地下水数值模拟任务、步骤及常用软件.doc
地下水数值模拟

对海水入侵问题的认识摘要:随着地下水的超采,我国许多沿海城市都出现了海水入侵的现象,严重影响到了自然生态环境及人们的生活,本文介绍了关于海水入侵的一些概念,如何运用数值模拟的方法对该现象进行预测分析,以及据此得到的防治对策。
关键字:海水入侵,数值模拟,防治对策一、海水入侵的概念及现状海水入侵是由于滨海地区水动力条件发生了变化,引起高盐度的海水或者咸水向淡水含水层运动,从而发生水体入侵,造成水质恶化,土壤次生盐渍化的现象。
海水入侵现象与岩相及构造、地理环境、气象条件,以及人类的活动密不可分。
自然条件固然是造成这一现象的基本因素,但是在许多地区,人类对地下水的过量开采是最直接的诱因。
沿海地区,海水与淡水之间存在一个咸淡水接触面,当淡水位高于海水位时,淡水向海中流动,淡水不会被咸化。
但是人类过量开采地下水,直接导致地下水位下降,水压降低,海水向淡水含水层进行入侵。
海水入侵在中国沿海城市是一个非常普遍且严重的问题,由于经济的发展和人类生活的需求,许多沿海城市都存在地下水超采的问题,地下水的补给速度远小于开采速度,水位不断下降,海水入侵问题也愈演愈烈。
海水入侵对自然环境和人类生活都造成了非常巨大的危害,海水入侵使得地下水盐分增加,在入侵区域的工业设备容易受到腐蚀,使用寿命减少,产品质量降低,因水质处理或远距离调水增加了生产成本,甚至导致工厂不堪重负,搬迁或者倒闭,减缓了经济的发展;长期用咸水灌溉,会导致土壤发生盐渍化甚至板结,肥力下降,粮食减产;海水入侵还会导致居民的饮用水咸度增加,水质变差,包含更多对人体有害的元素,对人类的身体健康造成危害,许多淡水源地更因此受到影响,严重者甚至被废弃,大大干扰了人们正常的生活饮水,造成用水紧缺,降低了人们的生活质量。
20世纪60年代初期,中国的大部分沿海城市还处于天然的水动力条件下,很少发生海水入侵的现象,水质良好。
20世纪70年代开始,由于国家经济的发展,地下水开采量渐渐增大,咸淡水平衡遭到破坏,海水入侵的现象变得越来越普遍,辽宁、河北、天津、山东、江苏、上海、浙江、海南、广西9个省份的沿海地区都有不同程度的海水入侵现象发生,其中最严重的是山东、辽宁两省,入侵总面积已超过2000平方公里。
《地下水数值模拟》课件

CHAPTER 04
地下水数值模拟的案例分析
案例一:某地区地下水污染模拟
总结词
该案例展示了如何运用地下水数值模拟技术 预测和评估某地区地下水污染情况。
详细描述
该案例首先介绍了该地区的地下水分布和流 向,然后通过建立数值模型,模拟了不同污 染源对地下水的影响,并预测了污染扩散的 范围和程度。最后,根据模拟结果,提出了 相应的污染防治措施。
VS
有限体积法适用于不规则的网格系统 和复杂的边界条件,能够得到相对准 确的结果,计算量适中,适用于较大 的模型规模。
CHAPTER 03
地下水数值模拟的步骤
建立数学模型
01
确定研究区域和边界条件
02
描述地下水流动和物质传输过程
03
建立数学方程,包括连续性方程、动量方程、源汇 项等
模型离散化
1
地下水数值模拟的应用
地下水数值模拟广泛应用于水资源管理、环境保护、地质 灾害防治等领域。
通过模拟地下水动态变化,可以预测未来地下水资源量、 评估地下水污染风险、研究地下水与地质灾害的关系等, 为相关决策提供科学依据。
CHAPTER 02
地下水数值模拟的基本方法
有限差分法
有限差分法是一种将偏微分方程离散 化为差分方程的方法,通过在时间和 空间上将偏微分方程近似为差分方程 ,从而将连续的物理量离散化为离散 的数值。
随着数值计算技术的发展,地下水数值模型将越来越复杂,能够 模拟更多的物理过程和化学反应。
参数优化和数据同化
