现代谱估计 原理与应用((美)凯 依(Kay, S.M.)著;黄建国等译)思维导图

合集下载

现代谱估计

现代谱估计
2. 求最优滤波器时需要计算矩阵求逆,其计算复杂 度量级是滤波器长度的三次方。
由于存在这些问题,实际实现Wiener滤波时,并不是 直接计算得到最优Wiener滤波器的系数,而是代之以 LMS, RLS, Kalman等自适应滤波器。
23
内容
❖ 最优滤波理论与Wiener滤波器 ❖ 梯度下降算法 ❖ 横向LMS自适应滤波器 ❖ 横向RLS自适应滤波器 ❖ Kalman滤波器 ❖ 自适应格型滤波器 ❖ 盲自适应滤波器 ❖ 自适应滤波器的应用
2
内容
❖ 最优滤波理论与Wiener滤波器 ❖ 梯度下降算法 ❖ 横向LMS自适应滤波器 ❖ 横向RLS自适应滤波器 ❖ Kalቤተ መጻሕፍቲ ባይዱan滤波器 ❖ 自适应格型滤波器 ❖ 盲自适应滤波器 ❖ 自适应滤波器的应用
3
最优滤波理论与Wiener滤波器
❖ 最优预测和滤波 ❖ 最优滤波理论 ❖ 正交性原理 ❖ Wiener滤波器
(
M
1)
Ru,u (1) Ru,u (0)
Ru*,u (M 2)
Ru,u (M 1) Ru,u (M 2)
Ru,u (0)
定义输入与期望响应的互相关向量:
r E u(n)d*(n) Ru,d (0), Ru,d (1), , Ru,d (1 M ) T
21
Wiener-Hopf方程的解
• 估计误差e(n)定义为期望响应d(n)与滤波器输出y(n)之差, 即
e(n) d(n) y(n)
对滤波器要求是使估计误差在某种统计意义下“尽可能小”。
10
最优滤波理论
❖ 线性最优滤波器(续)
➢对滤波器的约束
• 滤波器是线性的。 一是为了使信号通过滤波器后不致于发生“畸变”; 二是为了便于对滤波器进行数学分析.

现代谱估计-有理谱估计

现代谱估计-有理谱估计

,随 SNR 的下降而降低,增大阶次会增加分辨率,
但可能出现伪峰且方差增大。
3、滑动平均谱估计
3.1 引言
MA 模型隐含了 k q 的自相关函数 rx k 0 ;可以直接得自相关函数可靠 估计,而不需要 MA 模型参数,得到功率谱估计。与 BT 法的区别:BT 法适用 于任何平稳过程、MA 谱估计仅适用于有限阶 MA 模型;BT 法中自相关函数最 大延迟人为确定,MA 谱估计中模型阶次决定最大延迟;BT 不保证谱的非负性, 而 MA 谱估计非负。 MA 模型适合表示无尖峰有深谷的谱,因此不是高分辨率估计。
自相关函数矩阵 Rx p 同时是 Hermition 矩阵和 Toeplitz 矩阵。
2.2.2 AR 过程的线性预测
2.2.2.1 平稳随机过程的线性预测 平稳随机过程的波形估计 最小均方误差准则,线性估计,Wiener-Hopf 方程,正交原理 滤波、预测、平滑 线性最优预测,m 阶一步前向线性预测,m 阶一步后向线性预测,及它们之 间的关系(系数成共轭关系,最小预测误差功率相等) 最优前向预测误差滤波器的最小相位特性 线性最优预测的按阶次递推关系——Levinson 算法 最小均方预测误差的性质(正交性,递推性)及格型结构实现 反射系数的物理含义(前向预测误差和后向预测误差之间相关系数的负值) 2.2.2.2 AR 过程最优线性预测的特殊性质 AR 过程可由求解线性预测系数来实现 若已知自相关函数,可由 Levinson 递推算法得到 AR 参数 AR 过程可用自相关函数、AR 参数和反射系数三组参数等价表示
1.4 经典谱估计和现代谱估计
经典谱估计中,都隐含了这样一个假设:对于未得到的样本数据或未估计出 的自相关函数,认为是零。但实际上这些值并不一定为零,正是由于这种不合理 假设使得经典谱估计较低的分辨率和较大的失真。现代谱估计,对于未得到的样 本数据或未估计出的自相关函数,并不是简单地作零处理,而是认为与得到的样 本数据服从同一模型,估计质量取决于参数估计质量和模型的准确性。 。这是现 代谱估计与经典谱估计最主要的区别。

