(整理)岩体力学在边坡工程中的应用.

合集下载

岩石力学边坡

岩石力学边坡
蔡路军 4
a
b
c
d
图1-1
2007-06-12
e
f
斜坡块体运动主要类型示意图
蔡路军 5
a.山崩(崩塌);b.滑坡;c.错落;d.倾倒;e.坍塌;f.岩体深层蠕变
武汉科技大学理学院工程力学系
滑坡动态图
2007-06-12
武汉科技大学理学院工程力学系
蔡路军
6
青 海 化 隆 至 循 化 公 路 危 岩 体
WUST
同江至三亚高速公路福建八尺门互通3#滑坡全貌
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 33
WUST
京珠高速公路粤北段K108滑坡
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 34
WUST
京珠高速公路粤北段K152滑坡
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 35
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 20
WUST
二郎山隧道西引道滑坡张裂缝
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 21
WUST
云南元磨高速公路砂泥岩高边坡滑坡
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 22
WUST
云南元磨高速公路K259三箐公隧道进口滑坡
2007-06-12 武汉科技大学理学院台湾某地的边坡整治效果图
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 55
水利水电工程-小湾水电站右岸局部边坡
2007-06-12 武汉科技大学理学院工程力学系 蔡路军 56
水利水电工程-三峡工程局部边坡
WUST
黄河李家峡水电站2#滑坡

7岩石力学-岩石边坡工程资料

7岩石力学-岩石边坡工程资料

得岩质边坡和土质边坡的力学性能很不 相同,其边坡破坏模式的差别也十分显
分 著。

15
岩石力学
16
岩石力学
7.2 边坡的破坏形式和影响因素
17
岩石力学
一、边坡岩体的变形特征
岩石边坡的变形以坡体未出现贯通性 的破坏面为特点,但在边坡体的局部区 域,特别在坡面附近可能出现一定程度 的破裂与错动。
边坡的变形主要表现为松动和蠕动。
蠕 动 变 形
24
岩石力学
二、边坡岩体的破坏模式
(一)、崩塌 崩塌--高陡的边坡岩体突然发生倾倒崩落, 岩块滚落堆积于坡脚的现象。 山崩--大规模的岩体崩塌,可达数千万甚至 上亿立方米。 坠石--小规模的崩塌,一般仅数立方米或数 十立方米。 坚硬岩体中发生的崩塌也称岩崩,土体中发 生的则称土崩。崩塌下来的岩块碎石大小混杂 堆积于坡脚,称为崩积物。
39
岩石力学
7.3 边坡稳定性分析计算
40
岩石力学
一、稳定性分析方法综述
(一)、边坡稳定性分析方法分类 目前用于边坡稳定性分析的方法大体上可 分为定性分析方法和定量分析方法两大类。 定性分析方法:工程类比法、赤平极射投 影法、实体比例投影法、摩擦圆法等; 定量分析方法:极限平衡法、数值分析法 (有限元,边界元,离散元等)及可靠性分析 方法(蒙特卡洛法和随机有限元法等)。
S C tg
S C ( u)tg
式中,C、C′分别为滑动面的粘结力
和有效粘结力;Φ 、Φ ′分别为滑动面 的内摩擦角和有效内摩擦角;u为滑动面 孔隙水压力。
46
岩石力学
一、稳定性分析方法综述
2、稳定系数F(安全系数)的定义为沿最危 险破坏面作用的最大抗滑力(或力矩)与下滑 力(或力矩)的比值。即