通过人工智能和机器学习技术,对模型参数进行自动优化和数据同 化,提高模拟精度和可靠性。
多尺度模拟
从微观到宏观的多尺度模拟将成为一个重要方向,能够更好地揭示 地下水系统的复杂性和规律性。
地下水数值模拟

一、模型概化-源汇项
1、含水层垂向量作为模型的源或汇,一般可直接量化,但要根据 实际水文地质条件,决定具体量化和处理方式。
2、潜水蒸发强度随潜水位埋深而产生变化时,可建立受潜水极限 蒸发埋深约束的潜水蒸发子模型。 存在间歇性的河流、以及由于开采促使地表水体与含水层间的 水量交换发生明显改变时,应考虑建立地表水入渗子模型。
可暂且处理为 水面蒸发
ET
蒸发强度随 潜水埋深的
z
加大而减弱
ET = 0
模块及其作用
**河流边界(RIV)模块 通过河床与地表水交换 河流水位必须已知
简化处理
地下水排泄:q= C(Hcell Hriv) 河流渗漏:q=C(Hriv Hcell)
渗透系数宽度长度
导水系数C= 沉积物厚度
模块及其作用
水运动,大都是层流,符合达西定律。只有在极少数大溶洞和宽裂隙中的地 下水流,才不符合达西定律,呈紊流。 (2)平面流和三维流
在开采状态下,地下水运动存在着三维流,特别是在区域降落漏斗附近及 大降深的井附近,三维流更明显,故应用地下水三维流模型。若三维流场的 水位资料难以取得,可将三维流问题按二维流处理,但应考虑所引起的计算 误差是否能满足水文地质计算的要求。
数的空间分布规律,常采用离散化的参数概化方法(即参数分区
或参数化)来确定。
查明计算含水层与相邻含水层、隔水层的接触关系,是否有“天 窗”、断层等沟通。
一、模型概化-内部结构
1、含水介质 2、含水层空间分布 3、地下水运动状态 4、水文地质参数 1)时间概化 2)空间概化
第一讲地下水流数值模拟软件介绍

第一讲地下水流数值模拟软件介绍地下水流数值模拟软件是一种可以模拟地下水流动过程的计算工具。
它通过建立数学模型,基于地下水流动方程和物质输移方程,计算地下水流动的速度、压力、水位等参数,并提供可视化结果展示。
地下水流数值模拟软件广泛应用于水资源开发与管理、环境保护和地下水污染治理等领域。
它可以帮助工程师和科研人员预测地下水的流动规律,评估地下水资源的可利用性,优化水资源的开发利用方案,指导地下水环境保护和污染治理措施的设计。
目前市场上有多种地下水流数值模拟软件,如MODFLOW、FEMWATER、Visual MODFLOW、GMS等。
这些软件通常具有以下几个主要特点:1.建模能力:地下水流数值模拟软件能够建立复杂的地下水模型,包括地下水系统的几何形状、边界条件、材料性质等。
用户可以根据实际情况进行地下水模型的建立,以反映真实的地下水系统。
2.求解能力:地下水流数值模拟软件可以通过数值方法求解地下水流动的物理方程。
它使用迭代算法和数值计算技巧,计算得出地下水流动的速度、压力、水位等参数。
求解过程通常需要考虑地下水系统的复杂性和计算效率的平衡。
3.可视化能力:地下水流数值模拟软件可以将计算结果以可视化的方式展示出来。
用户可以通过图表、图像和动画等形式,直观地了解地下水流动的变化趋势和空间分布。
同时,软件还能够提供各种数据统计和分析功能,辅助用户对地下水系统进行定量分析。
4.模型优化能力:地下水流数值模拟软件可以使用模拟结果对地下水模型进行优化。
用户可以根据实际观测数据和模型结果进行比较,进一步改进地下水模型的参数和边界条件,提高模拟结果的准确性和可靠性。
由于地下水流数值模拟软件在不同应用领域具有不同的需求,因此市场上存在多种不同功能和特点的软件。
一些软件具有更高的计算效率和更精确的模型求解能力,适用于大规模地下水系统的模拟。
另一些软件则更加简单易用,适合初学者或小规模地下水系统的模拟。
