浙教(最新)七年级下册数学期末试题。附详细答案

合集下载

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。

2023-2024学年浙江省杭州市萧山区、临平区七年级(下)期末数学试卷及答案解析

2023-2024学年浙江省杭州市萧山区、临平区七年级(下)期末数学试卷及答案解析

2023-2024学年浙江省杭州市萧山区、临平区七年级(下)期末数学试卷一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列方程中,是二元一次方程的是()A.x﹣y=6B.C.3x﹣y2=0D.4xy=32.(3分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.3.(3分)下列计算正确的是()A.a3•a3=a9B.a6÷a2=a3C.(a3)2=a6D.a3﹣a2=a4.(3分)文旅部门为了调查五一期间游客在西湖、西溪湿地、灵隐寺和雷峰塔这四个风景区旅游的满意度,在以下四个方案中,最合理的方案是()A.在多家旅游公司调查100名导游B.在灵隐寺景区调查100名游客C.在西溪湿地调查100名游客D.在四个景区随机调查100名游客5.(3分)计算(﹣2xy3)3的结果是()A.﹣6x3y6B.﹣8x3y6C.﹣6x3y9D.﹣8x3y96.(3分)下列因式分解正确的是()A.4a2﹣1=(4a+1)(4a﹣1)B.﹣a2+25=(5+a)(5﹣a)C.a2﹣6ab﹣9b2=(a﹣3b)2D.a2﹣8a+16=(a﹣8)27.(3分)如果把分式中的x和y都扩大3倍,那么原分式的值是()A.不变B.缩小3倍C.扩大3倍D.缩小6倍8.(3分)信息技术的存储设备常用B,KB,MB,GB等作为存储的单位.例如,我们常说某移动硬盘的容量是80GB,某个文件大小是156KB等,其中1GB=210MB,1MB=210KB,1KB=210B,对于一个存储量为8GB的硬盘,其容量是()A.213B B.223B C.233B D.243B9.(3分)已知方程组和方程组有相同的解,则m的值是()A.3B.4C.5D.6(多选)10.(3分)下列结论中正确的是()A.当a≠0时,B.(其中a+b+c≠0且abc≠0)C.多项式2x2+3x﹣1可以分解为(x﹣1)(2x+1)D.已知(x﹣2)(3﹣x)=﹣1,则(x﹣2)2+(3﹣x)2的值是3二.填空题:本大题有6个小题,每小题3分,共18分.11.(3分)因式分解:4a2+a=.12.(3分)分式与的最简公分母是.13.(3分)近年来,西溪湿地南迁的候鸟种群越来越多.为监测西溪湿地过冬的国家二级重点保护野生动物灰鹤的数量,鸟类保护协会在该湿地中捕捉了30只灰鹤,戴上识别卡后放回,再利用鸟类智能识别追踪系统统计了飞回来的佩有识别卡的灰鹤频率,绘制了如图所示的折线统计图,由此估计该湿地约有灰鹤200只.在这次调查中,样本容量是.14.(3分)如图,直线m平移后得到直线n,若∠1=100°,则∠3﹣∠2的度数为.15.(3分)古代算书《四元玉鉴》中有“两果问价”问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文钱,苦果七个四文钱.试问甜苦果几个?”该问题意思是:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?设甜果买了x个,苦果买了y个,根据题意,可列方程组是.16.(3分)有4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中阴影部分的面积为S,则S可以表示为.(用含a、b的代数式表示并化简其结果)三.解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)将方格纸中的图形F先向下平移4格,再向左平移4格,画出两次平移后分别得到的图形.18.(6分)计算化简:(1)(x+y)2+x(y﹣x);(2).19.(8分)解方程(组):(1);(2).20.(8分)已知如图,已知∠1=∠2,∠C=∠D.(1)判断BD与CE是否平行,并说明理由;(2)说明∠A=∠F的理由.21.(10分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?22.(10分)如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式.再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,能解决一些与非负数有关的问题.如:求代数式最大值或最小值等.求代数式x2+2x+2的最小值,同学们经过探究,合作,交流,最后得到如下的解法:解:x2+2x+2=(x2+2x+12﹣12)+2=(x+1)2+1,∵(x+1)2是非负数,∴当(x+1)2=0时,(x+1)2+1的值最小,最小值为1.∴x2+2x+2的最小值是1.请你根据上述方法,解答下列问题:(1)求代数式y2﹣6y+11的最小值;(2)求代数式2a2+8a+5的最小值;(3)若x﹣y=1,求﹣x2﹣3x ﹣y的最大值.23.(12分)知识拓展:解分式方程除了转化整式方程外,还有其他的解法,请仔细阅读并完成填空:(1)例题:解方程.解法1:利用分式的基本性质,将原方程化为,由分子相同,得分母相同,即.解法2:分式两边通分,得,由分母相同,得分子相同,即.(2)解法3:用图形的方式表示出来,就可以用图1来解释.=90,S长方形AGHD=60,GE=EB=v,AE=DF=30,AB=30+v,AG=30﹣v.则AD 如图,S长方形ABCD=75,AE=30,得AD=,从==•AD=EF,EF=,由S长方形AEFD而求得v=.问题解决:=48cm2,S三角形(3)如图2所示,在三角形ABC中,D,E是BC边上的点,且DE=EC,S三角形ABCABD=36cm2,BE=21cm,求BC的长.24.(12分)某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)填表:长方形铁片张数正方形铁片张数1只竖式无盖铁容器中1只横式无盖铁容器中(2)现有长方形铁片300张,正方形铁片100张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(3)把无盖铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少个铁盒?2023-2024学年浙江省杭州市萧山区、临平区七年级(下)期末数学试卷参考答案与试题解析一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面及是否整式方程辨别.