全国注册土木工程师(岩土)执业资格考试基础考试重点

全国注册土木工程师(岩土)执业资格考试基础考试重点

全国注册土木工程师(岩土)执业资格考试基础考试第一章高等数学第一节空间解析几何第二节微分学第三节积分学第四节无穷级数第五节常微分方程第六节线性代数第七节概率与数理统计第一章普通物理第一节执学八、、4第二节波动学第三节光学第二章普通化学第一节物质结构与物质状态第二节溶液第三节化学反应速率及化学平衡第四节氧化还原反应与电化学第五节有机化学第四章理论力学第一节静力学第二节运动学第三节动力学第五章材料力学第一节拉伸与压缩第二节勇切与挤压第三节扭转第四节截面的几何性质第五节弯曲第六节应力状态与强度理论第七节组合变形第八节压杆稳定第/、、流体力学章第一节流体的主要物性与流体静力学第二节流体动力学基础第三节流动阻力和能量损失第四节孔口、管嘴和有压管道恒定流第五节明渠恒定流第六节渗流、井和集水廊道第七节相似原理和量纲分析第七章电气与信息第一节电磁学概念第二节电路知识第三节电动机与叟压器第四节仁号与彳口息第五节模拟电子技术第六节数字电子技术第七节计算机系统第八节信息表示第九节常用操作系统第十节计算机网络第八章法律法规第一节中华人民共和国建筑法第二节中华人民共和国安全生产法第三节中华人民共和国招标投标法第四节中华人民共和国合冋法第五节中华人民共和国行政许可法第六节中华人民共和国节约能源法第七节中华人民共和国环境保护法第八节建设工程勘察设计管理条例第九节建设工程质量管理条例第十节建设工程安全生产管理条例第九章工程经济第一节资金的时间价值第二节财务效益与费用估算第三节资金来源与融资方案第四节财务分析第五节经济费用效缶:分析第六节不确定性分析第七节方案经济比选第八节改扩建项目经济评价特点第九节价值工程第十章土木工程材料第一节材料科学弓物质结构基础知识第二节材料的性能和应用第十章工程测量第一节测量的基本概念第二节水准测量第二节角度测量第四节距离测量第五节测量误差的基本知识第六节控制测量第七节地形图的测绘与应用第八节建筑工程测量第十一章职业法规第十二章土木工程施工与管理第一节土石方丄社与桩基础丄柱第二节钢筋混凝土工程弓预应力混凝土工程第三节结构吊装丄程与砌体丄程第四节施工组织设计第五节流水施工原理第六节网络计划技术第七节施工管理第十四章结构力学第一节平面体系的几何组成分析第二节静定结构的受力分析与特性第三节静定结构的位移计算第四节超静定结构的受力分析与特性第五节结构的动力特性与动力反应第十五章结构设计第一节钢筋混凝土结构第二节钢结构第三节砌体结构弟十八早岩体力学与土力学第一节岩石的基本物理、力学性能及其试验方法第二节工程岩体分级第三节岩体的初始应力状态第四节土的组成和物理性质第五节土中应力分布及计算第六节土的压缩性与地基沉降第七节土的抗男强度第八节特殊性土第九节土压力第十节边坡稳定分析第十节地基承载力第十七章工程地质第一节岩石的成因和分类第二节地质构造和地史概念第三节地貌和第四纪地质第四节岩体结构和稳定性分析第五节动力地质第六节地下水第七节岩土工程勘察与原位测试技术第十八章岩体工程与基础工程第一节岩体力学在边坡工程中的应用第二节岩体力学在岩基工程中的应用第三节浅基础第四节深基础第五节地基处理。

岩体力学在边坡工程中的应用

岩体力学在边坡工程中的应用

第八章 岩体力学在边坡工程中的应用(一)岩质边坡的应力分布特征由有限元法分析的结果知,形成边坡后,岩体中的应力有如下变化特性:1.由于应力重新分布,边坡周围的主应力迹线发生明显偏转,其总的特征为愈靠近临空面,最大主应力(1σ)愈接近平行临空面。