现代谱估计法及应用效果

现代谱估计法及应用效果
2 Ep = ( 1 - Q p ) E p- 1
二阶 PEF 输出误差功率为 ( 2b)
N- 1
E2 = =
n= 2 N- 1
E
2 [ ef2 ( n) ] 2 + [ eb 2 ( n) ]
E = R ( 3) 递推高一阶前、 后向预测误差, 即
p 2 wp
( 2c)
n= 2
ELeabharlann [ x( n) + a2 ( 1) x( n- 1) + a2 ( 2) x( n- 2) ] 2 +
2009 年 11 月
第 44 卷
增刊 1
# 处理技术 #
现代谱估计法及应用效果
刘志刚*
¹
李录明 º
赵冬梅 »
( ¹ 东方地球物理公司研究院 , 河北涿州 072751; º成都理工大学信息学院 , 四川成都 610059; » 东方地球物理公司物探技术研究中心 , 河北涿州 072751)
刘志刚 , 李录明 , 赵冬梅 . 现代谱估计法及应用 效果 . 石油地球物理勘探 , 2009 , 44 ( 增刊 1) : 5~ 9 摘要 本文针对 Burg 谱估计法中存在的问题 , 讨论了改进 Burg 谱估计法和改进协方差谱 估计法 , 以理论 信号为 测试对象 , 对不同谱估计法的应用效果进行了对比 , 结果表明 : ¹ Burg 谱估计法分辨率明显高于 Welch 谱估计法 , 但 Burg 谱估计法存在明显的峰值偏移 , 改进 Bur g 谱估计法几乎没有峰值偏移 ; º改进协方差谱估计法和 Burg 谱 估计法都具有较高的分辨率 , 而前者的波峰较后者更明显 、 尖锐 , 对于短数据 、 信号频率差异较小的信号 , 前者具有 更好的分辩效果, 还能抑制谱线分裂和出现假谱峰等问题 ; » Itakur a 算法求得的反射系数大于或等于 Bur g 谱估计 法求出的反射系数 , 使得接收到的信号更接近于实际输入信号 , 因此可用 Itakura 算法 替代 Burg 谱估计法 。 实际 地震剖面去噪结果表明 , 以高分辨率谱估计方法为基础的信噪分离方法具有较好的去噪效果 。 关键词 现代谱估计法 L evinson 递推算法 改进 Burg 谱估计法 改进协方差谱估计法 分辨率 反射系数

现代谱估计计算机仿真实验报告

现代谱估计计算机仿真实验报告

现代谱估计计算机仿真实验报告胡敏在许多工程应用中,利用观测到的一组样本数据估计并分析一个平稳随机信号的功率谱密度是十分重要的。

例如,在雷达信号处理中,由回波信号的功率谱密度、谱峰的宽度、高度和位置,可以确定目标的位距离和运动速度;在阵列信号处理中,空间功率谱描述了信号功率随空间角度的分布情况。

在许多信号处理应用中,谐波过程经常会遇到,它对应的功率谱为线谱,谐波过程的功率谱估计就是要确定谐波的个数,频率和功率(合称谐波恢复)。

为了更好的学习现代信号处理中该部分的内容,我们做了相应的计算机仿真实验。

1 实验目的1、深入理解现代谱估计和谐波恢复的基本理论,包括ARMA 模型,ARMA 谱估计,ARMA 模型识别,Pisarenko 谐波分解,信号子空间和噪声子空间,旋转不变技术(ESPRIT);2、熟悉与上述谱估计和谐波恢复理论相关的数学方法以及各自的特点,包括最小二乘估计(LS ),奇异值分解(SVD ),总体最小二乘估计(TLS ),特征值分解和广义特征值分解;3、体会ARMA 功率谱估计中的Cadzow 谱估计子和Kaveh 谱估计子,ARMA 模型的识别方法,Pisarenko 谐波恢复方法,ARMA 建模谐波恢复方法,MUSIC 方法进行谐波恢复,两种ESPRIT 方法(LS-ESPRIT 和TLS-ESPRIT 进行谐波恢复;2 实验原理2.1 ARMA 谱估计相当多的平稳随机过程都可以通过用白噪声激励线性时不变系统来产生,而线性系统又可以用线性差分方程进行描述,这种差分模型就是自回归—滑动平均(ARMA )模型。

