 球最高的“哈 利法塔 -迪拜 大厦”,162层, 高818m。
土力学与地基基础
0 绪论
918米长的马格德堡水桥位于德国柏林附近的马格德堡,历时6 年,花费5亿欧元建成。确切说它是一座跨越易北河的渠道桥,
0.2.2 国内外工程事故示例
0.2.2.1 变形
Ref:《建筑地基基础设计规范GB50007-2011》
地基变形特征: ●沉降量
●沉降差
●倾斜
●局部倾斜
0 绪论
土力学与地基基础
(1)倾斜
比萨斜塔
0 绪论
8层55m 直径16m 偏离中心5.27m 倾斜5.5度 修建时间: 1173~1370
●高耸结构 ●地基持力层为 粉砂、下面为粉 土和粘性土;粘 土由南向北变薄
(2)适用范围:砂土、一般粘性土
土力学与地基基础
1.5.4.2 动水力(渗透力)
(1)土颗粒对水流的阻力 F whA
(2)总渗透力为渗透水流
作用在土颗粒上的力,大 小为
J F whA
(3)渗流作用于土骨架单位
体积上的力(单位体积 渗流
力GD、j)为
●大小:
j
J V
whA
●地基的下卧层:持 力层下受荷载影响较 小的土层。
基础
基础底面
附加应力分布 地基持力层 影响深度 地基
地基下卧层 附加应力大小
●天然地基和人工地基
土力学与地基基础
土力学课件(清华大学)土力学绪论

什么是土?
土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
一般固体: 液体: 土体(散粒体):
可保持固定的形状
不具有特定的形状
具有一定但不固 定的形状
土体的特点
碎散性
岩石风化或破 碎的产物,是 非连续体
• 受力以后易变形,强度低 • 体积变化主要是孔隙变化 • 剪切变形主要由颗粒相对 位移引起
连续墙并对塔周围与塔基进行钻 孔注浆和打设树根桩加固塔身。
1986年:开工 1990年:人工岛完成 1994年:机场运营 面积:4370m×1250m
填筑量:180×106m3
平均厚度:33m
世界最大的人工岛
日本 关西机场
关西机场
问题:沉降大且不均匀
• 设计沉降:5.7-7.5 m
• 完成时(1990年)实际沉降: 8.1 m,5cm/月 • 预测主固结需:20年 • 比设计多超填:3m
可归结为与土有关的 渗透问题
案例总结(三)
土工结构物或地基
强度问题 变形问题 渗透问题
土
强度特性 变形特性 渗透特性
土力学可以解决工程实践问题,这正是土力学存 在的价值以及我们学习土力学的目的。
学习土力学的目的
课程绪论:土力学及其特点
什么是土?
土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
土壤在自然界的位置
土壤带 腐殖质层 淀积层 母质层
土壤有非常复杂的形成过程,并具有独特 的层状构造。土壤剖面一般包含枯枝落叶 层、腐殖质层、淀积层和母质层四个基本 层次。 传统岩土工程的范畴 风化、搬运、沉积 土壤 地质大循环:岩石 地质成岩作用 生物小循环: 生物活动所造成的土壤 有机质的循环
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 土的固体颗粒-土粒成分
原生矿物
矿物质
- 石英、长石、云母等 无定形氧化物胶体
固体成分
有机质
次生矿物
可溶盐 粘土矿物
具有和原生矿物很不相同的特性 对粘土性质的影响很大 固体颗粒 - 矿物成分
1.2.1 土的固体颗粒-土粒成分
粘土矿物是一种复合的铝-硅盐晶体,颗粒呈片状,是由硅 片和铝片构成的晶包所组叠而成,可分成高岭石、伊利石和 蒙特石三种类型。
水蜘蛛
仰泳的 水蜘蛛
生活在水面收缩膜 顶面和地面的昆虫
表面张力
1.2.2 土中水
r2hcw=2rTcos 毛 细 管
上升高度
T
2T cos hc r
毛细升高与孔径成反比
hc
2r
粘土 粉土 砂土 砾石