2.坡脚附近最大主应力(相当于临空面的切向应力)显著增高,且愈近表面愈高;最小主应力则显著降低,于表面处降为零,甚至转为拉应力。

3.坡缘(坡面与坡顶的交线)附近,在一定的条件下,坡面的径向应力和坡顶的切向应力可转化为拉应力,形成张力带。

4.坡体内最大剪应力迹线由原来的直线变为近似圆弧形,弧的凹面朝向临空方向。

5.坡面处于单向应力状态(不考虑坡面走向方向的2σ)向内渐变为两向(若考虑2σ则是三向)应力状态。

另外,应注意到,以上特征只能使用于均质各向同性的岩体中,如果边坡内存在大的断层或层状岩体,则应力分布必有较大的差异。

影响应力分布的主要因素有:原岩应力状态、岩坡形态、岩体的变形特征和结构特征等。

其中,以原岩应力状态的影响最为显著。

(二)岩质边坡的变形和破坏特征岩质边坡中未出现贯通性破裂面之前,坡体的变化特征属变形特征;出现贯通性破裂面后的坡体特征属破坏特征。

其发展过程是:坡面及附近岩体松动(又称松弛张裂)-岩体蠕动-加速蠕动-破坏。

其中,前三步的特征均属变形特征,最后一步的特征才是破坏特征。

1.变形特征在边坡形成的初始阶段,由于卸荷作用,岩体内的应力重新分布,使边坡表面及其附近岩体发生松动,形成表面张开裂隙,包括:回弹裂隙,坡面、坡顶张裂带裂隙,坡脚应力集中带的张开裂隙。

岩坡发生松动后,降低了岩体的强度,在外力(主要是自重)作用下,岩体向自由面方向缓慢变形,称之为岩坡的蠕动。

如果坡体中的应力小于岩体的长期强度,坡体的蠕动逐渐减速,最后趋于稳定;反之,坡体蠕动加速,最终导致破坏。

2.破坏特征由于边坡的破坏有各种各样的原因,而产生破坏后的形态和作用也极不一致,因而岩坡破坏形式的分类也是各种各样的。

岩体力学在边坡工程中的应用

岩体力学在边坡工程中的应用
第八章 岩体力学在边坡工程中的应用
边坡岩体中的应力分布特征 边坡岩体的变形与破坏 边坡岩体稳定性分析 岩质边坡的加固措施
边坡岩体中的应力分布特征
斜坡(slope)统指地表一切具有侧向临空面的地质 体,包括天然斜坡和人工边坡。 天然斜坡(简称斜坡)是指自然地质作用形成未经 人工改造的斜坡。 人工边坡(简称边坡)是指经人工开挖或改造形成 的斜坡。 研究目的:研究边坡变形破坏的机理(包括应力分 布及变形破坏特征)与稳定性,为边坡预测预报及 整治提供岩体力学依据。其中稳定性计算是岩体 边坡稳定性分析的核心。
(Ti j ) Tn
i 1
ji
折线滑动法又叫不平衡推力传递法、传递
系数法、剩余推力法。
当滑动面为折线形时,可用折线滑动法。
山区土坡往往
覆盖在起伏变化 的基岩上,土坡 失稳多数沿这些 界面发生,形成 折线滑动面,对 这类边坡的稳定 分析可采用传递 系数法。
假定条间力的合力与上一土 条底面平行,根据各分条力 的平衡条件,逐条向下推求, 直至最后一条土条的作用力
稳定系数折减:
Ri

cbili
(NiБайду номын сангаас
Ui ) tanbi
K
Xi

csi di
(Ei
Pwi ) tansi
K
X i1

csi 1d i 1

(Ei1 K
Pwi1
) tansi1
Ei1 mi Eini Pia
Sarma法可以用于评价各种破坏模式下边坡 稳定性,如平面破坏、楔形体破坏、圆 弧面破坏和非圆弧面破坏等。的而且条 块的分条是任意的,条块边界无需垂直, 从而可以对各种特殊的边坡破坏模式进 行稳定性分析。

033013(030027)《岩体力学》同济大学教学大纲(含教学内容,使用课本等)

033013(030027)《岩体力学》同济大学教学大纲(含教学内容,使用课本等)

