高考物理大一轮复习 物理模型1 纸带类模型
高中物理知识点总结高考物理48个解题模型

⾼中物理知识点总结⾼考物理48个解题模型⾼中阶段的物理常常会以模型的形式出现,这些模型应⽤在解题中提供了⽀持和辅助作⽤。
⾼中物理解题模型汇总必修⼀1、传送带模型:摩擦⼒,⽜顿运动定律,功能及摩擦⽣热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。
图像法等)3、挂件模型:平衡问题,死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法。
4、斜⾯模型:受⼒分析,运动规律,⽜顿三⼤定律,数理问题。
必修⼆1、“绳⼦、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题。
2、⾏星模型:向⼼⼒(各种⼒),相关物理量,功能问题,数理问题(圆⼼。
半径。
临界问题)。
3、抛体模型:运动的合成与分解,⽜顿运动定律,动能定理(类平抛运动)。
选修3-11、“回旋加速器”模型:加速模型(⼒能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,⼒和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断⽅法和变压器的三个制约问题。
4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应⽤。
选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平⾯导轨,竖直导轨等,处理⾓度为⼒电⾓度,电学⾓度,⼒能⾓度。
2、交流电有效值相关模型:图像法,焦⽿定律,闭合电路的欧姆定律,能量问题。
选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。
2、“单摆”模型:简谐运动,圆周运动中的⼒和能问题,对称法,图象法。
选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。
2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。
⾼考物理必考知识点总结⼀、运动的描述1.物体模型⽤质点,忽略形状和⼤⼩;地球公转当质点,地球⾃转要⼤⼩。
物体位置的变化,准确描述⽤位移,运动快慢S⽐t ,a⽤Δv与t ⽐。
2020最新高考物理实验纸带类模型技巧典型试题(9页)

2020最新高考物理实验纸带类模型技巧典型试题纸带类模型目录考查方向 (2)打点计时器的原理、类型、应用要点 (2)纸带处理数据 (2)光电门问题 (3)热身训练 (4)考查方向1、打点计时器的原理、类型、应用要点2、计时仪器的扩展:秒表、光电门等计时仪器3、利用纸带计算平均速度4、利用纸带计算瞬时速度5、利用纸带计算加速度6、光电门测速度打点计时器的原理、类型、应用要点例题1.(2017·全国高一课时练习)下列关于打点计时器的说法中正确的是() A.电磁打点计时器是利用振针上下振动,通过复写纸在纸带上留下一行小点B.电火花打点计时器是利用火花放电的原理来工作的C.我国中学实验室中的打点计时器直接接到实验台上的插座上使用,这种打点计时器是电磁打点计时器D.从减小实验误差的角度考虑,选电火花打点计时器较电磁打点计时器好纸带处理数据例题2:(2020·全国高三课时练习)某小组利用打点计时器对物块沿倾斜的长木板加速下滑时的运动进行研究.物块拖动纸带下滑,打出的纸带一部分如图所示.已知打点计时器所用交流电的频率为50 Hz,纸带上标出的每两个相邻点之间还有4个打出的点未画出.在ABCDE五个点中,打点计时器最先打出的是______点,在打出C点时物块的速度大小为______m/s(保留3位有效数字);物块下滑的加速度大小为_____m/s2(保留2位有效数字).光电门问题例题3:某物理课外小组利用如图甲所示的装置完成探究小车的加速度与其所受合外力F之间的关系实验(1)请补充完整下列实验步骤的相关内容,①用天平测量砝码盘的质量m0;用游标卡尺测量光板的宽度d,游标卡尺的示数如图乙所示,则其读数为___cm;按图甲所示安装好实验装置,用米尺测量两光电门之同的距离s;②在砝码盘中放入适量的砝码,适当调节长木板的倾角,直到轻推小车,遮光片先后经过光电门A和光电门B的时间相等;③取下细绳和砝码盘,记下砝码盘中砝码的质量m;④让小车从靠近滑轮处由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间Δt A和Δt B;⑤步骤④中,小车从光电门A下滑至光电门B的过程中所受合外力为_____,小车的加速度为:________(用上述步中的物理量表示,重力加速度为g)⑥重新挂上细线和砝码盘,改变砝码盘中砝码的质量和长本板的倾角,重复②~⑤步骤(2)本实验中,以下操作或要求是为了减小实验误差的是_____A.尽量减小两光电门间的距离sB.尽量增大遮光片的宽度dC.调整滑轮,使细线与长木板平行D.砝码和砝码盘的总质量远小于小车的质量热身训练1. (1)在“用打点计时器测速度”实验中,电磁打点计时器和电火花计时器都使用________(填“直流”或“交流”)电源.只是电磁打点计时器工作电压为________.(2)如下图为物体做匀加速运动时打点计时器打出的一条纸带,图中相邻的点间还有四个点未画出,已知打点计时器接交流50Hz的电源,则打点计时器打出D点时,物体的速度大小为________ m/s,物体运动的加速度大小为________ m/s2。
(完整版)高考常用24个物理模型