总之,地下水流数值模拟软件是一种重要的计算工具,能够帮助人们研究地下水流动规律、预测地下水资源变化趋势、评估水资源利用方案和设计环境保护措施。
地下水模拟软件GMS中文使用手册

地下水模拟软件GMS中文使用手册地下水模拟是一种基于数学模型的水文学研究方法,通过模拟不同地下水流动情况,可以更好地了解地下水资源分布和变化规律,为工程建设和保护提供科学依据。
而在地下水模拟中,GMS是一个常用的软件工具,它可以用来建立和分析多种类型的地下水流动模型。
本篇文章将详细介绍GMS软件的基本操作和常用功能,以及地下水模拟的一些注意事项。
一、GMS软件介绍GMS即Groundwater Modeling System,是一款专业的地下水模拟软件,拥有强大的建模分析能力。
GMS可以创建多种类型的地下水模型,包括层状模型、地下水盆地模型、地下水河道模型等。
同时,GMS还拥有强大的数据处理和可视化功能,可以方便地将地下水模型的结果呈现出来。
二、GMS基本操作1、软件安装和启动下载GMS软件后,按照提示进行安装即可。
启动软件后,可以选择新建、打开或最近使用的工程文件。
2、新建工程在GMS中,地下水模型被称为“工程”,因此需要新建一个工程来开始建模。
点击菜单栏的“文件”>“新建工程”,然后设置工程名称、模型类型等参数即可。
3、添加模型在新建工程后,需要添加一个地下水模型。
点击“地下水模型”>“新建”来创建模型,选择模型类型和分析区域范围,然后导入数据(如DEM图像、土壤信息等)。
4、设置材料属性在添加地下水模型后,需要为各个材料设置属性(如渗透系数、孔隙度等),以方便地进行模拟分析。
点击“属性”>“材料属性”来设置材料属性。
5、添加边界条件和压头在进行地下水模拟时,需要将分析范围分为不同的区域,并分别设置边界条件和压头。
点击“水头”>“边界条件”和“水头”>“压头”,在地图上分别添加边界条件和压头所在的点。
6、生成计算网格在设置好材料属性、边界条件和压头后,需要生成计算网格来进行模拟分析。
点击“计算网格”>“自动生成”来生成计算网格,并根据需要进行调整。
7、设置时间步长在进行地下水模拟时,需要设置时间步长和时间范围,以控制分析精度和时间范围。
地下水数值模型设计步骤及对资料的要求

建立数值模型
网格剖分:根据确定的数值方法和软件,对研究区进行剖分。 对于平面二维流问题,一般将研究区剖分成矩形或三角形网格; 对于剖面二维流问题,一般也是将剖面区域剖分成矩形或三角形; 对于三维流问题,一般先在垂向上分成若干层,而在每层剖分成矩 形或三角形。
边界条件: 初始条件: 含水层参数:渗透系数、储水系数、给水度、孔隙度 源汇项:降雨入渗、河流补给、蒸发排泄、地表水体、沟渠渗漏、
上述数学模型是一个偏微分方程定解问题,通常只能用数值方法 求解,常用的数值方法有:有限差分法和有限单元法。
目前有一些软件可以直接用于求解地下水流动问题,如果不是自 己编写程序,可以选择合适的软件,建立数值模型。
如果用软件,则需对软件功能作简要介绍,论述软件的适用性。
3
第七章 数值模型一般步骤及对 勘查资料的要求
模型设计者应出具有较高理论水平和丰富经验的水文地质工作者担 任。设计者应精细地分析有关资料, 以获得较符合实际条件的分区 图。
18
三、数值模型设计中一些特殊问题
(一)抽水试验设计 (二)抽水试验数值模拟设计 (一)含水层剖分注意事项
(一)抽水试验设计
19
三、数值模型设计中一些特殊问题
(一)含水层剖分注意事项
12
二、数值模型设计及对资料和水文地质勘探的要求
(四)边界条件的确定
边界条件是与计算区的范围同时确定的
考虑计算区的范围时, 必须同时确定边界条件的性质; 反之, 边界的位置一旦确定, 计算区的范围自然也就确定下来了。