《岩体力学/实验》课程教学大纲课程编号:0330137 学分:3 总学时:51+13(0.75周)实验:大纲执笔人:沈明荣大纲审核人:石振明本课程有配套实验课030027《岩体力学实验》,0学分,13(0.75周)学时。

一、课程性质与目的本课程属地质工程专业的专业基础课程,为限定选修课。

本课程的主要教学目的是:使学生掌握有关岩石、岩体的基本力学性能,了解岩石的动力学特性,熟练掌握有关的强度理论,岩体分类的基本方法,岩体初始应力状态及其规律,了解初始应力状态的测定方法,并在此基础上,熟练掌握岩体力学在峒室工程、边坡工程、岩基工程中的应用。

二、课程基本要求要求学生能够熟练地掌握有关岩石、结构面、岩体的力学特性,能够熟练应用岩石、结构面、岩体的强度理论,对其进行评价,并应用这些基本理论,评价峒室的二次应力状态和掌握围岩压力理论及其围岩的松动压力、形变压力的计算,初步了解新奥法的基本概念,了解边坡的破坏机理和稳定性评价的基本方法,熟悉岩基的破坏模式及其承载力的计算方法。

三、课程基本内容(一)绪言介绍岩体力学的定义及其不关的基本概念、简介目前常用的岩体分类方法,并根据岩体力学自身所具有的特性,要求掌握学习、研究岩体力学的方法。

(二)岩石的基本物理力学性质介绍岩石的基本物理、水理性质。

岩石在拉伸、单向压缩、剪切、三向压缩应力作用下的强度和变形特性以及有关岩石常用的几种强度理论,简单叙述在各种应力作用下的试验方法及其相应各参数的求解方法。

(三)岩体的基本力学性能介绍描述结构面的方法,结构面在正应力、剪应力作用下的变形特性、常用的评价规则、不规则齿形结构面的抗剪强度理论及其正确地运用这些强度理论,评价具有结构面的岩体强度、以及由于结构面的存在,对岩体强度的影响。

(四)岩石的动力学基础简单介绍波动方程和超声波波速及其影响因素。

(五)工程岩体分类介绍工程岩体分类的基本原则以及分类的基本方法,熟悉几个简单的分类和我国的分类标准。

岩石力学张永兴答案

岩石力学张永兴答案

岩石力学张永兴答案【篇一:《岩体力学》教学大纲】t> 撰写人:学院审批:审批时间:年月日一.课程基本信息开课单位:土木工程与建筑学院课程编号: 01z20044b英文名称: rock mass mechanics学时:总计 32 学时,其中理论授课32 学时,实验(含上机)0 学时学分: 2.0学分面向对象: 2008 级及以后年级的土木工程与工程管理本科专业学生先修课程:《高等数学》、《土木工程概论》、《材料力学》、《普通地质学》、《弹性力学》、《工程地质》、《计算机文化基础》等。

教材:《岩体力学》,沈明荣,陈建峰编著,上海:同济大学出版社, 2006 年 07 月,第三版。

主要教学参考书或资料:1.《岩体力学》,阳生权,阳军生编著,北京:机械工业出版社,2008 年 09 月,第一版。

2. 《岩石力学》,徐志英编著,北京:水利水电出版社,2007 年 07 月,第三版。

3. 《岩石力学》,张永兴编著,北京:中国建筑工业出版社,2008 年 03 月,第二版。

4.gb 50218 —94 工程岩体分级标准.5.gb 50021 —2001 岩土工程勘察规范.6.《岩土工程手册》,岩土工程手册编委会编著,北京:中国建筑工业出版社, 1999 。

二.教学目的和任务岩体力学是一门应用型基础学科,是属土木工程专业任选课。

本课程的教学目的是通过课堂教学,使学生掌握岩石、岩体的基本概念,掌握地下洞室、岩质边坡和地基工程的稳定性分析方法及其基本的设计方法,并了解岩体力学的新理论新方法,掌握常用试验、测试的原理与方法。