Fm 高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)aθ模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++(20F =是上面的情况) F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m mg θ++F=A B B 12m (m )m Fm m g ++F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力N 12对13=Fnm12)m -(nm 2 m 1 Fm 1 m 2╰ α模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
高考物理第一轮复习资料(知识点梳理)

学习必备欢迎下载高考物理第一轮复习资料(知识点梳理)学好物理要记住:最基本的知识、方法才是最重要的。
学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)(最基础的概念、公式、定理、定律最重要)每一题弄清楚(对象、条件、状态、过程)是解题关健力的种类 : ( 13 个性质力)说明:凡矢量式中用“重力:G = mg弹力: F= Kx滑动摩擦力: F 滑 = N静摩擦力:O f 静f m浮力: F 浮 = gV 排压力 : F= PS =ghs+”号都为合成符号“受力分析的基础”万有引力:m 1 m 2电场力: F 电 =q E =qu q1 q2(真空中、点电荷 ) F 引=G2库仑力: F=Kr 2r d磁场力: (1) 、安培力:磁场对电流的作用力。
公式: F= BIL( B I )方向 :左手定则(2) 、洛仑兹力:磁场对运动电荷的作用力。
公式:f=BqV (B V) 方向 : 左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大 ,但斥力变化得快。
核力:只有相邻的核子之间才有核力,是一种短程强力。
运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点高考中常出现多种运动形式的组合匀速直线运动 F 合=0V0≠0静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动(决于 F 合与 V0的方向关系 ) 但 F 合=恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等圆周运动:竖直平面内的圆周运动(最低点和最高点 );匀速圆周运动 (是什么力提供作向心力)简谐运动;单摆运动;波动及共振;分子热运动;类平抛运动;带电粒子在f洛作用下的匀速圆周运动物理解题的依据:力的公式各物理量的定义各种运动规律的公式物理中的定理定律及数学几何关系FF12F222F1 F2COS F1- F2F∣ F1 +F 2∣、三力平衡: F3=F1 +F2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律:V t = V 0 + a t S = v o t + a t2几个重要推论:(1)推论: V t2- V 02 = 2as (匀加速直线运动: a 为正值匀减速直线运动: a 为正值)(2) A B 段中间时刻的即时速度:(3) AB段位移中点的即时速度 :V t/ 2 = V =S N 1S NV s/2 = = == VN2T(4) S 第 t 秒 = St-S t-1= (v o t + a t2) - [ v o( t- 1) + a (t- 1)2]= V 0 + a (t -)(5)初速为零的匀加速直线运动规律①在 1s 末、 2s 末、 3s 末⋯⋯ ns 末的速度比为1: 2: 3⋯⋯ n;②在 1s 、 2s、 3s⋯⋯ ns 内的位移之比为12: 22: 32⋯⋯ n2;③在第 1s 内、第2s 内、第 3s 内⋯⋯第ns 内的位移之比为1: 3: 5⋯⋯ (2n-1);④从静止开始通过连续相等位移所用时间之比为1::⋯⋯(⑤通过连续相等位移末速度比为1: 2 : 3 ⋯⋯n(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(7)通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律初速无论是否为零 ,匀变速直线运动的质点 ,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法。
2024年高考物理一轮复习(新人教版)专题强化11 动量守恒在子弹打木块模型和板块模型中的应用

例2 (多选)(2023·四川成都市树德中学高三检测)水平飞行的子弹打穿固
定在水平面上的木块,经历时间为t1,子弹损失的动能为ΔEk1损,系统机 械能的损失为E1损 ,穿透后系统的总动量为p1;同样的子弹以同样的速 度打穿放在光滑水平面上的同样的木块,经历时间为t2,子弹损失的动 能为ΔEk2损,系统机械能的损失为E2损,穿透后系统的总动量为p2.设木块 给子弹的阻力为恒力且上述两种情况下该阻力大小相等,则下列结论正
(2)木板的长度. 答案 3.6 m
拉力撤去之前,物块相对木板的位移 x1=12a1t2-12a2t2 撤去拉力后,根据动量守恒定律有mv1+Mv2=(m+M)v 由能量守恒定律有 μmgx2=12mv12+12Mv22-12(M+m)v2 联立解得木板的长度L=x1+x2=3.6 m.