【解答】解:A、未知数的项的最高次数是1,是二元一次方程;B、不是整式方程;C、不符合二元一次方程未知数的项的最高次数是1的定义;D、未知数的项的最高次数是2,不是二元一次方程.故选:A.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.【分析】根据同位角、内错角、同旁内角的定义逐个判断即可.【解答】解:A.∠1与∠2是内错角,不是同位角,故本选项不符合题意;B.∠1与∠2是同旁内角,不是同位角,故本选项不符合题意;C.∠1与∠2是同位角,故本选项符合题意;D.∠1与∠2不是同位角,故本选项不符合题意;故选:C.【点评】本题考查了同位角、内错角、同旁内角的定义,能正确识图是解此题的关键.3.【分析】A.根据同底数幂的乘法运算法则计算即可;B.根据同底数幂的除法运算法则计算即可;C.根据幂的乘方运算法则计算即可;D.根据同类项的定义判断即可.【解答】解:a3•a3=a6,∴A不正确,不符合题意;a6÷a2=a4,B不正确,不符合题意;(a3)2=a6,∴C正确,符合题意;a3与a2不是同类项,∴D不正确,不符合题意.故选:C.【点评】本题考查同底数幂的乘法、除法等,掌握同底数幂的乘法、除法及幂的乘方与积的乘方运算法则和同类项的定义是本题的关键.4.【分析】根据选择调查对象的代表性、广泛性和可操作性,逐项进行判断即可.【解答】解:A.调查的目的是“游客在西湖、西溪湿地、灵隐寺和雷峰塔这四个风景区旅游的满意度“,导游不能代表游客,因此选项A不符合题意;B.在灵隐寺景区调查100名游客,具有片面性,不能准确反映出“西湖、西溪湿地和雷峰塔”的满意度,因此选项B不符合题意;C.在西溪湿地调查100名游客,具有片面性,不能准确反映出“西湖、灵隐寺和雷峰塔”的满意度,因此选项C不符合题意;D.在上述四个景区随机调查100名游客,比较具有代表性,因此选项D符合题意;故选:D.【点评】本题考查调查收集数据的过程与方法,理解选择调查对象的代表性、广泛性和可操作性是正确判断的关键.5.【分析】积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘,由此计算即可.【解答】解:(﹣2xy3)3=﹣8x3y9,故选:D.【点评】本题考查了积的乘方,熟练掌握其运算法则是解题的关键.6.【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A.4a2﹣1=(2a+1)(2a﹣1),故本选项不符合题意;B.﹣a2+25=(5+a)(5﹣a),故本选项符合题意;C.a2﹣6ab+9b2=(a﹣3b)2,故本选项不符合题意;D.a2﹣8a+16=(a﹣4)2,故本选项不符合题意;故选:B.【点评】本题考查了利用公式法分解因式,能熟记平方差公式和完全平方公式是解本题的关键.7.【分析】根据分式的基本性质计算,判断即可.【解答】解:=3×,则把分式中的x和y都扩大3倍,那么原分式的值扩大3倍,故选:C.【点评】本题考查的是分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.【分析】通过题目定义进行计算即可.【解答】解:由题意得,8GB=8×210MB=23×210×210KB=23×210×210×210B=233B,故选:C.【点评】此题考查了有理数乘方的应用能力,关键是能准确理解并运用该知识.9.【分析】根据题意组成新的方程组,即可求出x、y的值,然后代入方程x+y+m=0中即可求出m的值.【解答】解:由题意得,,解得,把代入方程x+y+m=0中,得m=5,故选:C.【点评】本题考查了二元一次方程的解及解二元一次方程组,理解题意,正确计算是解题的关键.10.【分析】根据整式的混合运算化简即可.【解答】解:A.当a≠0时,=,故A正确;B.m÷(a+b+c)=,故B错误;C.(x﹣1)(2x+1)=2x2﹣x﹣1,故C错误;D.设x﹣2=a,3﹣x=b,则ab=﹣1,a+b=x﹣2+3﹣x=1,所以(x﹣2)2+(3﹣x)2=a2+b2=(a+b)2﹣2ab=12﹣2×(﹣1)=3,故D正确;故选:AD.【点评】本题考查了整式的混合运算和因式分解,整式的混合运算是解题的关键.二.填空题:本大题有6个小题,每小题3分,共18分.11.【分析】原式提取公因式即可得到结果.【解答】解:原式=a(4a+1),故答案为:a(4a+1).【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.【分析】先将各分母分解因式,最简公分母是各分母的所有因式的高次幂的乘积.【解答】解:∵,∴分式与的最简公分母是(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】本题主要考查了最简公分母的确定,熟练掌握最简公分母的定义是解题关键.13.【分析】用“频数=总数×频率”可得答案.【解答】解:200×0.15=30(只),在这次调查中,样本容量是30.故答案为:30.【点评】本题考查了频数分布折线图和频数分布直方图,掌握“频数÷频率=总数”是解答本题的关键.14.【分析】过点B作BD∥m,由平移的性质可知m∥n,故可得出m∥n∥BD,再根据平行线的性质即可得出结论.【解答】解:过点B作BD∥m,∵直线m平移后得到直线n,∴m∥n,∴m∥n∥BD,∴∠2=∠DBC,∴∠3﹣∠2=∠ABD,∵BD∥m,∠1=100°,∴∠ABD=180°﹣∠1=180°﹣100°=80°,∴∠3﹣∠2=80°.故答案为:80°.【点评】本题考查的是平行线的性质,掌握平行线的性质是解题的关键.15.【分析】利用总价=单价×数量,结合用九百九十九文钱买了甜果和苦果共一千个,可得出关于x,y 的二元一次方程组,此题得解.【解答】解:∵买了甜果和苦果共一千个,∴x+y=1000;∵买甜果和苦果共花了999文钱,∴x+y=999.∴根据题意可列方程组.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.16.【分析】根据题意,图中空白部分面积为2个直角边为a和b的直角三角形,2个边长为(a+b)和b 的直角三角形,边长为(a﹣b)的小正方形面积之和,阴影部分面积为边长为(a+b)的正方形面积减去空白部分的面积.【解答】解:图中空白部分的面积为:2×ab+2×(a+b)b+(a﹣b)2=a2+2b2,则图中阴影部分的面积为:(a+b)2﹣(a2+2b2)=2ab﹣b2.【点评】本题主要考查了完全平方式,完全平方公式的几何背景,熟练掌握完全平方公式的几何背景计算方法进行求解是解决本题的关键.三.解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.【分析】根据平移的性质分别作图即可.【解答】解:如图,图形F',F''即为所求.