八年级上册数学 压轴题 期末复习试卷易错题(Word版 含答案)

合集下载

苏教版八年级数学上册 压轴题 期末复习试卷(Word版 含解析)

苏教版八年级数学上册 压轴题 期末复习试卷(Word版 含解析)
(初步思考)
我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
(深入探究)
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
2.已知 ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.
(1)如图①,求证: DAM≌ BCM;
(1)若点Q的运动速度与点P的运动速度相等,当 =1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为 ,是否存在实数 ,使得△ACP与△BPQ全等?若存在,求出相应的 、 的值;若不存在,请说明理由.
5.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.
(1)如图1,
①求证:点B,C,D在以点A为圆心,AB为半径的圆上;
②直接写出∠BDC的度数(用含α的式子表示)为;
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;
(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC=2 a,试写出此时BF的值.

八年级上册轴对称解答题易错题(Word版 含答案)

八年级上册轴对称解答题易错题(Word版 含答案)

八年级上册轴对称解答题易错题(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠A BC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.5.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC是等腰三角形,90BAC∠=︒,D是BC的中点,以AD为腰作等腰ADE,且满足90DAE∠=︒,连接CE并延长交BA的延长线于点F,试探究BC与CF之间的数量关系.图1发现:(1)BC与CF之间的数量关系为 .探究:(2)如图2,当点D是线段BC上任意一点(除B、C外)时,其他条件不变,试猜想BC与CF之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.6.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC ∴=又456590︒∠+∠=∠+∠=在CDO ∆与CEF ∆中,1346OC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA ∴∆∆≌CD CE ∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.-=.②在图4中,(1)中的结论成立,OE OD OC如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD ≌△COE (ASA )∴CD=CE ,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°.∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论; (3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠= 120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+ (2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠= 180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+737276222PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。

苏教版八年级上册数学 压轴题 期末复习试卷易错题(Word版 含答案)

苏教版八年级上册数学 压轴题 期末复习试卷易错题(Word版 含答案)

苏教版八年级上册数学压轴题期末复习试卷易错题(Word版含答案)一、压轴题1.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平-+-=.面直角坐标系,点A(0,a),C(b,0)满足a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).2.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)3.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上; ②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ; (3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值. 4.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DBBC的值.5.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.6.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.7.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).8.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)9.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究. (深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明. 10.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA . (模型应用)应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.11.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.12.如图,在平面直角坐标系中,直线AB经过点A 332)和B3,0),且与y轴交于点D,直线OC与AB交于点C,且点C3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析 【解析】 【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积; (2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论; (3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论. 【详解】 解:(1) 解:(1)∵a 6b 80--=,∴a-6=0,b-8=0, ∴a=6,b=8,∴A (0,6),C (8,0); ∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24 (2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等 (3) )∴2∠GOA+∠ACE=∠OHC ,理由如下: ∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵y 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC ∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F , ∴HF ∥AC ∴∠FHC=∠ACE 同理∠FHO=∠GOD , ∵OG ∥FH , ∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC 即∠GOD+∠ACE=∠OHC , ∴2∠GOA+∠ACE=∠OHC . ∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.2.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】 【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标. 【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位; 故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1) ∵移动后的点 B 和点 A 的纵坐标相等 ∴m+1=3m+3 ∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点, 设 K 点坐标为(-3,a ) M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a ) AM=3,BM=3,KC=a,KH=2 ∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点, ∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m- , ∴F 9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用. 3.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102a 【解析】 【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数; (2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥BF ,当B 、O 、F 三点共线时BF 最长;如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a , ∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a , ∴2OC a =, ∴OH HC a ==,∴BH=3a , ∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==, ∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.4.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.5.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.6.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,27+2)或(6,10-27).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA '-=8,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1=∴AP1P1(6,);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3∴AP3=AE+EP3,即P3(6,+2),综上,满足题意的P坐标为(6,6)或(6,+2)或(6,).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.7.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t =⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.8.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.9.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.10.模型建立:见解析;应用1:2:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.11.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.12.(1)y=﹣3x +2;(2)△AOD 为直角三角形,理由见解析;(3)t =23或3. 【解析】【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:3=220k b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y=﹣3x +2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y=﹣3x +2,故点C,1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30° 故点C1),则OC =2,则点C 是AB 的中点,故∠COB =∠DBO =30°,则∠AOC =30°,∠DOC =60°, OQ =CP =t ,则OP =OC ﹣PC =2﹣t ,①当OP =OM 时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=32(2﹣t)=QH,OQ=QH+OH=32(2﹣t)+12(2﹣t)=t,解得:t=233;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t=23;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t =23. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.。