课时精练
例6 (2023·天津市和平区高三模拟)如图所示,质量为M=2 kg的长木板 放在光滑的水平面上,质量为m=1 kg的物块(可视为质点)放在长木板的 左端,用大小为10 N、方向斜向右上与水平方向成θ=53°角的拉力F作 用在物块上,使物块从静止开始运动,物块运动1 s的时间,撤去拉力, 如果物块刚好不滑离木板,物块与木板间的动摩擦因数为0.5,重力加速 度g=10 m/s2,sin 53°=0.8,cos 53°=0.6,求:
答案 能
假设子弹以v0′=400 m/s的速度入射时没有射穿木块,则对以子弹 和木块组成的系统,由动量守恒定律得mv0′=(M+m)v′ 解得v′=8 m/s
此过程系统损失的机械能为 ΔE′=12mv0′2-12(M+m)v′2=1 568 J 由功能关系有Q=ΔE=F阻x相=F阻d ΔE′=F阻x相′=F阻d′
(2)A、C之间的摩擦力的大小;
高三物理一轮复习7板块模型、传送带模型(教师版)

(教师可见内容)匀变速直线运动(教师可见内容)隔离法分析物块,水平方向上受力平衡,则对的摩擦力,方向向左;整体法分析物块,水平方向受力平衡,则,即地面对的摩擦力(教师可见内容)(教师可见内容)1如图所示,水平放置的传送带足够长,它以恒定速率2如图所示,水平传送带以解决倾斜类传送带问题,分析摩擦力判断物体的运动也是关键,物体方向沿斜面向下,大小为如图,传送带将物块匀速送往高处,若物块在传送带上不打滑,物块与传送带之间的动摩擦因数3内,物块的加速度为小物块受到的摩擦力的方向始终沿传送带向下小物体与传送带之间的动摩擦因数如图所示,倾角为4内,物块的加速度.开始时,物块相对于传送带向上滑动,受到的摩擦力方向沿传送带向下,当速度与传送带内的摩擦力如图甲所示,倾斜的传送带正以恒定速率5,故A 错误;摩擦力与运动方向相同,故B 错误;,,可知6如图所示,传送带长7如图所示为车站使用的水平传送带摸型,其,它与水平台面平滑连若传送带保持静止,物块滑动到端时的速度大小.若传送带顺时针匀速转动的速率恒为,则物块到达端时的速度大小.若传送带逆时针匀速转动的速率恒为,且物块初速度变为,仍从送带,求物块从滑上传送带到离开传送带的总时间.若传送带保持静止,物块滑动到端时的速度大小为8如图所示,水平放置的传送带以速度9如图所示,水平传送带在电动机的带动下以速度从传送带中点开始运动时具有一水平向右的初速度,则至少应多大才能使到达传10如图所示,在光滑的水平面上静止停放着小车11如图所示,质量当铁块运动到木板右端时,把铁块拿走,木板还能继续滑行的距离.12如图时间内,、间的摩擦力为零13如图所示,一长时,从开始运动到木块恰好脱离木板,木板的位移是多少.14如图所示,质量15如图所示,一质量高三考经系列课程——物理第21页(共22页)共,解得共对小物块:根据动能定理:对木板:根据动能定理:所以木板的长度至少为第22页(共22页)高三考经系列课程——物理。
高考物理一轮复习考点归纳复习专题

精品基础教育教学资料,仅供参考,需要可下载使用!高考一轮复习知识考点归纳专题01 运动的描述、匀变速直线运动目录第一节描述运动的基本概念 (2)【基本概念、规律】 (2)【重要考点归纳总结】 (2)考点一对质点模型的理解 (2)考点二平均速度和瞬时速度 (3)考点三速度、速度变化量和加速度的关系 (3)【思想方法与技巧】 (3)第二节匀变速直线运动的规律及应用 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一匀变速直线运动基本公式的应用 (5)考点二匀变速直线运动推论的应用 (5)考点三自由落体运动和竖直上抛运动 (5)【思想方法与技巧】 (6)第三节运动图象追及、相遇问题 (6)【基本概念、规律】 (6)【重要考点归纳】 (7)考点一运动图象的理解及应用 (7)考点二追及与相遇问题 (7)【思想方法与技巧】 (8)方法技巧——用图象法解决追及相遇问题 (8)巧解直线运动六法 (8)实验一研究匀变速直线运动 (9)第一节 描述运动的基本概念【基本概念、规律】一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =xt,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =ΔvΔt ;单位是m/s 2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同. 【重要考点归纳总结】 考点一 对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点.考点二 平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系 1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速 【思想方法与技巧】物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况. 2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用【基本概念、规律】一、匀变速直线运动的基本规律 1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t 2=v 0+v2. 