【点评】本题考查作图﹣平移变换,熟练掌握平移的性质是解答本题的关键.18.【分析】(1)先算完全平方,单项式乘多项式,再合并同类项即可;(2)先算括号里的运算,除法转为乘法,再约分即可.【解答】解:(1)(x+y)2+x(y﹣x)=x2+2xy+y2+xy﹣x2=3xy+y2;(2)===.【点评】本题主要考查分式的混合运算,单项式乘多项式,完全平方公式,解答的关键是对相应的运算法则的掌握.19.【分析】(1)利用加减消元法进行计算,即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【解答】解:(1),②﹣①得:x=1,把x=1代入①中得:2+y=2,解得:y=0,∴原方程组的解为:;(2),x+x﹣1=2,解得:x=1.5,检验:当x=1.5时,x﹣1≠0,∴x=1.5是原方程的根.【点评】本题考查了解分式方程,解二元一次方程组,准确熟练地进行计算是解题的关键20.【分析】(1)由∠1=∠2结合对顶角相等可得出∠1=∠3,再利用“同位角相等,两直线平行”可得出BD∥CE;(2)由BD∥CE可得出∠C=∠4,结合∠C=∠D可得出∠D=∠4,利用“内错角相等,两直线平行”可得出AC∥DF,再利用“两直线平行,内错角相等”可得出∠A=∠F.【解答】解:(1)BD∥CE,理由如下:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE;(2)理由如下:∵BD∥CE,∴∠C=∠4.∵∠C=∠D,∴∠D=∠4,∴AC∥DF,∴∠A=∠F.【点评】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.21.【分析】(1)图表中“C组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A 组”的频数,即m的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)+==95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,估计非合格品的羽毛球大约有6只.【点评】考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.22.【分析】(1)将y2﹣6y+11转化为(y﹣3)2+2,即可求出最小值;(2)将2a2+8a+5转化为2(a+2)2﹣3,即可求出最小值;(3)将﹣x2﹣3x﹣y转化为﹣(x+2)2+5,即可求出最大值.【解答】解:(1)y2﹣6y+11=y2﹣6y+32﹣32+11=(y﹣3)2+2,∵(y﹣3)2是非负数,∴当(y﹣3)2=0时,(y﹣3)2+2的值最小,最小值为2,∴y2﹣6y+11的最小值是2;(2)2a2+8a+5=2(a2+4a)+5=2(a2+4a+4﹣4)+5=2[(a+2)2﹣4]+5=2(a+2)2﹣8+5=2(a+2)2﹣3,∵(a+2)2是非负数,∴2(a+2)2是非负数,∴当2(a+2)2=0时,2(a+2)2﹣3的值最小,最小值是﹣3,∴2a2+8a+5的最小值是﹣3;(3)∵x﹣y=1,∴y=x﹣1,∴﹣x2﹣3x﹣y=﹣x2﹣3x﹣(x﹣1)=﹣x2﹣3x﹣x+1=﹣x2﹣4x+1=﹣(x2+4x)+1=﹣(x2+4x+4﹣4)+1=﹣[(x+2)2﹣4]+1=﹣(x+2)2+4+1=﹣(x+2)2+5,∵(x+2)2为非负数,∴﹣(x+2)2为非正数,∴当﹣(x+2)2=0时,﹣(x+2)2+5有最大值,最大值是5.【点评】本题考查了整式的混合运算﹣化简求值,配方法,理解题意,熟练运用配方法求最值是解题的关键.23.【分析】(1)根据题干提供的信息列出方程即可;=75,AE=30,求出AD;根据2.5=求出结果即可;(2)根据长方形面积公式,结合S长方形AEFD=S△ACE,根据S△ABC和S△ABD,得出S (3)设△ABC中BC边上的高为h,根据DE=EC,得出S△ADE=S△ACE,求出h,根据S△ABC=BC×h,求出BC即可.△ADE【解答】解:(1)解法1:利用分式的基本性质,将原方程化为,由分子相同,得分母相同,即60+2v=90﹣3v;解法2:分式两边通分,得,由分母相同,得分子相同,即90(30﹣v)=60(30+v),故答案为:60+2v=90﹣3v,90(30﹣v)=60(30+v);=75,AE=30,(2)由S长方形AEFD得AD==2.5;∵AD==,∴30﹣v=,解得:v=6;经检验,v=6是原方程的解,故答案为:2.5,6;(3)设△ABC中BC边上的高为h,∵DE=EC,=S△ACE,∴S△ADE=48cm2,S△ABP=36cm2,∵S△ABC=S△ABC﹣S△ABD=48﹣36=12(cm2),∴S△ACD+S△ACE=12cm2,∴S△ADE=S△ACE=6cm2,∴S△ADE=S△ABD+S△ADE=36+6=42(cm2),∴S△ABE∴BE×h=42,即×21×h=42,解得:h=4,=BC×h=48,∴S△ABC即BC×4=48,解得:BC=24cm,∴BC的长为24cm.【点评】本题是四边形和分式方程综合题,主要考查了解分式方程,与三角形的高有关的计算,矩形的面积计算,解题的关键是数形结合,熟练掌握三角形的面积计算公式.24.【分析】(1)据图可得,1只竖式和横式长方体各需的铁片张数;(2)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片300张、正方形铁片100张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35﹣m﹣n)块铁板裁成长方形铁片和正方形铁片,根据裁成的长方形铁片和正方形铁片正好配套,即可得出关于m,n的二元一次方程,结合m,n,(35﹣m﹣n)均为非负整数,即可得出各裁剪方案,再分别求出各方案所能加工成的铁盒数量,比较后即可得出结论.【解答】解:(1)填表如下:长方形铁片张数正方形铁片张数1只竖式无盖铁容器中411只横式无盖铁容器中32(2)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意得:,解得:,答:可加工竖式长方体铁容器60个,横式长方体铁容器20个;(3)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35﹣m﹣n)块铁板裁成长方形铁片和正方形铁片,依题意,得:=,∴n=m﹣21.∵m,n,(35﹣m﹣n)均为非负整数,∴,.当m=25,n=9时,==19;当m=20,n=3时,==18.∵19>18,∴最多可以加工成19个铁盒.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组。