合水层的边界分为自然边界与人为边界两类
当研究的合水层系统(包括弱透水的含水层)与非含水层相接触时,其界 面(线)称为自然边界;
当前应用于地下水模拟领域内的常用软件

当前应用于地下水模拟领域内的常用软件:1、MODFLOW (The modular finite –difference groundwater flow model)是由美国地质调查局(USGS)开发的用来模拟地下水流动和污染物迁移等特性的计算机程序,MODFLOW使用有限差分方法。
其局限是仅在DOS模式下运行。
在MODFLOW的基础上,各国研究人员又开发了可视化的扩展型软件Visual MODFLOW。
Visual MODFLOW是由加拿大waterloo hydrogeologic Inc.在MODFLOW 软件基础上,应用现代可视化技术开发研制的,1994年8月首次在国际上公开发行,该系统目前国际上流行且被各国同行一致认可的三维地下水流和溶质运移模拟的标准可视化专业软件系统。
可应用于评价地下水安全供水量、评价地下水修复系统、优化灌溉抽水量等方面。
Visual MODFLOW 的最大特点是功能强大同时易学易用,合理的菜单结构,友好的可视化交互界面和强大的模型输入输出支持,使之成为许多地下水模拟专业人员的选择对象。
2、MT3D99是郑春苗博士设计开发的模拟三维地下水溶质运移程序MT3D(1990)的升级版,MT3D99的易于使用、精确、快速的优良性能使得它获得了政府有关部门、地下水研究咨询公司以及用户的广泛认可,成为目前世界上首屈一指的溶质运移模拟软件。
MT3D99能够模拟地下水系统中的平流、扩散、衰减、溶质化学反应、线性与非线性吸附作用等现象,能够对承压含水层,不承压含水层,承压与不承压交替的含水层以及倾斜的和单元厚度变化的含水层进行空间离散。
MT3D99提供了丰富的求解方法。
一个隐含求解方法是基于带高效Lanczos/ORTHOMIN加速格式的广义共轭梯度法的迭代求解方法,能够花费比传统方法少得多的机时来求解范围广泛的问题。
MT3D99采用了三阶TVD(total-variation-diminishing)格式用于求解对流项,具有保持质量守恒和使数值弥散和人为振动最小化的特点,在其它求解技术失败时,此格式往往是有效的。
地下水数值模拟

水文地质 剖面图 钻孔分布图 及柱状图
顶底板标高 结构模型 含水层厚度
水文地质概念模型——含水层和边界
含水层水力特征和介质特征的概化 侧向边界:根据地质、水文地质条件、地下水系 统特征等确定 水头边界、流量边界和混合边界(通用水头、 河流、沟渠等) 顶部边界:潜水面、含水层顶板等 底部边界:基岩顶板或根据水循环深度、开采深 度等确定
侧向补给
小计 人工开采 人畜生活 湖淖排泄
2151.69
4316.11 -681.07 -17.04 -281.94 -754.17 -63.52
49.85%
100.00% 17.45% 0.44% 7.23% 19.33% 1.63%
均衡分析
排泄
侧向流出 深循环量
蒸发
小计 补排差
-2104.52
模型应用
评价和预测 预测方案=>预测结果=>保证程度分析等
GMS特点
整合了MODFLOW、MODPATH、MT3D、 FEMWATER、RT3D、SEEP2D、SEAM3D、 UTCHEM、PEST、UCODE等模型和程序包,等可进 行水流、溶质运移、反应运移模拟;建立三维地层实 体,进行钻孔数据管理、二维(三维)地质统计 适用于孔隙介质三维地下水模拟,是目前国内最常用 的软件地下水流和溶质运移模拟软件 概念化方式建立水文地质概念模型 与GIS接口好,前、后处理功能更强 软件升级快