2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2. 3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内……位移之比为: x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为: x ∶∶x ∶∶x ∶∶…∶x n =1∶3∶5∶…∶(2n -1). (4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh . (4)上升的最大高度:h =v 202g .(5)上升到最大高度用时:t =v 0g.【重要考点归纳】考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题∶如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带. ∶对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.∶物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用1.推论公式主要是指:∶v =v t 2=v 0+v t 2,∶Δx =aT 2,∶∶式都是矢量式,在应用时要注意v 0与v t 、Δx与a 的方向关系.2.∶式常与x =v ·t 结合使用,而∶式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性 ∶时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .∶速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等. (2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法分段法下降过程:自由落体运动【思想方法与技巧】物理思想——用转换法求解多个物体的运动在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题【基本概念、规律】一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义∶图线与时间轴围成的面积表示相应时间内的位移大小.∶若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.【重要考点归纳】考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”考点二1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A=v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A=v B时,x A+x0>x B,则不能追上.(2)数学判别式法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上.(2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧∶紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.∶审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件. 【思想方法与技巧】方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v -t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t 内的平均速度等于物体在这段时间内的初速度v 0与末速度v 的平均值,也等于物体在t 时间内中间时刻的瞬时速度,即v =x t =v 0+v 2=v t 2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx =aT 2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况. 五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.位置编号012345t/sx/mv/(m·s-1)5.计算出相邻的计数点之间的距离x1、x2、x3、….6.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验. 