【浙教版】初一数学下期末试题(带答案)

【浙教版】初一数学下期末试题(带答案)

一、选择题1.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 2.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1 B .a =2,b =1 C .a =1,b =0 D .a =0,b =2 3.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y += B .1x y +=-C .9x y +=D .9x y -=- 4.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-5.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩6.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .7.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <2 8.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位 9.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 10.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ 11.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37° 12.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D .二、填空题13.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.14.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.15.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________. 16.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).19.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.20.如果不等式组2{223x a x b +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题21.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案; (3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,要使(2)中所有方案获利相同,则m 的值应为多少?22.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?23.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?24.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.25.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.26.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.2.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键. 3.C解析:C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.4.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 5.B解析:B【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解.【详解】A 项,当0x =,12y时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解; B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解; C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解; D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.6.B解析:B【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩,∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质7.D解析:D【详解】由题意得2021x x -<⎧⎨-≥-⎩ 解之得12x ≤<故选D .8.A解析:A【分析】根据把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度可直接得到答案.【详解】将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比向上平移3个单位;故选:A .【点睛】此题主要考查了坐标与图形变化-平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.D解析:D【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)逐项进行判断即可得到答案.【详解】解:A 、(1,0)是x 轴正半轴上的点,故选项A 不符合题意;B 、(1,1)是第一象限内的点,故选项B 不符合题意;C 、(1,﹣1)是第四象限内的点,故C 不符合题意;D 、(﹣1,1)是第二象限内的点,故D 符合题意;故选:D .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.D解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m ≥3, ∵B =∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度. 11.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 12.B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.二、填空题13.【分析】根据不等式的性质2可得答案【详解】解:∵不等式的解集是∴解得故答案为:【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数不等号的方向不变解析:a 1<.【分析】根据不等式的性质2,可得答案.【详解】解:∵不等式()a 1x a 1-<-的解集是x 1>,∴a 10-<,解得a 1<.故答案为:a 1<.【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数,不等号的方向不变. 14.【分析】由题意建立关于xy 的新的方程组求得xy 的值再代入求解即可;【详解】由得:由得:将代入得:方程组的解为又方程组的解是的一个解经检验是的解【点睛】本题主要考查了二元一次方程组的解准确分析计算是解 解析:0【分析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入求解即可;【详解】2237x ay x y +=⎧⎨+=⎩①②, 由2①×得:224x ay +=③,由②-③得:()323a y -=,332y a=-, 将332y a=-代入②得: 92372a x =--, 1214232a x a -=-,6732a x a--=, 方程组的解为6732332a x a y a -⎧=⎪⎪-⎨⎪=⎪-⎩, 又方程组的解是1x y -=的一个解,36173322a a a∴---=-, 13732a a--=, 3732,a a -=-0,a =经检验,0a =是13732a a--=的解, 0a ∴=.【点睛】本题主要考查了二元一次方程组的解,准确分析计算是解题的关键.15.【分析】把方程组的解代入可得得到a 和b 的值即可求解【详解】解:把方程组的解代入可得:解得∴故答案为:【点睛】本题考查二元一次方程组的解掌握二元一次方程组的解的定义是解题的关键 解析:73【分析】把方程组的解13x y =⎧⎨=-⎩代入可得23331a b +=⎧⎨-=-⎩,得到a 和b 的值即可求解. 【详解】 解:把方程组的解13x y =⎧⎨=-⎩代入可得:23331a b +=⎧⎨-=-⎩, 解得13a =,2b =, ∴a b +=73, 故答案为:73. 【点睛】 本题考查二元一次方程组的解,掌握二元一次方程组的解的定义是解题的关键. 16.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.17.(-25)【分析】根据点A(-14)的对应点为A′(1-1)可以得出变化规律再将点C′按照此变化规律即可得出C 点的坐标【详解】解:∵点A (-14)的对应点为A′(1-1)∴此题变化规律是为(x+2y解析:(-2,5)【分析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C 点的坐标.【详解】解:∵点A (-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C 的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.18.③④【分析】①x)示小于x 的最大整数由定义得x)x≤x)+1)<<-8)=-9即可②由定义得x)x 变形可以直接判断③由定义得x≤x)+1变式即可判断④由定义知x)x≤x)+1由x≤x)+1变形的x-解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.19.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).20.1【分析】先解不等式组再根据条件得到ab的值然后可求出a+b的值【详解】解得因为所以考点:不等式组解析:1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<,因为01x ≤<,所以4202a a -==,, 3112b b +==-,, 1a b +=.考点:不等式组.三、解答题21.(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台;(3)要使(2)中所有方案获利相同,则m 的值应为100元【分析】(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,然后由题意可列方程组进行求解;(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,然后根据题意可列不等式组进行求解a 的范围,然后根据a 为正整数可求解;(3)设总利润为w ,则由(2)可得()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%,进而根据题意可求解.【详解】解:(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,根据题意得: 22600234400x y x y +=⎧⎨+=⎩, 解得:1000800x y =⎧⎨=⎩, 答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,由(1)及题意得: ()()1000800201800010008002017400a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:710a ≤≤,∵a 为正整数,∴a 的值为7、8、9、10,∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台.(3)设总利润为w ,则由(2)可得:()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%, ∵(2)中方案利润要相同,∴1000m -=,解得:100m =,答:要使(2)中所有方案获利相同,则m 的值应为100.【点睛】本题主要考查二元一次方程组及不等式组的应用,熟练掌握二元一次方程组及不等式组的应用是解题的关键.22.(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 23.(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台,依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.24.(1)A ( -1,-1 )、B (4,2)、C (1,3);(2)7;(3)见解析【分析】(1)利用坐标系可得答案;(2)利用矩形面积减去周围多余三角形面积;(3)根据B 点平移后的对应点位置可得三角形向右平移2个单位,然后再向上平移3个单位,然后作出图形即可.【详解】(1)A (-1,-1),B (4,2),C (1,3);(2)△ABC 的面积: 11154241335222⨯-⨯⨯-⨯⨯-⨯⨯ 204 1.57.5=---7=;(3)如图:△A′B′C′即为所求.【点睛】本题主要考查了作图-平移变换,关键是掌握组成图形的关键点平移后的位置. 25.(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案;(3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.26.(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE =180°,∠1+∠3=180°∴∠DFE =∠1,∴AB ∥EF ,∴∠CEF =∠EAD ;(2)∵AB ∥EF ,∴∠2+∠BDE =180°又∵∠2=α∴∠BDE =180°−α又∵DH 平分∠BDE∴∠1=12∠BDE =12(180°−α) ∴∠3=180°−12(180°−α)=90°+12α. 【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.。

