正弦信号参数测量报告
正弦信号参数测量报告

正弦波参数分析仪设计报告摘要本作品以MSP43单片机为控制核心,由波形变换电路、峰值检测电路、显示电路、单片机自带AD转换电路组成。
将信号变为方波后可直接由单片机测出其的频率,其峰值由峰值检测电路转换为直流信号并被单片机测量。
关键字:正弦信号;频率;峰值;MSP430单片机;AbstractThis design take MSP430MCUas control core, Provided by the waveform conversion circuit, the Peak detection circuit,the display circuit, AD conversion circuit in MCU. The frequency of Signal can be directly measured by the microcontroller when it is transformed as square wave , its peak by the peak detector circuit is converted into a DC signal and SCM measurements.Keyword:sinusoidal signal;frequency;Peak;MSP430 microcontroller;、系统方案论证与比较1、频率测量方案选择方案一:采用计数器芯片74LS161和8253。
该计数器芯片可以精确地对矩形波信号进行计数并直接与单片机交换数据,但其测量频率很有限,外围电路复杂,价格较贵。
方案二:利用MSP43单片机部含有两个定时/中断计数器,且每个定时/ 计数器均含有16位,可以通过定时器实现测频与测周,能够很好的满足测量频率为高频或是低频时的测量要求。
最终选择方案二,同时为了提高频率计的量程,分别对高频和低频信号采用测频和测周的测量方法。
且由此设计的频率计具有精度高、测量时间短,耗能少,使用方便等优点。
中山大学用示波器测量交流信号的基本参数物理实验报告

中山大学用示波器测量交流信号的基本参数物理实验报告在上一篇文章《中山大学用示波器测量交流号的基本参数物理实验报告》中,我们提到了许多与“电”有关的物理概念,如交流电压、交流电流、谐波等,这些在我们日常生活中都经常遇到。
因此本文将介绍有关交流号和电的基本参数。
同时我们还可以通过实验来验证这些概念。
本实验是中山大学在200年的大学生素质教育项目“用示波器测量两个电压之间的正弦号”中开展的“电”与“形”方面的教学实验计划之一,实验目的是通过理论结合物理实验实际,研究两个电压之间正弦号与动态波动电流之间的关系,探讨与电有关概念、物理模型及应用场合等相关问题。
一、基本实验本实验将使用一个示波器,由输入端(ADC)和输出端(ON)组成两个不同正弦号和动态电流。
根据所学知识,本实验将建立一个稳定有序、振荡明显的两个电压之间的正弦号并记录。
这种正琴号可表示为: P=-011;也可以表示为: P=-011-011 (由号源输入端输出端可得: P=-011-011)。
同时还可以记录下两个电压之间动态波动电流所占分位数;分析两个电压之间线性相关系数 S和谐波指数 S。
二、电与形(或电的能量)我们可以把电压与电流看成是一对静止的、静止不动的磁体,它们都是有电元素组成的。
其中磁铁的磁场强度很大,磁体的磁通量很小,它们可以忽略不计。
当两个不同属性的电场作用在同一金属上时,它就会产生一个振荡现象。
它被称为振荡现象,这一现象与电场方向相反。
当这对物理静止物处于带电状态时,也就发生了振荡现象;反之则没有。
也就是说,不能用交流电来表示某一个事物的发生或消亡过程。
三、应用在实际工程中,为了解决数字量宽电路,数字电路一般都是两路号输入,因此可能会产生共模输入或共模变换等两种情况,为了解决这些问题,我们需要对整个电路进行放大测试或分析,因此必须进行实验测量。
我们进行了“示波器测数字电路”实验。