1.2.2 土中水
毛细管中的 负静水压力
T
T
张力T
T
uc= -hcw hc 2r
氧离子O2硅离子Si4+ Si Si
硅片
铝片
硅-氧四面体 硅片的结构 硅片简图
1.2.1 土的固体颗粒-土粒成分
粘土矿物是一种复合的铝-硅盐晶体,颗粒呈片状,是由硅 片和铝片构成的晶包所组叠而成,可分成高岭石、伊利石和 蒙特石三种类型。
OH1铝离子Al3+
Al Al
硅片
铝片
铝-氢氧八面体 硅片的结构 硅片简图
缺少小颗粒,Cc 缺少大颗粒,Cc
粒径(mm)
曲线 d60
L M R
d10 d30 Cu
66
0.081 0.33 0.005 0.063 0.030
0.01 0.005
Cc
3.98 2.41 0.545
0.001
0.10 0.05
1.0 0.5
10 5.0
Cc=13, 级配连续
100 90 80 70 60 50 40 30 20 10 0
1.2.1 土的固体颗粒-土粒成分
1:1的两 层结构
Al Al Si Si
依硅片和铝片组叠 形式的不同,可分 成如下三种类型:
高岭 石微粒
Al Al Si Si Al Al Si Si
• 晶层间通过氢键联结,联结力强,晶 格不能自由活动,水难以进入晶格间 高岭石 蒙特石 伊利石
• 能组叠很多晶层,多达百个以上,成 为一个颗粒。颗粒长宽约0.3-3,厚 约0.03-1。
uc
水压
2πrTcosα+ucπr2 = 0
水
则毛细压力:
+
uc hc
1.2.2 土中水
在非饱和土中,孔隙中含
r 弯液面
有水和气,此时水多集中 于颗粒间的缝隙处,称毛 细角边水。
由于毛细张力的作用,会
形成如图所示的弯液面, 使毛细角边水产生负压力, 颗粒则受正压力。
空气
水
固体颗粒
粘土的电泳和电渗现象
(列依斯, 1809)
粘土粒 + 玻璃筒
水位 升高
粘土膏
粘土矿物的带电性质
研究表明,片状粘土颗粒表 面常带有电荷,净电荷通常 为负电荷
粘土颗粒
玻璃皿
水分子 阳离子
粘土矿物的带电特性
1.2.1 土的固体颗粒-土粒形状、比表面积
原生矿物:一般颗粒较粗,呈粒状。 有圆状、浑圆状、棱角状等。 次生矿物:颗粒较细,多呈针状、片 状、扁平状。 比表面积:单位质量土颗粒所拥有的 总表面积。对于粘性土,其大小直接 反映土颗粒与四周介质,特别是水,相 互作用的强烈程度,是代表粘性土特 征的一个很重要的指标。 高岭石的比表面积为:10-20m2/g,伊 利石:80-l00m2/g,蒙特石:800m2/g
1.2.1 土的固体颗粒-颗粒级配
100
小于某粒径的土含 小于某粒径的图含量/% 量/%
80
60
40
20
0 100
10
1
0.1
0.01
粒径/mm 粒径 /mm
土的粒径级配累积曲线
土的粒径级配累积曲线
200g
0.01 0.005
粒径(mm)
水分法
0.001
10 5.0 2.0 1.0 0.5 0.25 0.1
Si Si
Si Si
Al Al
Al Al
• 是云母在碱性介质中风化的产物。 高岭石 蒙特石 伊利石 • 与蒙特石相似,由两层硅片夹一层 铝片所形成的三层结构,但晶层之 间有钾离子连结。 • 主要特征:连结强度弱于高岭石而 高于蒙特石,其特征也介于两者之 间。
1.2.1 土的固体颗粒-土粒成分
引力
自由水
d
土中水 – 结合水
1.2.2 土中水
自由水:不受颗粒电场引 力作用的孔隙水
- 毛细水:由于土体孔隙的毛细 作用升至自由水面以上的水。 毛细水承受表面张力和重力的 作用 - 重力水:自由水面以下的孔隙 自由水,在重力作用下可在土 中自由流动
重力水 毛细水
hc
土中水 – 自由水
1.2.2 土中水
土的粒径级 配累积曲线
d60
d30
d10
1.2.1 土的固体颗粒-颗粒级配
粒径级配
粒径级配累积曲线及指标的用途: 1)粒组含量用于土的分类定名;