三.教学目标和要求通过本课程的学习,充分理解并掌握岩石基本参数的概念,影响因素,试验方法;掌握莫尔强度理论和格里菲斯强度理论;对工程中一般岩体力学问题具有一定的分析和计算能力,如洞室围岩稳定性分析、岩质边坡稳定性分析、坝基稳定性分析等.同时,学生具有正确进行数字计算的能力,掌握测量岩石主要参数的操作能力,具有分析试验数据和编写报告的能力。

岩体力学在边坡工程中的应用(之一)

岩体力学在边坡工程中的应用(之一)

第十五讲第十七章岩体工程与基础工程第一节岩体力学在边坡工程中的应用(之一)一、内容提要:本讲主要讲述岩质边坡应力分布特征;边坡岩体的变形和破坏以及影响边坡稳定性的工程地质因素二、重点难点:边坡应力分布特征、边坡变形和破坏斜坡系指地壳表部一切具有侧向临空面的地质体。

它包括自然斜坡和人工边坡两种。

前者是在一定地质环境中,在各种地质营力作用下形成和演化的自然历史过程的产物,如山坡、海岸、河岸等。

后者则是由于人类某种工程、经济目的而开挖的,往往在自然斜坡基础上形成,其特点是具有较规则的几何形态,如路堑、露天矿坑边帮、运河(渠道)边坡等。

斜坡具有坡体、坡高、坡角、坡肩、坡面、坡脚、坡顶面、坡底面等各项要素(图17-1-1)。

斜坡在各种内、外地质营力作用下,不断地改变着坡高和坡角,使坡体内应力分布发生变化。

当组成坡体的岩土体强度不能适应此应力分布时,就产生了斜坡的变形破坏作用。

尤其是大规模的工程建设,使自然斜坡发生急剧变化,斜坡的稳定程度也变化极大,往往酿成灾害。

斜坡的变形与破坏,实质上是由斜坡岩土体内应力与其强度这一对矛盾的发展演化所决定的。

由于斜坡变形破坏,给人类和工程建设带来的危害在国内外不乏其例。

在我国,由于特殊的自然地理和地质条件所制约,斜坡地质灾害分布广泛,活动强烈,危害严重。

由于斜坡变形破坏对人类工程、经济活动和生命财产的危害较大,所以它是工程地质学研究的主要课题之一,也是环境地质学和灾害地质学研究的重要内容。

【例题1】决定斜坡的变形与破坏的主要因素是()。

A.斜坡类型B.斜坡要素C.斜坡种类D.斜坡岩土体内应力与强度答案:D【例题2】下列不属于斜坡要素的是()。

A. 坡高B.坡顶C.坡角D.坡腿答案:D一、岩质边坡应力分布特征斜坡的变形与破坏,取决于坡体中的应力分布和岩体的强度特征,了解坡体中应力分布特征,对认识斜坡变形与破坏机理很有必要;对正确评价斜坡的稳定性,制定合理的设计和整治方案有指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 岩体力学在边坡工程中的应用(一)岩质边坡的应力分布特征由有限元法分析的结果知,形成边坡后,岩体中的应力有如下变化特性:1.由于应力重新分布,边坡周围的主应力迹线发生明显偏转,其总的特征为愈靠近临空面,最大主应力(1σ)愈接近平行临空面。