浙教版七年级(下)期末数学试卷附答案

浙教版七年级(下)期末数学试卷附答案

最新浙教版初中数学七年级下册期末试卷及答案一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2B.2n C.2n+2D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11.12.28 13.±2 14.2α.15.5 16.27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.2.(3分)下列计算正确的是()A.a4﹣a2=a2B.a4÷a2=a2C.a4+a2=a6D.a4•a2=a8 3.(3分)为了解本校学生课外使用网络情况,学校采用抽样问卷调查,下面的抽样方法最恰当的是()A.随机抽取七年级5位同学B.随机抽取七年级每班各5位同学C.随机抽取全校5位同学D.随机抽取全校每班各5位同学4.(3分)已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为()A.2×10﹣9B.﹣2×109C.2×10﹣8D.﹣2×108 6.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(3分)下列等式不正确的是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)(﹣a﹣b)=﹣(a+b)2C.(a﹣b)(﹣a+b)=﹣(a﹣b)2D.(a﹣b)(﹣a﹣b)=﹣a2﹣b28.(3分)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c9.(3分)分式有意义时,x的取值范围是()A.x≠0 B.x≠1 C.x≠0或x≠1 D.x≠0且x≠1 10.(3分)若(x+2y)2=(x﹣2y)2+A,则A等于()A.8xy B.﹣8xy C.8y2D.4xy11.(3分)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种12.(3分)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣2)0﹣2﹣1=.14.(3分)分式与的最简公分母为.15.(3分)如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=°.16.(3分)因式分解:3a3﹣12a=.17.(3分)已知关于x,y的方程组的解是,则a2﹣b2的值为.18.(3分)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.(6分)计算:(1)(2a2)3÷a3(2)(2m+1)(m﹣2)﹣2m(m﹣2)20.(8分)解方程(组):(1)(2)21.(6分)先化简,再求值:,其中x=.22.(8分)如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB 交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.23.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的样本中男生和女生的人数相同,利用所得数绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)求样本中男生的人数;(2)求样本中女生身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170之间的学生总人数.24.(8分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板.问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?(2)该工厂原计划用若干天加工纸箱2400个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,问原计划每天加工纸箱多少个?25.(10分)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.26.(12分)阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式,从而因式分解6x2﹣x﹣5=;(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:①2x2+5x+3;②x3﹣7x+6;(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3有因式,,,所以分解因式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=.参考答案一、选择题(本题有12小题,每小题3分,共36分)1.B 2.B 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.A 11.B 12.C 二、填空题(共6小题,每小题3分,满分18分)13.14.2xy215.75°16.3a(a+2)(a﹣2).17.﹣15 18.45°,75°,165°.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.解:(1)原式=8a6÷a3=8a3;(2)原式=2m2﹣4m+m﹣2﹣2m2+4m=m﹣2.20.解:(1)去分母得:2﹣x=﹣1﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2),①×3+②×2得:13x=65,解得:x=5,把x=5代入①得:y=2,则方程组的解为.21.解:原式=•﹣•=﹣1﹣=﹣﹣=﹣,当x=时,原式=﹣=﹣3.22.解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.23.解:(1)(1)抽取的总人数是:10÷25%=40(人),样本中男生的人数40×=20(人)答:样本中男生的人数为20人;(2)40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2(人),答:样本中女生身高在E组的人数为2人;(3)=299(人),答:全校身高在160≤x<170之间的学生总人数299人.24.解:(1)设加工竖式纸箱x个,横式纸箱y个,依题意,得:,解得:.答:加工竖式纸箱200个,横式纸箱400个.(2)设原计划每天加工纸箱a个,则实际每天加工纸箱1.5a个,依题意,得:﹣=2,解得:a=400,经检验,a=400是所列分式方程的解,且符合题意.答:原计划每天加工纸箱400个.25.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.26.解:(1)当x=1时,6x2﹣x﹣5=0,设6x2﹣x﹣5=(x﹣1)(mx+n),解得m=6,n=5,∴因式分解6x2﹣x﹣5=(x﹣1)(6x+5),故答案为1,x﹣1,(x﹣1)(6x+5);(2)①当x=﹣1时,2x2+5x+3=0,∴2x2+5x+3=(x+1)(2x+3);②当x=1时,x3﹣7x+6=0,∴x3﹣7x+6=(x﹣1)(x﹣2)(x+3);(3)当x=y=2时,(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=0,∴(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=3(x﹣2)(y﹣2)(x﹣y),故答案为(x﹣2),(y﹣2),(x﹣y),3(x﹣2)(y﹣2)(x﹣y).。

2022-2023学年浙教新版七年级下册数学期末复习试卷(含解析)