四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T 内的位移分别为x 1、x 2、x 3、x 4、…,若Δx =x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T .3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,再算出a 1、a 2、a 3的平均值 a =a 1+a 2+a 33=13×⎝⎛⎭⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2=x 4+x 5+x 6-x 1+x 2+x 39T 2,即为物体的加速度.(2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T 求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差.2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.精品基础教育教学资料,仅供参考,需要可下载使用!2020年高考一轮复习知识考点归纳专题02 相互作用目录第一节重力弹力摩擦力 (2)【基本概念、规律】 (2)【重要考点归纳】 (3)考点一弹力的分析与计算 (3)考点二摩擦力的分析与计算 (3)考点三摩擦力突变问题的分析 (4)【思想方法与技巧】 (4)物理模型——轻杆、轻绳、轻弹簧模型 (4)第二节力的合成与分解 (5)【基本概念、规律】 (5)【重要考点归纳】 (6)考点一共点力的合成 (6)考点二力的两种分解方法 (6)【思想方法与技巧】 (7)方法技巧——辅助图法巧解力的合成和分解问题 (7)第三节受力分析共点力的平衡 (7)【基本概念、规律】 (7)【重要考点归纳】 (8)考点一物体的受力分析 (8)考点二解决平衡问题的常用方法 (9)考点三图解法分析动态平衡问题 (9)考点四隔离法和整体法在多体平衡中的应用 (9)【思想方法与技巧】 (10)求解平衡问题的四种特殊方法 (10)实验二探究弹力和弹簧伸长的关系 (10)实验三验证力的平行四边形定则 (12)第一节重力弹力摩擦力【基本概念、规律】一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力F f=μF N,静摩擦力:0≤F f≤F fmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.【重要考点归纳】考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则F f=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式F f=μF N来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;F N为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.【思想方法与技巧】物理模型——轻杆、轻绳、轻弹簧模型柔软,只能发生微小形既可伸长,也可压缩,弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解【基本概念、规律】一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系.2.力的合成:求几个力的合力的过程.3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则.3.分解的方法(1)按力产生的实际效果进行分解.(2)正交分解.三、矢量和标量1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则.2.标量只有大小没有方向的物理量,求和时按算术法则相加.【重要考点归纳】考点一共点力的合成1.共点力合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小. (2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tan θ=F 2F1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示): F 合=2Fcos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F.解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力:。
2024高考物理一轮复习专题练习及解析—传送带模型和“滑块—木板”模型