通过实验,我们发现这两个电路之间产生共模变换的条件(1)是一个理想电压值(LC)和一个动态范围(IR)和一个共模变化率(RF)组合电路(2)。
正弦信号发生器实验报告

正弦信号发生器实验报告正弦信号发生器实验报告一、引言正弦信号发生器是电子实验室中常见的一种仪器,用于产生稳定的正弦信号。
它在各种电子设备测试和实验中起着重要的作用。
本实验旨在探究正弦信号发生器的原理和性能,并通过实际操作来验证其功能。
二、实验目的1. 理解正弦信号的特性和应用;2. 掌握正弦信号发生器的基本原理和结构;3. 学习使用正弦信号发生器进行实际测试。
三、实验原理正弦信号是一种周期性的交流信号,具有连续变化的幅度和相位。
正弦信号发生器的基本原理是通过振荡电路产生稳定的正弦波形。
振荡电路通常由放大器、反馈网络和滤波电路组成。
其中,放大器负责提供足够的增益,反馈网络则确保振荡电路的稳定性,滤波电路则用于滤除其他频率成分。
四、实验器材和材料1. 正弦信号发生器2. 示波器3. 电阻、电容等元件4. 连接线等五、实验步骤1. 将正弦信号发生器与示波器连接,使用示波器观察输出的信号波形;2. 调节正弦信号发生器的频率和幅度,观察波形的变化;3. 使用示波器测量输出信号的频率和幅度,并记录数据;4. 更换不同数值的电阻和电容,观察对信号波形的影响;5. 分析实验结果,总结正弦信号发生器的性能和特点。
六、实验结果与分析通过实验观察和测量,我们得到了一系列关于正弦信号发生器的数据。
首先,我们发现随着频率的增加,正弦信号的周期变短,波形变得更加紧凑。
而幅度的调节则使得波形的振幅增大或减小。
这表明正弦信号发生器能够根据用户的需求产生不同频率和幅度的信号。
此外,我们还发现在改变电阻和电容数值时,信号波形也会发生变化。
较大的电阻和电容会导致信号的衰减,而较小的电阻和电容则会使信号更加稳定。
因此,在实际应用中,我们需要根据具体情况选择适当的电阻和电容数值,以获得所需的信号特性。
七、实验总结本实验通过对正弦信号发生器的实际操作和观察,我们深入了解了正弦信号的特性和应用。
我们学习到了正弦信号发生器的基本原理和结构,并通过实验验证了其功能和性能。
正弦信号发生器实验报告

正弦信号发生器实验报告
《正弦信号发生器实验报告》
实验目的:
本实验旨在通过搭建正弦信号发生器,探究正弦波的特性以及其在电子电路中的应用。
实验材料:
1. 电压源
2. 电阻
3. 电容
4. 二极管
5. 信号发生器
6. 示波器
实验步骤:
1. 按照电路图搭建正弦信号发生器电路。
2. 调节电压源的输出电压,使其为所需的正弦波幅值。
3. 使用示波器观察输出波形,并调节电路参数,如电阻、电容的数值,以获得理想的正弦波形。
4. 测量并记录输出波形的频率、幅值等参数。
实验结果:
经过调节电路参数,成功搭建了正弦信号发生器。
通过示波器观察到了理想的正弦波形,并测量了其频率、幅值等参数。
实验结果表明,通过合理设计电路参数,可以得到稳定、准确的正弦波信号。
实验分析:
正弦信号是电子电路中常见的信号波形,具有周期性、稳定性好的特点,因此
在通信、音频处理等领域有着广泛的应用。
通过本实验,我们深入了解了正弦
波的产生原理,掌握了调节电路参数以获得理想波形的方法。
实验结论:
通过搭建正弦信号发生器,我们成功地产生了稳定的正弦波信号,并对其进行
了观察和测量。
这为我们进一步理解正弦波的特性以及其在电子电路中的应用
奠定了基础。
总结:
本实验通过实际操作,加深了对正弦信号发生器的理解,提高了实验操作能力,为今后的电子电路实验打下了良好的基础。
同时,也为我们将来在工程领域的
实际应用提供了宝贵的经验。
RLC正弦交流电路参数测量实验报告

RLC正弦交流电路参数测量实验报告一、实验目的1.学习正弦交流电路参数的测量方法;2.熟悉使用示波器和信号发生器进行电路参数测量的步骤;3.掌握RLC电路频率响应特性的实验测量方法。
二、实验仪器和器材1.示波器;2.多用电表;3.R、L、C元件;4.信号发生器。
三、实验原理RLC电路是由电阻(R)、电感(L)和电容(C)三个元件组成的电路。
在交流电路中,频率(f)是一个非常重要的参数。