八年级数学轴对称解答题易错题(Word版 含答案)

八年级数学轴对称解答题易错题(Word版 含答案)

八年级数学轴对称解答题易错题(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m 是边BC 的垂直平分线, ∴OB =OC ,∵直线n 是边AC 的垂直平分线, ∴OA =OC , ∴OA =OB ∵OH ⊥AB , ∴AH =BH ;(2)如图③中,连接BD ,BE .∵BA =BC ,∠ABC =120°, ∴∠A =∠C =30°,∵边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E , ∴DA =DB ,EB =EC ,∴∠A =∠DBA =30°,∠C =∠EBC =30°,∴∠BDE =∠A +∠DBA =60°,∠BED =∠C +∠EBC =60°, ∴△BDE 是等边三角形, ∴AD =BD =DE =BE =EC , ∵AC =15=AD +DE +EC =3DE , ∴DE =5, 故答案为:5. 【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.2.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析 【解析】 【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF. 【详解】如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .∵AD 是BC 边上的中线, ∴DC DB =. 在ADC 和GDB △中,AD DG ADC GDB DC DB =⎧⎪∠=∠⎨⎪=⎩(对顶角相等), ∴ADC ≌GDB △(SAS ). ∴CAD G ∠=∠,BG AC =. 又BE AC =, ∴BE BG =. ∴BED G ∠=∠. ∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠ ∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”. 理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”; 在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可); 应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42° 【解析】 【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值; 【详解】解:(1)∵AB=AC , ∴∠ABC=∠C ,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.5.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC +∠ADB =120°, ∴∠ADM =60°, ∴△ADM 是等边三角形, ∴AD =AM . 【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.6.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒) 数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”) (2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =. 数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°. 【解析】 【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ;(4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案. 【详解】(1)∵小棒与小棒在端点处互相垂直即可, ∴小棒能无限摆下去, 故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3, ∴∠A 2A 1A 3=45°, ∴∠AA 2A 1+θ=45°, ∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ, ∴θ=22.5°; (3)∵121A A AA =, ∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ, ∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒, ∴5θ<90°且6θ≥90°, ∴15°≤θ<18°. 故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.7.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.8.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC-=.在图5中,(1)中的结论成立,OD OE OC-=【解析】【分析】(1)通过ASA证明CDO CEF∆∆≌即可得到CD=CE;(2)过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,通过AAS证明CMD CNE∆∆≌同样可得到CD=CE;(3)①方法一:过点C作C M OA⊥,CN OB⊥垂足分别为M,N,通过AAS得到CMD CNE∆∆≌,进而得到,CD CE DM EN==,利用等量代换得到=OE OD ON OM++,在Rt CMO∆中,利用30°角所对的边是斜边的一半得12OM OC=,同理得到12ON OC=,所以OE OD OC+=;方法二:以CO为一边作60FCO∠=︒,交O B于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵90AOB DCE ∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD ∆与CNE ∆中,32CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS ∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC +=.理由如下:方法一:如图3(1),过点 C 作 C M OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形ODCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵60120180AOB DCE ∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO∠=∠+∠=︒,∴46∠=∠,在CDO∆与CEF∆中,1346CO CF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA∆∆≌,∴,CD CE OD EF==.∴OE OD OE EF OF OC+=+==.②在图4中,(1)中的结论成立,OE OD OC-=.如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=3=∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23故答案为:3(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C'F22=+=+=27,'253C H HF∴DE+EF的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.=. 10.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=时,AD是ABC的中线吗?请说明(1)如图1,当点E在AC的延长线上且CD CE理由;AB BD AE之间的数量关系,请说明理(2)如图2,当点E在AC的延长线上时,写出,,由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出AB BD AE的数量关系.,,+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC 为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE 是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF ∥BC ,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.。