2024高考物理一轮复习专题练习及解析—传送带模型和“滑块—木板”模型1.如图所示,飞机场运输行李的倾斜传送带保持恒定的速率运行,将行李箱无初速度地放在传送带底端,当传送带将它送入飞机货舱前行李箱已做匀速运动.假设行李箱与传送带之间的动摩擦因数为μ,传送带与水平面的夹角为θ,已知滑动摩擦力近似等于最大静摩擦力,下列说法正确的是()A.要实现这一目的前提是μ<tan θB.做匀速运动时,行李箱与传送带之间的摩擦力为零C.全过程传送带对行李箱的摩擦力方向沿传送带向上D.若使传送带速度足够大,可以无限缩短传送的时间2.(多选)图甲为一转动的传送带,以恒定的速率v顺时针转动.在传送带的右侧有一滑块以初速度v0从光滑水平面滑上传送带,运动一段时间后离开传送带,这一过程中滑块运动的v-t图像如图乙所示.由图像可知滑块()A.从右端离开传送带B.从左端离开传送带C.先受滑动摩擦力的作用,后受静摩擦力的作用D.变速运动过程中受滑动摩擦力的作用3.(多选)如图甲所示,光滑水平面上静置一个薄长木板,长木板上表面粗糙,其质量为M,t=0时刻,质量为m的物块以速度v水平滑上长木板,此后木板与物块运动的v-t图像如图乙所示,重力加速度g取10 m/s2,下列说法正确的是()A.M=mB.M=2mC.木板的长度为8 mD.木板与物块间的动摩擦因数为0.14.(2023·甘肃省模拟)如图所示,水平匀速转动的传送带左右两端相距L=3.5 m,物块A(可看作质点)以水平速度v0=4 m/s滑上传送带左端,物块与传送带间的动摩擦因数μ=0.1,设A到达传送带右端时的瞬时速度为v,g取10 m/s2,下列说法不正确的是()A.若传送带速度等于2 m/s,物块不可能先做减速运动后做匀速运动B.若传送带速度等于3.5 m/s,v可能等于3 m/sC.若A到达传送带右端时的瞬时速度v等于3 m/s,传送带可能沿逆时针方向转动D.若A到达传送带右端时的瞬时速度v等于3 m/s,则传送带的速度不大于3 m/s5.(多选)(2023·福建福州市高三检测)如图所示,质量为M的长木板A以速度v0在光滑水平面上向左匀速运动,质量为m的小滑块B轻放在木板左端,经过一段时间恰好从木板的右端滑出,小滑块与木板间的动摩擦因数为μ,下列说法中正确的是()A.若只增大m,则小滑块不能滑离木板B.若只增大M,则小滑块在木板上运动的时间变短C.若只增大v0,则小滑块离开木板的速度变大D.若只减小μ,则小滑块滑离木板过程中小滑块对地的位移变大6.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t (N)的变力作用,从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是()A.滑块与木板间的动摩擦因数为0.4B.木板与水平地面间的动摩擦因数为0.2C.图乙中t2=24 sD.木板的最大加速度为2 m/s27.(2023·山东泰安市模拟)如图所示,水平传送带AB间的距离为16 m,质量分别为2 kg、4 kg的物块P、Q通过绕在光滑定滑轮上的细线连接,Q在传送带的左端,且连接物块Q的细线水平,当传送带以8 m/s的速度逆时针转动时,Q恰好静止.重力加速度取g=10 m/s2,最大静摩擦力等于滑动摩擦力.当传送带以8 m/s 的速度顺时针转动时,下列说法正确的是()A.Q与传送带间的动摩擦因数为0.6B.Q从传送带左端滑到右端所用的时间为2.4 sC.Q从传送带左端滑到右端,相对传送带运动的距离为4.8 mD.Q从传送带左端滑到右端的过程细线受到的拉力大小恒为20 N 8.(2023·河南信阳市模拟)如图甲所示,在顺时针匀速转动且倾角为θ=37°的传送带底端,一质量m=1 kg的小物块以某一初速度向上滑动,传送带足够长,物块的速度与时间(v-t)关系的部分图像如图乙所示,已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,求:(1)物块与传送带之间的动摩擦因数μ;(2)物块沿传送带向上运动的最大位移;(3)物块向上运动到最高点的过程中相对传送带的路程.9.(2023·辽宁大连市检测)如图所示,一质量M=2 kg的长木板B静止在粗糙水平面上,其右端有一质量m=2 kg的小滑块A,对B施加一水平向右且大小为F=14 N的拉力;t=3 s后撤去拉力,撤去拉力时滑块仍然在木板上.已知A、B间的动摩擦因数为μ1=0.1,B与地面间的动摩擦因数为μ2=0.2,重力加速度取g =10 m/s2.(1)求有拉力时木板B和滑块A的加速度大小;(2)要使滑块A不从木板B左端掉落,求木板B的最小长度.1.C 2.AD 3.BC 4.D 5.AB6.ACD7.C [当传送带以v =8 m/s 的速度逆时针转动时,Q 恰好静止不动,对Q 受力分析知m P g =μm Q g ,解得μ=0.5,A 错误;当传送带以v =8 m/s 的速度顺时针转动,物块Q 先做初速度为零的匀加速直线运动,有m P g +μm Q g =(m P +m Q )a ,解得a =203 m/s 2,当物块Q 速度达到传送带速度,即8 m/s 后,做匀速直线运动,由v =at 1,解得匀加速的时间t 1=1.2 s ,匀加速的位移为x =v 22a =4.8 m ,则匀速运动的时间为t 2=L -x v =1.4 s ,Q 从传送带左端滑到右端所用的时间为t 总=t 1+t 2=2.6 s ,B 错误;加速阶段的位移之差为Δx =v t 1-x =4.8 m ,即Q 从传送带左端到右端相对传送带运动的距离为4.8 m ,C 正确;当Q 加速时,对P 分析有m P g -F T =m P a ,解得F T =203N ,之后做匀速直线运动,有F T ′=20 N ,D 错误.] 8.