而且,任何一个有理式的功率谱密度都可以用一个ARMA 随机过程的功率谱密度精确逼近。

ARMA 随机过程定义为服足下列线性差分方程的离散随机过程{})(n x :∑∑==-+=-+qj jpi ij n e bn e i n x an x 11)()()()( (1)式中)(n e 是一离散白噪声;式(1)所示的差分方程称为ARMA 模型,系统p a a ,1和q b b ,,1 分别称为自回归(AR )参数和滑动平均(MA )参数,而p 和q 分别叫做AR 阶数和MA 阶数。

谱估计法的应用

谱估计法的应用

确地确定。在非语音地区的噪音也初步减弱。然而,仍然
有大量的噪音残留在讲话中地区。因此,有必要使用在非 语音地区获得的准确的噪声功率谱进行进一步的去噪。特 别的,我们有; 2 2 2 S ( w) X ( w) 2 ( w)
其中 2 =0.9也是一个实验值,表示的是在谱估法中噪音功 1 和 ( w) 2 是在非语音去的 率谱在讲话中占的比例。例如;
音帧的短时能量和短时过零率是可以计算的。短的时间内能 源零产品 j,然后计算: EZ
Ej和
Z j 是分别短时能源和短时过零率的第j个语音帧,他们
E j s (n)
N
EZ j E j * Z j
N
可以表示为:
n 1
1 Z j sign s (n) sign s (n 1) 2 n 1
(.)是SIGNUM函数。
由于短时能量的语音信号的平方,信号幅度的差异是增加了。
s( 其中N为每个语音帧的长度, n) 是整个讲话的采样点,符号sign
短时过零率描述签署的语音信号的采样点的变化,所以在一 定程度上,这是反映了讲话的频率。
当决定开始和结束时,当噪音水平都很高时短时能量值得到
结果表明, 1 = 1.2时,去噪效果最好。 2.3 语音帧检测 语音帧首先应检测的是去噪步骤2.2,短时能零积分的确切性 被EZ j 所表示,然后是计算去噪语音帧,需要用到公式 TH (5)—(7),噪音的阀值, j 1 .第 j 1 次噪音语音帧是:
TH j 1 EZ j
2

2

2
n 最后,由于阶段的讲话对的人的兴趣不大,(t )项取代x(t )。
在整个去噪过程结束时,通过所采取的IFFT是很容易获得纯 粹的讲话得(快速傅立叶逆变换)。 1.2 短时能零积分

经典谱估计与现代谱估计

经典谱估计与现代谱估计

x4 (t) x2 (t)
3
高斯信号: 零峰度 亚高斯信号: 负峰度 超高斯信号: 正峰度
21
高阶累积量和多谱的性质
❖ 主要性质 (8个性质)
最重要的性质如下:
➢ 和的累积量等于累积量之和,累积量因此得名。 ➢ 随机信号通过线性系统后的累积量等于该随机信号
的累积量与线性系统冲激响应累积量的卷积 ➢信号的高阶累积量能够决定信号模型的冲激响应h(n),
• 对于非高斯信号的模型参数,如仅仅考虑与自相关函数 匹配,就不可能充分获取隐含在数据中的信息。
• 若信号不仅是非高斯的,而且是非最小相位的,采用基 于自相关函数的估计方法所得到的模型参数,就不能反 映原信号的非最小相位特点。
• 当测量噪声较大,尤其当测量噪声有色时,基于自相关 函数的估计方法所得到的模型参数有较大的估计误差。
内容
❖ 经典谱估计与现代谱估计 ❖ 参数模型法概述 ❖ 基于AR模型的谱估计法 ❖ 最大熵谱估计算法 ❖ 最小方差谱估计 ❖ 基于矩阵特征分解的谱估计 ❖ 高阶谱估计
1Hale Waihona Puke 内容❖ 随机信号的特征 ❖ 经典谱估计与现代谱估计 ❖ 参数模型法概述 ❖ 基于AR模型的谱估计法 ❖ 最大熵谱估计算法 ❖ 最小方差谱估计 ❖ 基于矩阵特征分解的谱估计 ❖ 高阶谱估计
• 结论: ....................
- 二、三阶累积量分别是二、三阶中心矩;均值为
零时, 就是二、三阶相关(矩)
-四阶以上的累积量不等于相应的中心矩 13
高阶统计量
❖ 累积量的物理意义
➢高斯随机变量的高阶矩与累积量
• 高斯随机变量可用二阶矩完全描述。实际上,零均值高斯
随机变量的k 阶矩(或零均值的k 阶中心矩)为