2022-2023学年浙教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式是二元一次方程的是( )A.x2+y=0B.x=C.D.y+x2.下列算式中,结果一定等于a6的是( )A.a3+a2B.a3•a2C.a8﹣a2D.(a2)33.含有新冠病毒的气溶胶直径通常小于5微米,其病原体含量非常少,携带新冠病毒的气溶胶在空气中被健康人群直接吸入的概率较低.人们更应该注意那些随气溶胶沉降在物体表面的冠状病毒,做到勤消毒、勤洗手,防止接触后造成感染.5微米转换成国际单位“米”为单位是0.000005米,将数字0.000005写成科学记数法得到( )A.0.5×105B.5×106C.0.5×10﹣5D.5×10﹣64.有下列变形:①a(x+y)=ax+ay;②12x2﹣6x=6x(2x﹣1);③2mR+2mr=2m (R+r).其中是因式分解的有( )A.3个B.2个C.1个D.0个5.下列问题中,不适合用普查的是( )A.了解全班同学每周体育锻炼时间B.旅客上飞机安检C.学生会选干部D.了解全市中学生的新年红包6.如图,直线a∥b,一块含45°角的直角三角板的直角顶点恰好在直线a上,若∠1=30°,则∠2的度数是( )A.55°B.65°C.75°D.80°7.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是( )A.B.C.D.8.若分式方程﹣=0有增根,则m的值是( )A.3B.2C.1D.﹣19.已知方程组的解满足x+y=2,则k的值为( )A.4B.﹣4C.2D.﹣210.当a=﹣1时,分式的值是( )A.2B.﹣2C.﹣4D.4二.填空题(共6小题,满分24分,每小题4分)11.当a 时,分式有意义.12.已知2x﹣y=﹣3,用含x的式子表示y,则 .13.78×73= .14.已知是方程组的解,则a+b= .15.如果(x+1)(x﹣2)=x2+mx+n,那么n m= .16.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为 .三.解答题(共8小题,满分66分)17.(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x2﹣12y2.18.先化简,再求值:(﹣1)÷,其中m=2.19.解方程(1)解分式方程:=﹣1;(2)解二元一次方程组.20.如图,在8×8的正方形网格中有△ABC,点A,B,C均在格点上.(1)画出点B到直线AC的最短路径BD;(2)过C点画出AB的平行线,交BD于点E;(3)将△ABC向左平移4格,再向下平移3格后得到△A1B1C1,画出△A1B1C1;(4)判断∠BAC和∠CED的数量关系 .21.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只能选一种),在全校范围内随机调查了部分学生,并将统计结果绘制了两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)本次调查问卷共调查了多少名学生,表示“其它”的扇形圆心角的度数是多少?(2)请你补充完整条形统计图;(3)如果该校有1000名学生,请估计该校最喜欢用“微信”进行沟通的学生约有多少名?22.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠A的度数.23.某工厂生产某种型号的螺母和螺钉两种零件,每名工人平均每天生产的螺母比螺钉多800个,1个螺钉需要配2个螺母,生产50000个螺母和生产30000个螺钉所用的时间相同.(1)求每名工人平均每天生产螺母和螺钉各多少个?(2)若该车间有工人22名,如何分配使每天生产的螺钉和螺母刚好配套?24.如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)解答下列问题.①当∠A=50°时,∠ABN的度数是 .②∵AM∥BN,∴∠ACB=∠ .(2)当∠A=x°,求∠CBD的度数(用x的代数式表示).(3)当点P运动时,∠ADB与∠APB的度数之比是否随点P的运动而发生变化?若不变化,请求出这个比值,若变化,请写出变化规律.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.符合二元一次方程的定义,是二元一次方程,即C选项符合题意;D.不是方程,即D选项不合题意.故选:C.2.解:A.a3与a2不能合并,故A不符合题意;B.a3•a2=a5,故B不符合题意;C.a8与a2不能合并,故C不符合题意;D.(a2)3=a6,故D符合题意;故选:D.3.解:将0.000005用科学记数法表示为5×10﹣6.故选:D.4.解:①a(x+y)=ax+ay,是整式的乘法,不是因式分解;②12x2﹣6x=6x(2x﹣1),是因式分解;③2mR+2mr=2m(R+r),是因式分解.其中是因式分解的有2个.故选:B.5.解:A、了解全班同学每周体育锻炼时间,调查范围小,适合普查;B、旅客上飞机安检是事关重大的调查,适合普查;C、学生会选干部,调查范围小,适合普查;D、了解全市中学生的新年红包,适合抽样调查;故选:D.6.解:如图,∵∠1=30°,∴∠3=∠1+45°=75°,∵直线a∥b,∴∠2=∠3=75°,故选:C.7.解:根据题意列方程组,得.故选:D.8.解:方程两边同时乘(x﹣2)得:m﹣1﹣x=0,∴x=m﹣1,∵方程有增根,∴x﹣2=0,∴x=2,∴m﹣1=2,∴m=3,故选:A.9.解:,①×2﹣②×3得:y=4﹣k,②×5﹣①×3得:x=2k﹣6,代入x+y=2中得:2k﹣6+4﹣k=2,解得:k=4,故选:A.10.解:当a=﹣1时,原式=,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵分式有意义,∴2a+1≠0,解得:a≠﹣.故答案为:a≠﹣.12.解:由2x﹣y=﹣3,解得:y=2x+3,故答案为:y=2x+313.解:78×73=78+3=711.故答案为:711.14.解:将代入得:,∴,∴a+b=﹣2,故答案为:﹣2.15.解:∵(x+1)(x﹣2)=x2﹣x﹣2,=x2+mx+n,∴m=﹣1,n=﹣2,∴n m=(﹣2)﹣1=﹣.故答案为:﹣.16.解:设小长方形的长为x,宽为y,依题意得:,解得:.故答案为:5.三.解答题(共8小题,满分66分)17.解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).18.解:(﹣1)÷====,当m=2时,原式==6.19.解:(1)方程两边都乘x﹣1,得2=﹣x﹣x+1,解得:x=﹣,检验:当x=﹣时,x﹣1≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣;(2),①×3+②,得10x=20,解得:x=2,把x=2代入①,得4+y=3,解得:y=﹣1,所以方程组的解为.20.解:(1)如图,BD即为所求.(2)如图,直线CE即为所求.(3)如图,△A1B1C1即为所求.(4)∵CE∥AB,∴∠BAC=∠ECD,∵BD⊥AD,∴∠ADB=90°,∴∠DCE+∠DEC=90°,∴∠BAC+∠DEC=90°,即∠BAC和∠CED的数量关系为互余.故答案为:互余.21.解:(1)40÷20%=200(名),360°×=18°;答:本次调查问卷共调查了200名学生,表示“其它”的扇形圆心角的度数是18°;(2)短信的人数为:200×5%=10(名),微信人数为:200﹣40﹣10﹣60﹣10=80(名),补全条形统计图如图所示:(3)1000×=400(名),答:该校有1000名学生中,估计喜欢用“微信”进行沟通的学生有400名.22.解:(1)∵DE∥BC,∴∠B=∠AED,∵∠1=∠AED,∴∠1=∠B,∴DF∥AB.(2)∵DE∥BC,∴∠EDF=∠1=50°,∵DF平分∠CDE,∴∠EDC=2∠EDF=100°,∴∠A=∠EDC﹣∠AED=∠EDC﹣∠1=100°﹣50°=50°.23.解:(1)设每名工人平均每天生产螺母x个,螺钉(x﹣800)个,根据题意得:解得:x=2000当x=2000时,x(x﹣800)≠0,∴x﹣800=1200个,∴每名工人平均每天生产螺母2000个,螺钉1200个;(2)设x个工人生产螺钉,y个工人生产螺母,根据题意得:解得答:10个工人生产螺钉,12个工人生产螺母.24.解:(1)①∵AM∥BN,∴∠A+∠ABN=180°,∵∠A=50°,∴∠ABN=130°,故答案为:130°;②∵AM∥BN,∴∠ACB=∠CBN;故答案为:∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=x°,∴∠ABN=180°﹣x°,∴∠ABP+∠PBN=180°﹣x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°﹣x°,∴∠CBD=∠CBP+∠DBP=(180°﹣x°)=90°﹣x°;(3)不变,∠ADB:∠APB=1:2,理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=1:2.。