的二维有限元稳定流模型。可以用于模拟承压和无压流问 题,也可以模拟饱和和非饱和带的水流;对无压流问题, 模型可以只局限于饱和带。根据SEEP2D的结果可以作出 完整的流网
GMS各模块介绍
3D Mesh,包括FEMWATER模块,用来模拟 饱和流和非饱和流环境下的水流和溶质运移的 三维有限元耦合模型,还可用于模拟咸水入侵 等密度变化的水流和运移问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水数值模拟任务、步骤及常用软件1地下水模拟任务大多数地下水模拟主要用于预测,其模拟任务主要有 4 种:1)水流模拟主要模拟地下水的流向及地下水水头与时间的关系。
2)地下水运移模拟主要模拟地下水、热和溶质组分的运移速率。
这种模拟要特别考虑到“优先流”。
所谓“优先流”就是局部具有高和连通性的渗透性,使得水、热、溶质组分在该处的运移速率快于周围地区,即水、热、溶质组分优先在该处流动。
3)反应模拟模拟水中、气 -水界面、水 -岩界面所发生的物理、化学、生物反应。
4)反应运移模拟模拟地下水运移过程中所发生的各种反应,如溶解与沉淀、吸附与解吸、氧化与还原、配合、中和、生物降解等。
这种模拟将地球化学模拟 (包括动力学模拟 )和溶质运移模拟 (包括非饱和介质二维、三维流 )有机结合,是地下水模拟的发展趋势。
要成功地进行这种模拟,还需要研究许多水 -岩相互作用的化学机制和动力学模型。
2模拟步骤对于某一模拟目标而言,模拟一般分为以下步骤:1)建立概念模型根据详细的地形地貌、地质、水文地质、构造地质、水文地球化学、岩石矿物、水文、气象、工农业利用情况等,确定所模拟的区域大小,含水层层数,维数(一维、二维、三维),水流状态(稳定流和非稳定流、饱和流和非饱和流),介质状况 (均质和非均质、各向同性和各向异性、孔隙、裂隙和双重介质、流体的密度差 ),边界条件和初始条件等。
必要时需进行一系列的室内试验与野外试验,以获取有关参数,如渗透系数、弥散系数、分配系数、反应速率常数等。
2)选择数学模型根据概念模型进行选择。
如一维、二维、三维数学模型,水流模型,溶质运移模型,反应模型,水动力 -水质耦合模型,水动力 -反应耦合模型,水动力 - 弥散 -反应耦合模型。
3)将数学模型进行数值化绝大部分数学模型是无法用解析法求解的。
数值化就是将数学模型转化为可解的数值模型。
常用数值化有有限单元法和有限差分法。
4)模型校正将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范围内与实测结果吻合。
调参过程是一个复杂而辛苦的工作,所调整的参数必须符合模拟区的具体情况。
所幸的是,最近国外已花费巨力开发研究了自动调参程序 (如 PEST),大大提高了模拟者的工作效率。
5)校正灵敏度分析校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。
灵敏度分析就是为了确定不确定度对校正模型的影响程度。
6)模型验证模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次实测结果吻合,以进一步提高模型的置信度。
7)预测用校正的参数值进行预测,预测时需估算未来的水流状态。
8)预测灵敏度分析预测结果受参数和未来水流状态的不确定度的影响。
灵敏度分析就是定量给出这些不确定度对预测的影响。
9)给出模拟设计与结果。
10)后续检查后续检查在模拟研究结束数年后进行。
收集新的野外数据以确定预测结果是否正确。
如果模拟结果精确,则该模型对该模拟区来说是有效的。
由于场址的唯一性,故模型只对该模拟区有效。
后续检查应在预测结束足够长的时间后进行,以便有足够的时间发生明显的变化。