2.坡脚附近最大主应力(相当于临空面的切向应力)显著增高,且愈近表面愈高;最小主应力则显著降低,于表面处降为零,甚至转为拉应力。

3.坡缘(坡面与坡顶的交线)附近,在一定的条件下,坡面的径向应力和坡顶的切向应力可转化为拉应力,形成张力带。

4.坡体内最大剪应力迹线由原来的直线变为近似圆弧形,弧的凹面朝向临空方向。

5.坡面处于单向应力状态(不考虑坡面走向方向的2σ)向内渐变为两向(若考虑2σ则是三向)应力状态。

另外,应注意到,以上特征只能使用于均质各向同性的岩体中,如果边坡内存在大的断层或层状岩体,则应力分布必有较大的差异。

影响应力分布的主要因素有:原岩应力状态、岩坡形态、岩体的变形特征和结构特征等。

其中,以原岩应力状态的影响最为显著。

(二)岩质边坡的变形和破坏特征岩质边坡中未出现贯通性破裂面之前,坡体的变化特征属变形特征;出现贯通性破裂面后的坡体特征属破坏特征。

其发展过程是:坡面及附近岩体松动(又称松弛张裂)-岩体蠕动-加速蠕动-破坏。

其中,前三步的特征均属变形特征,最后一步的特征才是破坏特征。

1.变形特征在边坡形成的初始阶段,由于卸荷作用,岩体内的应力重新分布,使边坡表面及其附近岩体发生松动,形成表面张开裂隙,包括:回弹裂隙,坡面、坡顶张裂带裂隙,坡脚应力集中带的张开裂隙。

岩坡发生松动后,降低了岩体的强度,在外力(主要是自重)作用下,岩体向自由面方向缓慢变形,称之为岩坡的蠕动。

如果坡体中的应力小于岩体的长期强度,坡体的蠕动逐渐减速,最后趋于稳定;反之,坡体蠕动加速,最终导致破坏。

2.破坏特征由于边坡的破坏有各种各样的原因,而产生破坏后的形态和作用也极不一致,因而岩坡破坏形式的分类也是各种各样的。

从破坏的力学特征看,将常见的边坡破坏形式分为岩石崩塌、平移滑动、旋转滑动、岩块流动和岩层曲折五类(见图8-1 a,b,c,d,e )。

图8-1 边坡破坏形式分类(1)崩塌(图8-1a)岩坡前缘的部分岩体被陡倾角的破裂面分割,以突然的方式脱离母体,翻滚而下,岩块相互撞击破碎,堆积于坡脚而形成岩堆,称为崩塌。

崩塌产生的原因:①由于风化减弱了节理面间的粘结力;②由于雨水渗入张裂隙中,造成了裂隙水的水水压作用于向坡处的岩块上;③岩石受到冰胀,风化和气温变化的影响,从而减弱岩体的抗拉强度和松动了岩块,造成了岩石崩落的条件。