2023-2024学年浙江省杭州市西湖区七年级(下)期末数学试卷及答案解析

2023-2024学年浙江省杭州市西湖区七年级(下)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)要使分式有意义,x的取值应满足()A.x=0B.x=1C.x≠0D.x≠12.(3分)计算:2024﹣1=()A.﹣2024B.2024C.D.3.(3分)下列调查中:①调查全年级同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟18号”的成功发射,对其零部件进行检查;④对乘坐某次航班的乘客进行安检.适合采用抽样调查的是()A.①B.②C.③D.④4.(3分)下列运算正确的是()A.a3+a3=a6B.a5•a2=a10C.(a3)2=a5D.a5÷a2=a35.(3分)如图,把三角板的直角顶点放在直线b上.已知直线a∥b,∠1=40°,则∠2=()A.40°B.50°C.60°D.80°6.(3分)某款风味酸牛奶的营养成分中,碳水化合物含量是蛋白质的4倍,碳水化合物、蛋白质与脂肪的含量共37g.设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程()A.5x+y=37B.x+5y=37C.4x+y=37D.x+4y=377.(3分)已知a2+b2=3,a﹣b=2,那么ab的值是()A.﹣0.5B.0.5C.﹣2D.28.(3分)若商品的买入价为a,售出价为b,则毛利率,已知p,b,则a=()A.B.C.D.9.(3分)如图,∠AEF=∠C,∠AFD+∠EDF=180°,则下列结论中正确的是()A.∠BFD=∠A B.∠AFE=∠EDCC.∠A+∠AFD=180°D.∠FDE=∠CED10.(3分)设P=x﹣1,Q=,x≠1,有以下2个结论:①当x>1时,P>Q;②当x<0时,P<Q.下列判断正确的是()A.①错②对B.①对②错C.①②都错D.①②都对二、填空题:本大题有6个小题,每小题3分,共18分。

浙教(最新)七年级下册数学期末试题。附详细答案

浙教版七年级下册数学期末考试试题和答案一选择1 .下列计算正确的是(D)A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=12.已知一组数据:12,5,9,5,14,下列说法不正确的是(D)A.平均数是9B.中位数是9C.众数是5D.极差是54.如图,直线AB,CD交于点O,射线OM平方∠AOC,若∠BOD= 76°,则∠BOM等于(c)A、38°B、104°C、142°D、144°A.35°B.40°C.45°D.50°7、某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A)A、180,160 B、160,180 C、160,160 D、180,180m m11A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2ab C.3m2÷(3m﹣1)=m﹣3m2 D.(x2﹣4x)x﹣1=x﹣410 如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是(D)A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万二填空1、分式因解mm2+6mn+9m=_m(m+3) ²____.2. 化简得;当m=﹣1时,原式的值为1.3.若a=2,a+b=3,则a2+ab=6.4.已知太阳的半径约为696000000m,696000000这个数用科学记数法表示为 6.96×108.5.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有216人.6.化简222x1x12+xx2x+1x+x--⋅-的结果是3x.7. 商店某天销售了ll 件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是___39_____cm ,中位数是___40_____cm .9.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 4n ﹣2 .10.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为____6.____. 解答:解:将x=1代入2ax 2+bx=3得2a+b=3,将x=2代入ax 2+bx 得4a+2b=2(2a+b )=2×3=6. 故答案为6.三 解答1化简或化简求值(1)化简:2[(m ﹣1)m+m (m+1)][(m ﹣1)m ﹣m (m+1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m ﹣1)m+m (m+1)][(m ﹣1)m ﹣m (m+1)], =2(m 2﹣m+m 2+m )(m 2﹣m ﹣m 2﹣m ),=﹣8m 3,3=•=•=a ﹣b .(3).先化简,再求值.(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x =﹣3. 【答案】解:原式=4x 2﹣9﹣4x 2+4x +x 2﹣4x +4 =x 2﹣5。