2)不均匀系数Cu用于判定土的不均匀程度:
Cu ≥ 5, 不均匀土; Cu < 5, 均匀土 3)曲率系数Cc用于判定土的连续程度: C c = 1 ~ 3, 级配连续土; Cc > 3 或 Cc < 1,级配不连续土 4)不均匀系数Cu和曲率系数Cc用于判定土的级配优劣: 如果 Cu ≥ 5且 C c = 1 ~ 3 , 级配 良好的土; 如果 Cu < 5 或 Cc > 3 或 Cc < 1, 级配 不良的土
粗颗粒的形状
粘土颗粒的形状
1.2.2 土中水
结晶水:土粒矿物 内部的水。
结晶水
强结合水
土中水
结合水:受电分子吸 引力作用吸附于土粒 表面的土中水。
结合水 弱结合水 重力水 自由水 气态水 固态水
自由水:存在于土粒 毛细水 表面电场影响范围以 外的土中水。
1.2.2 土中水
结合水:受颗粒表面电场作用力
• 主要特征:颗粒较粗,不容易吸水膨 胀和失水收缩,亲水能力差。
1.2.1 土的固体颗粒-土粒成分
依硅片和铝片组叠 形式的不同,可分 成如下三种类型:
2:1的三 层结构
Si Si Si Si
Al Al
数层 水分子
Si Si
Si Si
Al Al
高岭石 蒙特石 伊利石
• 晶层间是O2-对O2-的连结,联结力很 弱,水很容易进入晶层之间。
不均匀系数可以反映大小不同粒组的分布情况,Cu越大表示土 粒大小分布范围广。
不均匀系数Cu用于判 定土的不均匀程度: Cu ≥ 5, 不均匀土; Cu < 5, 均匀土
小于某粒径之土质量百分数(%)
连续程度: 用曲率系数 Cc = d302 / (d60 ×d10 ) 度量, Cc=1~3为连续级配, >3或<1为不连续级配
1.2 土的三相组成
土体
固相 + 液相 + 气相
构成土骨架,起决定作用
重要影响
次要作用
三相比例的变化性
1.2 土的三相组成及结构
1.2.1 固体颗粒
粒径级配
矿物成分
颗粒形状、 大小
物理状态 力学特性
1.2.1 土的固体颗粒-粒径级配
粒径:颗粒的大小通常以直径表示。称为粒径
(mm)或粒度。
1.2.1 土的固体颗粒形状、大小
第一章 土的性质及工程分类
§1.1 土的生成与特性
§1.2 土的三相组成及土的结构 §1.3 土的物理性质指标 §1.4 土的物理状态指标 §1.5 地基土的工程分类 §1.6 地基土的压实性
1.1 土的生成
岩石 地球
风化、剥蚀
颗粒堆积物 地球
搬运、沉积
• 风化作用:物理风化 化学风化 生物风化 • 搬运与沉积:(分选作用、浑圆度) • 残积土,运积土 • 运积土:坡积土;洪积土;冲积土;湖泊沼泽沉积土 海相沉积物;冰蹟土;风积土
土的粒径级配累积曲线
100 90 80 70 60 50 40 30 20 10 0 10 5.0
d60 d50 d30
粒径(mm) 0.10 0.05 1.0 0.5
0.01 0.005
土的粒径级配曲线
0.001
d10
100
小于某粒径的土粒质量/%
80
60
40
20
0
10
1
0.1
粒径/mm
0.01
土的重度:天然状态下,单位体积土的重量,单位为 KN/m3,即: =g g为重力加速度
1.3.1 土的三相组成的比例关系
1.3.1 土的三相组成的比例关系
2、基本试验指标
土粒比重(土粒相对密度):土粒密度与4℃时纯水的密度之 比,一般用ds或Gs表示,无量纲。即:
ms 1 s Gs vs w4C w4C
吸引而包围在颗粒四周,不传递静水 压力,不能任意流动的水
粘土 颗粒
阳离子
水分子
- 强结合水:
• 排列致密,密度>1g/cm3 • 冰点处于零下几十度 • 完全不能移动,具有固体的特性 • 温度略高于100°C时可蒸发
强结合水
弱结合水
- 弱结合水:
• 受电场引力作用,为粘滞水膜 • 外力作用下可以移动 • 不因重力而流动,有粘滞性
巨粒(>200mm)