(2)平移滑动(图8-1b)平移滑动是一部分岩体沿着地质软弱面,如层面、断层、裂隙或节理面的滑动。

其特点是块体运动沿着平面滑移。

它的产生是由于这一平面上的抗剪力与边坡几何形状不相适应。

这种滑动往往发生在地质软弱面的产状往坡外倾斜的地方。

由于坡脚开挖或者某种原因(如风化、水的浸润等)降低了软弱面的内摩擦角,这就使的地质软弱面以上的部分岩体沿此平面而下滑,造成了边坡破坏。

(3)旋转滑动(图8-1c)旋转滑动的滑面通常成弧形状,岩体沿此弧形滑面而滑移。

在均质的岩体中,特别是均质泥岩或页岩中,滑面近圆弧形。

但在非均质的岩坡中,滑面很少是圆弧形的,因为它的形状受层面、节理裂隙的影响。

这时,滑面是由短折线组成的弧形,近似于对数螺旋曲线或其他形状的弧面。

滑体沿着弧面上滑动,使滑体好像是以某一半径围绕某中心而作旋转运动,使的滑体顶面往后倾斜。

这种滑动的表面形态通常是成马蹄形的。

在滑体的后部往往产生许多张裂隙。

在雨后,雨水贯进裂隙中,减弱了滑面的抗剪强度,又促使滑体滑动。

(4)岩体流动(图8-1d)岩体流动通常发生在均质的硬岩层中,这种破坏类似于脆性岩石因最高应力点上的破碎而使岩层全面崩塌那样的情况。

因而它的成因首先是在岩层内部某一应力集中点上的岩石遭到高应力的作用而开始破裂或破碎。

于是,所增加的荷载传给邻近的岩石,从而又使邻近岩石受到超过某本身强度的荷载,又导致了进一步的破裂。

这一过程的不断进行,直至岩层出现全面破裂而崩塌为止。

这样,岩块像流体一样的沿坡面向下流动,而成岩块流动。

其破坏面极不规则,没有一定形状。

并由于岩块流动,使的岩体发生相应的内部变形。

(5)岩层曲折(图8-1e)有时,边坡破坏也可因坡面节理岩层的曲折引起,也有称溃曲。

当岩层成层状沿坡面分布时,由于岩层本身的重力作用,或由于裂隙水的结冰作用,增加了岩层的荷载,而使坡面岩层曲折,导致岩层破坏,岩体沿坡向下崩落。

(三)影响边坡稳定性的主要因素影响边坡稳定性的因素很多,可以概括为内在因素和外在因素两个方面。

其中,内在因素包括地貌条件、岩石性质、岩体结构与地质构造等。

外在因素包括水文地质条件、风化作用、水的作用、地震及人为因素等。

内因在边坡的变形中起决定性的控制作用,外因起促进作用;在边坡的稳定性分析中,应在研究各因素的基础上,找出它们彼此间的内在联系,进而评价其稳定性。

1.地貌条件地貌条件决定了边坡形态,对边坡稳定性有直接影响。

对于均质岩坡,其坡度愈陡,坡高愈大则稳定性越差。

对边坡的临空条件讲,工程地质条件相似的情况下,平面呈凹形的边坡较呈凸形的边坡稳定。

2.岩石的性质岩石性质的差异是影响边坡稳定的基本因素,就边坡的变形破坏特征而论,不同的地层岩组有其常见的变形破坏形式。

一般来说,岩石强度越低,完整性越差,抗风化能力越低,亲水性越强,边坡的稳定性越差。

3.岩体结构与地质构造岩体结构类型、结构面产状及其与坡面的关系是岩体边坡稳定性的控制因素。

(1)结构面的倾角与倾向:同向缓倾边坡的稳定性较反向坡要差;同向缓倾边坡中结构面的倾角愈陡稳定性愈差。

(2)结构面的走向:结构面走向与坡面走向之间的关系,决定了失稳边坡岩体运动的临空程度,当倾向不利的结构面走向和坡面平行时,边坡的稳定性最为不利。

(3)结构面的组数和数量:结构面组数多,密度大造成岩体破碎;边坡整体性差,块体滑动的机会多,失稳可能性大。

(4)结构的连续性、粗糙度、充填物性质和厚度等等都会影响边坡的稳定性。

4.风化作用岩石风化愈深,边坡的稳定性愈差,稳定坡角愈小。

5.水的作用水对边坡的稳定性有显著影响,包括软化作用、潜蚀、冲刷作用、静水压力和动水压力作用,还有浮托作用等。

6.地震强烈地震时,由于水平地震力的作用,常引起山崩、滑坡等斜坡破坏现象;由于强烈地震的振动,使地震带附近岩体结构松动,给边坡稳定带来潜在威胁。

7.人工因素人工因素包括如下几方面:(1)爆破作用;(2)人工削坡;(3)施工方法;(4)工程作用等。

(四)边坡稳定性评价方法岩体边坡稳定性评价方法,大体上可分为定性评价和定量评价两大类。

其中定性评价包括工程类比法和图解法;定量分析法包括数值分析法、极限平衡和可靠度分析法。

极限平衡法是简单、实用、应用最普遍的方法,是要求我们重点掌握的内容。