实验中通过调整信号发生器的频率,观察在示波器上的波形变化,测量各个元件的电压和电流,从而得到电路的频率响应特性。
四、实验步骤1.按照实验电路图连接电路,将R、L、C元件连接成RLC电路;2.将信号发生器的输出端与电路的输入端相连;3.将示波器的一组探针连接到电路上,以观察电压波形;4.打开示波器和信号发生器,并调整信号发生器的频率为10Hz;5.在示波器上观察波形,并记录电压和频率的数值;6.依次将信号发生器的频率调整为100Hz、1kHz、10kHz和100kHz,重复步骤5中的操作;7.对以上各个频率的电压和频率数值进行记录;8.按照上述步骤测量电流值,记录电流和频率数值;9.将测得的数据整理成表格。
五、实验结果实验中测得的电压和电流数据如下表所示:频率(Hz),电压(V),电流(A)---,---,---10,2.3,0.15100,2.1,0.201k,1.8,0.1210k,1.4,0.06100k,1.0,0.02六、实验分析1.根据测得的电压和电流数据,可以计算出电阻(R)的数值。
根据欧姆定律,电压与电流之间的比值即为电阻的大小。
由表中数据可得,当频率为10Hz时,电流为0.15A,电压为2.3V,根据公式R=U/I,可计算出R的数值为2.3/0.15=15.3Ω。
2.根据电感(L)和电容(C)的频率特性,在低频时对电感有影响,在高频时对电容有影响,因此通过观察电压-频率的图像变化,可以确定L和C的数值。
常用信号测量实验报告(3篇)

第1篇一、实验目的1. 熟悉常用信号测量仪器的操作方法。
2. 掌握信号的时域和频域分析方法。
3. 学会运用信号处理方法对实际信号进行分析。
二、实验原理信号测量实验主要包括信号的时域测量、频域测量以及信号处理方法。
时域测量是指对信号的幅度、周期、相位等参数进行测量;频域测量是指将信号分解为不同频率成分,分析各频率成分的幅度和相位;信号处理方法包括滤波、放大、调制、解调等。
三、实验仪器与设备1. 示波器:用于观察信号的波形、幅度、周期、相位等参数。
2. 频率计:用于测量信号的频率和周期。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等。
4. 滤波器:用于对信号进行滤波处理。
5. 放大器:用于对信号进行放大处理。
6. 调制器和解调器:用于对信号进行调制和解调处理。
四、实验内容与步骤1. 时域测量(1)打开示波器,调整波形显示,观察标准信号的波形。
(2)测量信号的幅度、周期、相位等参数。
(3)观察不同信号(如正弦波、方波、三角波)的波形特点。
2. 频域测量(1)打开频率计,调整频率显示,测量信号的频率和周期。
(2)使用信号发生器产生标准信号,如正弦波,通过频谱分析仪分析其频谱。
(3)观察不同信号的频谱特点。
3. 信号处理方法(1)滤波处理:使用滤波器对信号进行滤波处理,观察滤波前后信号的变化。
(2)放大处理:使用放大器对信号进行放大处理,观察放大前后信号的变化。
(3)调制和解调处理:使用调制器对信号进行调制,然后使用解调器进行解调,观察调制和解调前后信号的变化。
五、实验结果与分析1. 时域测量结果通过时域测量,我们得到了不同信号的波形、幅度、周期、相位等参数。
例如,正弦波具有平滑的波形,周期为正弦波周期的整数倍,相位为正弦波起始点的角度;方波具有方波形,周期为方波周期的整数倍,相位为方波起始点的角度;三角波具有三角波形,周期为三角波周期的整数倍,相位为三角波起始点的角度。
2. 频域测量结果通过频域测量,我们得到了不同信号的频谱。
RLC正弦交流电路参数测量实验报告(一)

RLC正弦交流电路参数测量实验报告(一)RLC正弦交流电路是电子学和通信工程中常用的一种电路,它由电阻、电感、电容三种元件组成。
为了准确地测量电路的参数,通常会进行RLC正弦交流电路参数测量实验。
本文将对此实验进行介绍和分析。
一、实验目的本实验的目的在于通过测量RLC正弦交流电路的电压、电流和相位差等参数,计算出电路中的电阻、电感和电容值,并验证实验结果的正确性。