浙教版七年级(下)期末数学试卷(附答案)

最新浙教版初中数学七年级下册期末试卷及答案一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0C.x+=1D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()七年级学生人数步行人数骑车人数乘公交车人数其他方式人数30060913299 A.0.2B.0.3C.0.4D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A.(b+c)2=b2+2bc+c2B.a(b+c)=ab+acC.(a+b+c)2=a2+b2+c2+2ab+2bc+2acD.a2+2ab=a(a+2b)8.已知x+y=3,xy=2,则下列结论中①(x﹣y)2=1,②x2+y2=5,③x2﹣y2=3,④,正确的个数是()A.1B.2C.3D.49.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=﹣1的解为()A.1B.﹣1C.1或﹣1D.﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?()A.5个B.6个C.7个D.8个二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:9x2﹣4y2=.12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a2+9ab﹣6a,已知这个长方形“学习园地”的长为3a,则宽为13.如图△ABC中,AB=BC=AC=5,将△ABC沿边BC向右平移4个单位得到△A'B'C′,则四边形AA′C'B的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O﹣1交于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或116.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下册数学期末考试试题和答案一 选择1 .下列计算正确的是( D )A .2a+3b=5abB .(x+2)2=x 2+4 C .(ab 3)2=ab 6D .(﹣1)0=1 2.已知一组数据:12,5,9,5,14,下列说法不正确的是( D ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是53.函数12y x =- 中,自变量x 的取值范围是( C ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-4.如图,直线AB,CD 交于点O ,射线OM 平分∠AOC,若∠BOD= 76°,则∠BOM 等于( c )A、38° B、104° C、142° D、144°5.分式方程3121x x =- 的解为( C ) A .1x = B . 2x = C . 3x = D . 4x =6.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( B )A . 35°B . 40°C . 45°D . 50°7、某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(度) 120 140 160 180 200 户数23672A、180,160 B、160,180 C、160,160 D、180,1808.若3×9m×27m=311,则m 的值为( A ) A . 2B . 3C . 4D . 59.下列计算正确的是( D )A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2ab C.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣410 如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是( D )A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万二填空1、分式因解mm2+6mn+9m=_m(m+3) ²____.2. 化简得;当m=﹣1时,原式的值为 1 .3.若a=2,a+b=3,则a2+ab= 6 .4.已知太阳的半径约为696000000m,696000000这个数用科学记数法表示为 6.96×108.5.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有216 人.6.化简222x1x12+xx2x+1x+x--⋅-的结果是3x.7. 商店某天销售了ll件衬衫,其领口尺寸统计如下表:则这ll件衬衫领口尺寸的众数是___39_____cm,中位数是___40_____cm.8.如图,AD∥BC,AB∥CD延长BC至E,若∠A=110°,则∠1=_____70°___.1AB CD9.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2 .10.已知当1x=时,22ax bx+的值为3,则当2x=时,2ax bx+的值为____6.____.解答:解:将x=1代入2ax2+bx=3得2a+b=3,将x=2代入ax2+bx得4a+2b=2(2a+b)=2×3=6.故答案为6.三解答1化简或化简求值(1)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)],=2(m2﹣m+m2+m)(m2﹣m﹣m2﹣m),=﹣8m3,原式=(﹣2m)3,表示3个﹣2m相乘.(2)化简: 22(1)b aa b a b-÷+-解答:解:原式=•=•=a ﹣b .(3).先化简,再求值.(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x =﹣3. 【答案】解:原式=4x 2﹣9﹣4x 2+4x +x 2﹣4x +4 =x 2﹣5。

当当x=-3时,原式=(-3) ²-5=4 (4)先化简,再求值:,其中,a=3.解答:解:+•=+•=+=,当a=3时,原式=3/2(5).计算代数式的值,其中a=1,b=2,c=3.解:原式===c .当a=1、b=2、c=3时,原式=3. (6)已知0,23a b =≠求代数式2252(2)4a b a b a b - --的值。

023a b=≠,可知,2b =3a,代入分式可知: 原式=2253(3)(3)a aa a a a - --,原式=2248a a--=1/22解分式方程:(1).解答:解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解.(2):.【答案】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=12。

检验:x=12时,2(3x﹣1)=2×(3×12﹣1)≠0。

∴原方程的解是x=12。

3说理:如图,已知AE∥BC,AE平分∠DAC.求证:∠B=∠C.证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,4. 找规律(1)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2 (﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣和12积与和的商﹣2÷2=﹣1,解:(1)图②:(﹣60)÷(﹣12)=5,图③:(﹣2)×(﹣5)×17=170,(﹣2)+(﹣5)+17=17,图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60(﹣2)×(﹣5)×17=170三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12(﹣2)+(﹣5)+17=17积与和的商﹣2÷2=﹣1,(﹣60)÷(﹣12)=5,170÷10=17(2)图④:5×(﹣8)×(﹣9)=360,5+(﹣8)+(﹣9)=﹣1,y=360÷(﹣12)=﹣30,图⑤:=﹣3,解得x=﹣2;..(2)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×= ×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.解:(1)①∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36,63×369=693×36;故答案为:①275,572;②63,36.(2)∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明:左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a)右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).四应用题1.今年太原市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生.(2)请你分别把条形统计图和扇形统计图补充完整.【答案】解:(1)500。

(2)补充条形统计图和扇形统计图如下:2.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?解答:解:设中国人均淡水资源占有量为xm3,美国人均淡水资源占有量为ym3.根据题意得:,解得:.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.3. 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?解:设第一次每支铅笔进价为x元,根据题意列方程得,﹣=30,解得,x=4,检验:当x=4时,分母不为0,故x=4是原分式方程的解.答:第一次每只铅笔的进价为4元.。

相关文档
最新文档