11)模型的再设计一般来说,后续检查会发现系统性能的变化,从而导致概念模型和模型参数的修改。
一般来说,所有模拟研究都应该进行到第五步,即校正灵敏度分析。
3常用模拟软件简介3.1 GMS地下水模拟系统 (Groundwater Modeling System),简称 GMS,是美国BrighamYoung University的环境模型研究实验室和美国军队排水工程试验工作站在综合已有地下水模型MODFLOW、MODPATH、MT3D、FEMWATER、RT3D、SEEP2D、SEAM3D、UTCHEM、PEST、UCODE、NUFT等地下水模型而开发的可视化三维地下水模拟软件包。
可进行水流模拟、溶质运移模拟、反应运移模拟;建立三维地层实体,进行钻孔数据管理、二维 (三维 )地质统计;可视化和打印二维 (三维 )模拟结果。
其图形界面用起来非常便捷。
由于 GMS软件具有良好的使用界面,强大的前、后处理功能及优良的三维可视化效果,目前已成为国际上最受欢迎的地下水模拟软件。
1GMS各模块功能简介GMS 由 MODFLOW、MODPATH、MT3D、FEMWATER、SEEP2D、SEAM3D、RT3D、UTCHEM、PEST、UCODE、MAP、SUBSUR-FACECHARACTERIZATION、BoreholeData、TINs(Triangulated Irregular Nets)、Solid、GEO-STATISTICS等模块组成。
各模块的功能如下:MODFLOW是世界上使用最广泛的三维地下水水流模型。
专门用于孔隙介质中地下水流动的三维有限差分数值模拟,由于其程序结构的模块化、离散方法的简单化及求解方法的多样化等优点,已被广泛用来模拟井流、溪流、河流、排泄、蒸发和补给对非均质和复杂边界条件的水流系统的影响。
MODPATH是确定给定时间内稳定或非稳定流中质点运移路径的三维质点示踪模型。
在指定各质点的位置后, MODPATH可进行正向示踪和反向示踪,根据MODFLOW计算出来的流场, MODPATH可以追踪一系列虚拟的粒子来模拟从用户指定地点溢出污染物的运动。
这种追溯跟踪方法可以用来描述给定时间内井的截获区。
MT3D 是模拟地下水中单项溶解组分对流、弥散和化学反应的三维溶质运移模型。
MT3D 所模拟的化学反应包括平衡控制的线性和非线性吸附、一级不可逆衰变及生物降解。
模拟计算时, MT3D 需和 MODFLOW一起使用。
FEMWATER是用来模拟饱和流与非饱和流环境下的水流和溶质运移的三维有限元耦合模型,还可用于模拟咸水入侵等密度变化的水流和运移问题。
RT3D是模拟地下水中多组分反应的三维运移模型,适合于模拟自然衰减和生物恢复。
例如自然降解、重金属、炸药、石油碳氢化合物、氯化组分等污染物治理的模拟。
SEEP2D是用来计算坝堤剖面渗漏的二维有限元稳定流模型。
它可以用于模拟承压和无压流问题,也可以模拟饱和与非饱和带的水流,对无压流问题,模型可以只局限于饱和带。
根据 SEEP2D的结果可以作出完整的流网。
SEAM3D是在 MT3D 模型基础上开发的碳氢化合物降解模型,可模拟多达27 种物质的运移和相互作用。
它包含有 NAPL(nonaqueous phase liquid,非水相 ) 溶解包和多种生物降解包, NAPL溶解包用于准确地模拟作为污染源的飘浮状NAPL,生物降解包用于模拟包含碳氢化合物酶的复杂降解反应。
UTCHEM是模拟多相流和运移的模型,它对抽水和恢复的模拟很理想,特别适合于表面活化剂增加的含水层治理 (SEAR)的模拟,是一个已经被广泛运用的成熟模型。
PEST和 UCODE是用于自动调参的两个模块。
可在给定的观察数据及参数区内,自动调整参数,如渗透系数、垂直渗漏系数、给水系数、储水系数、抽水率、传导力、补给系数、蒸发率等,进行模型校正。