二、实验原理在RLC正弦交流电路中,电阻元件呈现线性特性,电感和电容元件具有非线性特性。
因此,当电压为正弦交流电压时,电路中的电流也呈现正弦交流特性,其相位角度可以通过电流和电压之间的正弦函数来表示。
同时,电阻、电感和电容元件的阻值、电感值和电容值可以通过测量电压、电流和相位差进行计算。
三、实验步骤1. 按图连接电路,调节稳压电源输出电压和电流;2. 使用数字万用表测量电路中各元件的电阻值;3. 使用示波器测量电路中的电压和电流,并记录相位差;4. 根据实验数据,计算电路中的电阻、电感和电容值;5. 对比实验结果,验证测量的正确性。
四、实验结果在本次实验中,我们测得电路中的电阻为100Ω,电感为0.5H,电容为0.01μF。
同时,我们还记录下了电压和电流的波形,并计算出相位差为30度。
通过实验计算,我们得到的电阻值为97Ω,电感值为0.48H,电容值为0.009μF。
可以看出我们的实验结果与实际值非常接近,表明了测量参数的准确性和实验结果的可靠性。
五、实验分析在实际电路中,电感和电容元件往往会对信号的相位产生影响,从而影响电路的性能。
因此,在进行RLC正弦交流电路参数测量实验时要注意测量精度和误差控制。
同时,在实验中还要注意使用合适的仪器和正确的操作步骤,以免影响实验结果的准确性和可靠性。
六、实验总结本次实验通过测量RLC正弦交流电路的电压、电流和相位差等参数,计算出电路中的电阻、电感和电容值,并验证实验结果的正确性。
本实验的目的在于让学生更加深入地了解RLC正弦交流电路的特性和组成,提高其电路分析和设计的能力。
淹没在噪声或干扰中正弦信号的测量实验报告

实验36淹没在噪声或干扰中正弦信号的测量实验目的>了解淹没在噪声或干扰中的正弦信号的检测原理和方法。
>了解锁定放大器抑制白噪声能力的概念与测量方法。
>了解锁定放大器抑制不相干干扰能力的概念和测量方法。
>掌握用锁定放大器测量淹没在噪声或干扰中的正弦信号的实际操作。
实验仪器HB-511型现代模拟电路实验测试系统A分箱、C分箱,双踪示波器,数字多用表。
实验步骤与操作(1)淹没在干扰信号中的微弱信号测量测量仪器框图如图1所示。
图中多功能信号源(A分箱)作为信号源,频率为f,输给衰减器输入端Vi,同时输给锁定放大器作为参考信号。
干扰源由C分箱的信号源提供,频率为f2,通过衰减器把信号与干扰信号混合成具有干扰的信号,送给锁定放大器进行测量。
衰减器Vp输出插座接到示波器的输入端,可以观察被测信号被干扰信号淹没的波形,加强理解锁定放大器能抑制干扰、从干扰中检测信号的能力。
图1锁定放大器测量淹没在干扰信号中的微弱信号框图①仪器参数的设置:接通图1中所有仪器的电源。
>设置A分箱多功能信号源的参数:被测信号设置频率fi=710Hz,输出电压值Vi=100mV, >设置C分箱信号源的参数:干扰信号设置:频率fz=40kHz,输出电压值Vi2=100mV。
>衰减器参数设置:K1=10-1×10-1×1,K₃=0.1(置1),K4=0.1(置3),K2根据测试需要选择,则输出电压为:加法器输出端:VD =K1Vi1+K2Vi2=Vi1×10-2+K2Vi2衰减器输出端:VO =VDK3K4=Vi1×10-4+K2V2×10-2被测信号为10μV,干扰信号由K2决定。
>双相锁定放大器参数设置:参考输入置“内”输入,输入模式置“A”输入。
低通滤波器的截止频率fL =100kHz(最高),高通滤波器的截止频率fH=100Hz,量程置10μV,时间常数置1s,相移器任意设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦波参数分析仪设计报告摘要本作品以MSP430单片机为控制核心,由波形变换电路、峰值检测电路、显示电路、单片机自带AD转换电路组成。
将信号变为方波后可直接由单片机测出其的频率,其峰值由峰值检测电路转换为直流信号并被单片机测量。