(1)0.5 (2)6.4 m (3)4.8 m解析 (1)由题图乙可知,物块的初速度v 0=8 m/s ,物块的速度减速到与传送带的速度相同时,加速度发生变化,所以传送带转动时的速度v =4 m/s ,从t =0到t=0.4 s 时间内,物块加速度大小为a 1=⎪⎪⎪⎪⎪⎪Δv Δt =8-40.4 m/s 2=10 m/s 2,方向沿斜面向下;物块受到重力、支持力和沿斜面向下的摩擦力的作用,沿斜面方向由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,解得μ=0.5.(2)设在t =0.4 s 后,物块做减速运动的加速度大小为a 2,物块受到重力、支持力和沿斜面向上的摩擦力的作用,由牛顿第二定律可得mg sin θ-μmg cos θ=ma 2,解得a 2=2 m/s 2,物块从t =0.4 s 开始,经过t 1时间速度减为零,则t 1=42 s =2 s ,从t =0到t =0.4 s ,物块位移为x 1=v 0Δt -12a 1(Δt )2=2.4 m ,从t =0.4 s 到t =2.4 s ,物块减速到零的位移为x 2=v 2t 1=42×2 m =4 m ,物块沿传送带向上运动过程中的位移为x =x 1+x 2=6.4 m.(3)从t =0到t =0.4 s ,传送带位移为x 3=v Δt =1.6 m ,物块相对传送带向上运动Δx 1=x 1-x 3=0.8 m ,从t =0.4 s 到t =2.4 s ,传送带位移x 4=v t 1=8 m ,物块相对传送带向下运动Δx 2=x 4-x 2=4 m ,故物块向上运动到最高点的过程中,物块相对传送带的路程Δx =Δx 1+Δx 2=4.8 m.9.(1)2 m/s 2 1 m/s 2 (2)5.25 m解析 (1)对滑块A 根据牛顿第二定律可得μ1mg =ma 1,故A 的加速度大小为a 1=1 m/s 2,方向向右;对木板B 根据牛顿第二定律可得F -μ1mg -μ2(m +M )g =Ma 2,解得木板B 加速度大小为a 2=2 m/s 2.(2)撤去外力瞬间,A 的位移大小为x 1=12a 1t 2=4.5 m ,B 的位移大小为x 2=12a 2t 2=9 m ,撤去外力时,滑块A 和木板B 的速度分别为v 1=a 1t =3 m/s ,v 2=a 2t =6 m/s ,撤去外力后,滑块A 的受力没变,故滑块A 仍然做加速运动,加速度不变,木板B 做减速运动,其加速度大小变为a 2′=μ1mg +μ2(m +M )g M=5 m/s 2,设再经过时间t ′两者达到共速,则有v 1+a 1t ′=v 2-a 2′t ′撤去外力后,A 的位移大小为x 1′=v 1t ′+12a 1t ′2B 的位移大小为x 2′=v 2t ′-12a 2′t ′2故木板B 的长度至少为L =x 2-x 1+x 2′-x 1′代入数据解得L =5.25 m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 小球释放后做匀加速直线运动,且每相邻的两个小球 的时间间隔相等,均为0.1 s,可以认为A、B、C、D各点是一个 小球在不同时刻的位置.
(1)由推论Δx=aT2可知,小球的加速度大小为 a=ΔTx2 =xBC-T2xAB=20×10-20-.1215×10-2 m/s2 =5 m/s2.
(4)设A点小球速度为vA,由于vB=vA+at, 所以vA=vB-at=1.75 m/s-5×0.1 m/s=1.25 m/s 所以A点小球运动时间为tA=vaA=1.525 s=0.25 s 因为每隔0.1 s释放一个小球,故A点小球的上面滚动的小球 还有2个. 答案 (1)5 m/s2 (2)1.75 m/s (3)0.25 m (4)2个
(2)由题意知B点是AC段的中间时刻,可知B点小球的速度等 于AC段上的平均速度,即
vB= v AC=x2ATC=20×102-×2+01.15×10-2 m/s=1.75 m/s. (3)由于相邻相等时间内位移差恒定,所以 xCD-xBC=xBC-xAB 所以xCD=2xBC-xAB=2×20×10-2m-15×10-2m=0.25 m.
物理模型1 纸带类模型
研究多物体在时间或空间上重复同样运动问题或单物体连续 相等时间内运动问题时,可将其运动看成打点计时器打下的纸带 问题进行研究,应用以下两个重要推论求解.
1平均速度公式:
.2任意两个连续相等
的时间间隔T内的位移之差为一恒量,即Δx=aT2.
[典例] 从斜面上某一位置每隔0.1 s释放一颗小球,在连续 释放几颗后,对斜面上正在运动着的小球拍下部分照片,如图所 示.现测得AB=15 cm,BC=20 cm,已知小球在斜面上做匀加 速直线运动,且加速度大小相同,求:
[突破训练] 1.(多选)物体自O点由静止开始做匀加速直线运动,A、B、 C、D为其运动轨迹上的四点,测得AB=2 m,BC=3 m.且物体 通过AB、BC、CD所用时间相等,则下列说法正确的是( )
A.可以求出物体加速度的大小 B.可以求得CD=4 m C.可求得OA之间的距离为1.125 m D.可求得OA之间的距离为1.5 m
解析:选BC.设加速度为a,时间为T,则有Δx=aT2=1 m,
可以求得CD=4
m,而B点的瞬时速Байду номын сангаасvB=
xAC 2T
,所以OB之间的
距离为xOB=
v2B 2a
=3.125
m,OA之间的距离为xOA=xOB-xAB=
1.125 m,即B、C选项正确.