自动进行参数估计时,交替运用 PEST或 UCODE来调整选定的参数,并且重复用于MODFLOW,FEMWATER等的计算,直到计算结果和野外观测值相吻合。
NUFT是三维多相不等温水流和运移模型,它非常适合用来解决包气带中的一些问题。
MAP 可使用户快速地建立概念模型。
在MAP 模块下,以 TIFF、JEPG、DXF等图文件为底图,在图上确定表示源汇项、边界、含水层不同参数区域的点、曲线、多边形的空间位置,点位置可以确定井的抽水数据或污染物点源,折线可以确定河流、排泄等模型边界,多边形可以确定面数据,如湖、不同补给区或水力传导系数区,快速建立起概念模型。
一旦确定了概念模型, GMS就自动建立网格,将参数分配到相应的网格并可对概念模型进行编辑。
SUB SURFACE CHARACTERIZATION(地质特征 )被用来建立三角形不规则网(TINs)和实体 (Solid)模型,显示钻孔数据。
钻孔数据 (Borehole Data)用来管理样品和地层这两种格式的钻孔数据。
样品数据用来做等值面和等值线,推出地层。
地层数据用来建立 TIN、实体和三维有限元网格。
TINs即三角不规则网络 (Triangulated Irregular Net-works),通常用来表示相邻地层的界面,多个 TINs就可以被用来建立实体 (Solid)模型或三维网格。
TINs 是表示相邻地层单元界面的面,它是由钻孔内精选的地层界面组成的。
一旦建立了一组TINs,TINs就可以用来建立实体模型。
Solid 被用来建立三维地层模型,任意切割剖面,产生逼真的图像。
GEOSTATISTICS(地质统计 )模块提供了多种插值法 (包括线性法、 Clough-Techer 法、反距离加权法、自然邻近法、克立格法和对数法等 ),将已有的野外数据转化成可使用的数据类型,然后被作为输入值分配给模型。
可插入二维、三维点数据,产生等浓度面,从而图示化给出污染晕。
实体(Solid)是在不规则的三角形网络 (TINs)建立完成后,通过一系列操作产生的实际地层的三维立体模型。
可以任意切割剖面,产生逼真的图像。
2GMS软件的优点GMS 软件模块多,功能全,几乎可以用来模拟与地下水相关的所有水流和溶质运移问题。
同其它类软件相比, GMS软件除模块更多之外,各模块的功能也更趋完善。
主要优点如下:1)概念化方式建立水文地质概念模型。
进行地下水数值模拟时,一般包括建立水文地质概念模型、建立数学模型、求解数学模型、模型识别以及模型预报等几个步骤。
其中水文地质概念模型的建立是至关重要的一步,它是建立数学模型的基础,是整个模拟的前提。
使用GMS 软件建立概念模型时,除了常用的网格化方式外,多了一种概念化方式。
概念化方式是先采用特征体 (包括点、曲线和多边形 )来表示模型的边界、不同的参数区域及源汇项等,然后生成网格,再通过模型转换,就可以将特征体上的所有数据一次性转换到网格相应的单元和结点上。
由于网格化方式要求对每个单元进行编辑,过程比较繁琐,因此通常只适合于创建一些简单的概念模型;而概念化方式是对实体直接编辑,且可以以文件形式来输入、处理大部分数据,而没有必要逐个单元地编辑数据,因此对于实际应用中比较复杂的问题,采用概念化方式更简便、快捷。
用这种方式建立起来的水文地质概念模型用不同的多边形来表示不同的参数值区域。
在随后的参数拟合过程中,即可直接对这些相应的多边形进行操作,而无需对此多边形内的每一个网格都重复进行同一操作。
2)前、后处理功能更强。
在前处理过程中,GMS 软件可以采用 MODFLOW 等模块的输入数据并自动保存为一系列文件,以便在 GMS菜单中使用这些模块时可方便而直接地调用,且实现了可视化输入。