关键字:正弦信号;频率;峰值;MSP430单片机;AbstractThis design take MSP430 MCU as control core, Provided by the waveform conversion circuit, the Peak detection circuit,the display circuit, AD conversion circuit in MCU. The frequency of Signal can be directly measured by the microcontroller when it is transformed as square wave , its peak by the peak detector circuit is converted into a DC signal and SCM measurements.Keyword:sinusoidal signal;frequency;Peak;MSP430 microcontroller;一、系统方案论证与比较1、频率测量方案选择方案一:采用计数器芯片74LS161和8253。
该计数器芯片可以精确地对矩形波信号进行计数并直接与单片机交换数据,但其测量频率很有限,外围电路复杂,价格较贵。
方案二:利用MSP430单片机部含有两个定时/中断计数器,且每个定时/计数器均含有16位,可以通过定时器实现测频与测周,能够很好的满足测量频率为高频或是低频时的测量要求。
最终选择方案二,同时为了提高频率计的量程,分别对高频和低频信号采用测频和测周的测量方法。
且由此设计的频率计具有精度高、测量时间短,耗能少,使用方便等优点。
2、峰值测量方案选择方案一:以运放、二极管以及电容器组成精密峰值保持电路,并通过ADC 对保持电路幅度进行测量,同时电路中引入反馈电路,实现方便对输出进行调试。
方案二:模拟直接运算变换法。
根据有效值数学定义用集成组件乘法器、开方器等一次对被测信号进行平方、平均值和开方等计算,直接得出输入信号的有效值。
在这种电路设计中,当输入信号幅度变小时,平方器输出电压的平均值下降很快,输出很小,往往与失调和漂移电压混淆,因此该电路的动态围很窄,且精度不高。
最终采用方案一,其电路实现简单,价格低廉,调试方便,加入反馈电路能对输入信号进行更加准确的测量。
3、数模转换方案选择方案一:8位A/D转换器ADC0809,将电压值通过ADC0809转换为数字量,但其为并行借口,占用MCU芯片管脚较多,同时工作频率受外部频率影响较大,且精度不够高。
方案二:MSP430自带10位精度的AD转换功能。
最终采用方案二,其精度更高,转换效率更快,不额外占用MCU管脚,电路简洁。
4、主控芯片选择方案一:选用STC89C52RC做主控芯片,STC89C52RC是最常用的单片机之一,其优点是价格便宜,容易使用,但其指令运算速度相对较慢,片上资源较少,增加硬件和软件负担。
方案二:选用MSP430单片机做主控芯片,MSP430自带10位精度的AD 转换功能。
硬件结构适合C语言编程,功能齐全,不容易解密,抗干扰能力强。
最终采用方案二,考虑到单片机的性能指标以及对外围电路的要求,MSP430可以灵活的实现设计要求。
6、显示电路选择方案一:采用数码管显示,数码管显示电路需要实时扫描,显示容局限于0-9数字和少数字母,显示容单一,且功耗较大。
方案二:采用LCD12864液晶显示,其功耗低、体积小、显示容丰富,可以显示阿拉伯数字、英文字母的大小写、常用的符号和中文等。
其显示容全面,更为人性化。
综合考虑,选用方案二。
二、理论分析1.频率测量分析测频法(M法)。
对频率为f的周期信号,测频法的实现方法,是用以标准闸门信号对被测信号的重复周期数进行计数,当计数结果为N时,其频率为:fs=N1/f测为标准闸门宽度,N1是计数器计出的脉冲个数,设在TG期间,计数器的精确计数值为N,根据计数器的技术特性可知,N1的绝对误差是△N 1=N±1,N1的相对误差为:&N1=(N1-N)/N=(N±1-N)/N=±1/N由N1的相对误差可知,N(或N1)的数值愈大,相对误差愈小,成反比关系。
因此,在f已确定的条件下,为减小N1的相对误差,可通过增大TG的方法来降低测量误差。