5第五章现代谱估计

5第五章现代谱估计
N
2
时间序列由角频率0的正弦信号与噪声叠加而成。 则周期图(寻找数据的隐周期性即频率)在0 处会出 现峰值。通过计算周期图。由各峰值可显示出正弦频 率信号。

1930年,维纳-辛钦定理,证明自相关函数和功率谱互 为傅立叶变换,建立了使用傅氏方法处理随机过程的 理论体系。谱分析的第二步。

1958年,布莱克曼(Blackman)和图基(Tukey)经典论 文“由通信工程观点对功率谱的测量”给出用维纳相关法 从抽样序列得到功率谱的实现方法——BT法。其性能与窗 函数选择有关。周期图和BT法称为经典谱估计方法。(且 是线性估计方法)。 上述方法的最大问题是由于数据截断(或开窗)带来的 频率泄漏。弱信号的主瓣很容易被强信号的旁瓣所淹没。 对于短序列这一情况尤为突出。
n n排序倒置
于是有:
rxx (1) rxx (0) rxx (0) rxx (1) rxx ( p 1) rxx ( p 2) a* p 1, p 1 rxx ( p 1) * 0 a p 1, p 2 0 rxx ( p 2) * a p 1,1 2 rxx (0) p 1 1
1、模型参量谱估计——可得到高分辨率的谱估计。而 这取决于假定模型对观察数据的适配能力。 2、非参量谱估计 不用有限参数描述的信号模型,直接由自相关延 迟序列得到。高信噪比下不如模型法,但在低信噪比 下,模型参量谱估计的分辨率大为下降。 1973年,皮萨伦科(Pisarenko)提出特征矢量 法,开辟了基于自相关矩阵或数据矩阵进行特征分解 的非参量谱估计。 3、熵谱估计 1967年,伯格提出最大熵谱分析法。其方法是对 已知延迟点上的自相关函数不加修改,而是对未知延 迟点上的自相关函数按信息论中的最大熵外推而得。

第5章频域统计参数估计-谱估计

第5章频域统计参数估计-谱估计
– 现代谱估计的优点:谱分辨率高,平滑性好 – 现代谱估计的缺点:计算复杂
第5章频域统计参数估计-谱估计
功率谱估计:经典谱估计与现代谱估计
谱估计就是从无限长随机序列中截取一段数据(加窗)来分 析。而问题的真正要害:如何看待截取数据以外的那无限长 数据序列,因为统计特性是以足够大的数据窗为前提的。
经典法:侧重于如何处理已经截得的那段数据上,很多技 巧表现在如何选择合适的窗,周期图法(直接法)默认为窗 外数据是窗内数据的周期重复;相关法(间接法)默认为数 据窗外的数据一概为零,延迟窗外的数据也一概为零,这显 然都是不符合实际的,这就导致经典谱估计的分辨率低,质 量差。
1)波束形成器
第5章计参数估计-谱估计
第5章频域统计参数估计-谱估计
证明:
第5章频域统计参数估计-谱估计
2)信号子空间与噪声子空间
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
证明:
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
ai
3)ARMA模型的MA阶数q确定
第5章频域统计参数估计-谱估计
4)ARMA模型的MA参数bi估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
5.2.2 最大熵谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
3)基本MUSIC法
第5章频域统计参数估计-谱估计
4)改进方法1—求根的MUSIC法
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
5)改进方法2
第5章频域统计参数估计-谱估计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档