极限平衡法中的关键内容有两个。

(1)剪切滑动破坏面的强度准则。

一般采用库仑准则φστtg c +=,式中c 、φ分别是滑动面的内粘聚力和内摩擦角;τ、σ分别是滑动面上的剪应力和正应力。

(2)边坡的稳定系数k 。

k 被定义为阻止滑动的总力与致滑总力之比,当k>1.时,边坡稳定;当k<1时,边坡不稳定;k=1时,极限平衡状态。

1.单平面滑动体稳定性评价如图8-2所示,为岩坡,坡顶水平,坡角i ,可能造成岩坡破坏的面为AB ,其倾角为β。

设岩体的容重为γ;滑动面的内粘聚力和内摩擦角分别为c 、φ。

当1=K 时,岩坡的极限高度为:()()φβββ--=sin sin cos sin 2i i r c H 对单面滑动体,还应该注意如下两种情况:(1)在坡顶面出现张拉裂缝如图18-14所示,张拉裂缝CE 的理论深度为:⎪⎭⎫ ⎝⎛+=245tan 200φγc Z 所以,实际滑动一般不是ABD 而是AECD 。

(2)考虑静水压力、动水压力、地震动力等附加荷载时,岩坡的稳定系数的计算 首先作如下假设:①滑动面走向和张性断裂走向都与边坡面走向平行。

②张性断裂是竖直向的,并注满水,水深为W Z 。

③水沿着张性断裂的底部进入滑面,并沿着滑面渗透。

特别是在大气压力下进行渗透。

这里,滑面在边坡内显示出水压力,如图8-3表示了张性断裂中水的存在引起的压力分布以及沿滑面的压力分布情况。

④各个力W (滑块的质量)、U (浮力,这是由于水压力加在滑动面上产生的)和V (由于水压力在张性断裂中产生的力),都通过滑动体的形心起作用。

因此破坏仅仅是由于滑动造成的。

对于大多数实际边坡,这一假设可能不是完全真实的,但是,由于力矩的存在而引起的误差很小,可以忽略。

⑤滑面的抗剪强度是由粘结力和内摩擦角ϕ确定,符合库仑方程ϕστtan +=c 。

⑥所考虑计算厚度为单位厚度,并假定在破坏的侧面边界上对滑动没有阻力。

这样,所得稳定系数将会保守些。

图8-3 边坡上部具有张性断裂的边坡计算图从图8-3可得稳定系数:()ββφββcos sin tan sin cos V W V U W CA K +--+= 式中: ()βcsc Z H A -=()βγc s c 21Z H Z U w w -=w w Z V 221γ= 对于上部边坡表面中的张性断裂,有⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=i H Z H W cot cot 12122βγ 当边坡的几何形状和张性断裂中的水深度为已知时,稳定系数K 的计算是一简单的事情。

可是,有时需要把一系列边坡几何形状、水的深度和不同抗剪强度的影响加以考虑。

则上式的解法可能变的很复杂。

为了简化计算,方程式可以重新整理成下列无因次的形式:()[]βϕβγcot tan cot 2RS Q S P R Q P H c K ++-+⎪⎪⎭⎫ ⎝⎛= 式中: βcsc 1⎪⎭⎫ ⎝⎛-=H Z P ⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=ββsin cot cot 12i H Z Q HZ Z Z R w w γγ= βsin HZ Z Z S w ⨯= P ,Q ,R 和S 皆是无因次的参数,这意味着它们取决于几何形状,而不取决于边坡的大小。

因此,在粘结力c=0的情况下,稳定系数K 不再取决于边坡的大小。

2.双平面滑动体稳定性评价如图8-4所示,滑体abc 为一刚体,它可能沿ab 和bc 平面滑动。

其中bc 称为主滑面,ab 为辅助面,并有:(1)作用滑体上的外力为R (包括自重、地震力、滑动面上的孔隙水压力),分解为x,y 两个分力。

(2)ab 面上的抗滑力1S 和正压力1N(3)bc 面上的抗滑力2S 和正压力2N其中,滑动面上的抗滑力包括表面摩擦力和滑动面的内摩擦力,并考虑稳定性系数K ,即Kabc N S 1111tan +=ϕKbc c N S 2221tan +=ϕ 图8-4双平面滑动体受力图 式中:11,c ϕ和22,c ϕ分别是ab 面和bc 面的内摩擦角和内粘聚力; ab 和bc 分别是ab 和bc 边的长度。

相关文档
最新文档