但是,增大TG会使频率测量的响应时间长。
当TG为确定值时(TG=1s),则有f=N,固有f1的相对误差:&f1=(f1-f)/f=(f±1-f)/f=±1/f由上式可知,f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。
因此,测频法适合于对高频信号的测量,频率越高,测量精度也越高。
测周期法(T法)。
首先把被测信号通过二分频,获得一个高电频时间和低电平时间都是一个信号周期T的方波信号;然后用一个已知周期的高频方波信号作为计数脉冲,在一个信号周期T的时间对此高频信号进行计数。
若在T时间的计数值为N2,则有T 2=N2×Toscf 2=1/T2=1/N2×Tosc=fobs/N2N 2的绝对误差为△N=±1,N2的相对误差为:&N2=(N2-N)/N=(N±1-N)/N=±1/N从T2的相对误差可以看出,周期测量的误差与信号频率成正比,而与高频你标准计数信号的频率成反比。
当fosc为常数时,被测信号频率越低,误差越小,测量精度也就越高。
T/M法。
T/M法测量是采用两个计数器,分别对被测信号f和高频信号进行计数,T/M法的测量在确定的检测时间,若对被测信号f的计数值为N1,而对高频信号fosc 的计数值为N2。
但对fosc信号的计数,必须直到f信号在第一个计数器停止计数后的一个完整的f信号周期。
由此可得,N1个f信号周期的时间为T2=N2×Tosc,故每个f信号周期的时间为T3=N2×Tosc/N1则有:f 3=1/T=N1/N2×Tosc=N1×fosc/N2由T3的相对误差可知,T/M法测量的误差与信号频率成正比,与高频标准信号的频率成反比,但随f的增大,N1也在增大(在一定的检测时间)。
由上式还可以看出,T3的相对误差实际上是由M法误差±f/fosc两部分组成。
选择测频法与测周法同时测量,分别适用于高频和低频信号的频率测量,提高了频率计的量程。
当正弦信号为高频时可直接用测频法得出信号频率,当其为低频时经过波形变换将其变换成方波后可用测周法得出信号的周期从而算出其频率。
2.峰值测量分析由于设计要求频率围为(1HZ~1MHz),峰值围为(50mV~2V),且不能采用集成芯片。
故只能采用基于电容充放电原理的峰值保持电路。
二极管电容型峰值检测电路,其采用FET运放提高直流特性,减小偏置电流OPA128的偏置电流低至75fA;将场效应管当二极管用,可以有效减小反向电流同时增加第一个运放的输出驱动力;小电容应该是防止自激的。
实际应用中可以用TL082双运放和1N4148来代替场效应管,性能价格比较高图4二极管电容型峰值检测电路三、电路与程序设计1、系统整体框待测正弦信号波形转换峰值保持MCU处理LCD显示图1 系统总体设计框图2、模块电路设计(1)波形转换图2 波形转换电路为了避免对原始信号产生干扰,此电路引入了一级跟随。
同时由于单片机不能有效的识别正弦信号,所以需将正弦信号转换为频率相同的方波,故将正弦信号经LM311电压比较器转换为方波信号,从而使单片机准确的判断信号。
(2)峰值测量电路图3 峰值保持电路四、系统软件设计图5 软件流程图五、测试方案与测试结果1.测试数据表一数据记录2、测量结果分析由测试结果可以看出,频率最大误差小于0.5%完全满足指标要求;峰值测量最大误差基本满足指标要求;分析误差产生的原因,除去电路元器件自身特性导致的误差,电路板布局走线也会产生干扰影响测量结果,同时采用充放电的方法测量峰值,充放电时间的控制对于结果有很大的影响,会导致不精确性。
3、方法改进合理选取峰值检测中充放电电容电阻的大小;合理布局规划线路,缩短器件间的连接距离,减少信号间的相互干扰和自激;五、参考文献【1】肖子等著.《电子设计指南》高等教育,2006.1.【2】全国大学生电子设计竞赛培训系列教程模拟电子线路设计.电子工业,2007,8.【3】运算放大器应用技术手册,人民邮电,2009.1.【4】MSP430F1XX USER’S GUIDE.paf[Z].Texas Instruments。