苏教版八年级上册数学 压轴题 期末复习试卷(培优篇)(Word版 含解析)

苏教版八年级上册数学 压轴题 期末复习试卷(培优篇)(Word版 含解析)

苏教版八年级上册数学 压轴题 期末复习试卷(培优篇)(Word 版 含解析)一、压轴题1.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.2.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES最大值.3.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.4.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.5.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.6.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌. ②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________. (2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明) 7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.9.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究. (深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.10.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ; (2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.11.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABF ACFSS的值.12.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)5y x =+;(2)223)PB 的长为定值52【解析】 【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+. 当0y =时,5x =-. 当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=. 解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =∴由勾股定理,2222OM OA AM=-=.180AOM AOB BON∠+∠+∠=︒.90AOB∠=︒.90AOM BON∴∠+∠=︒.90AOM OAM∠+∠=︒.BON OAM∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB∆为等腰直角三角形,AB EB∴=90ABO EBG∠+∠=︒.EG BG⊥,90GEB EBG∴∠+∠=︒.ABO GEB∴∠=∠.AOB EBG∴∆≅∆.5BG AO∴==,OB EG=OBF∆为等腰直角三角形,OB BF∴=BF EG∴=.BFP GEP∴∆≅∆.1522BP GP BG∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB,求OM,用勾股定理求AB,再证AMO OBN∆≅∆,构造AOB EBG∆≅∆,求BG,再证BFP GEP ∆≅∆.2.(1)见解析;(2)αβ=,理由见解析;(3)2 【解析】 【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =; (2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠, ∴BAC DAC DAE DAC ∠-∠=∠-∠, ∴BAD CAE ∠=∠, 在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABD ACE SAS ≅△△, ∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△, ∴∠ACE=∠ABD ,∠BCE=α, ∴∠ACE=∠ ACB+∠BCE=∠ACB +α, 在ABC 中, ∵AB= AC ,∠BAC=β, ∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H , ∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形, 当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的. 3.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】 【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标. 【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3, 故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数), 点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3), 设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数), 点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值, 由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边), 此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键. 4.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.5.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.6.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.7.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.8.(1)y=43x+2;(2)(103,10);(3)存在, P坐标为(6,6)或(6,7+2)或(6,7).【解析】【分析】(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵C(6,10),D(0,2),设此时直线DP解析式为y=kx+b,把D(0,2),C(6,10)分别代入,得2610bk b=⎧⎨+=⎩,解得432kb⎧=⎪⎨⎪=⎩则此时直线DP解析式为y=43x+2;(2)设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴22OB OA'-,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP17P1(6,7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3228627-∴AP3=AE+EP37,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.9.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.10.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】 (1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2), 则点T 的坐标为(33a +,23a +), 当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32, 此时点E 的坐标为(32,72), 当∠TDH =90°时,点T 与点D 的横坐标相同,∴33a=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.11.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.12.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.。

八年级上册广州数学压轴题 期末复习试卷测试与练习(word解析版)

八年级上册广州数学压轴题 期末复习试卷测试与练习(word解析版)
①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)
②直接写出当△MDC与△CEN全等时t的值.
4.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).
(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;
(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;
(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.
5.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(1)求P点的坐标;
(2)求△APB的面积;
(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.
12.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(1)当点 运动到点 处,过点 作 的垂线交直线 于点 ,证明 ,并求此时点 的坐标;
(2)点 是直线 上的动点,问是否存在点 ,使得以 为顶点的三角形和 全等,若存在求点 的坐标以及此时对应的点 的坐标,若不存在,请说明理由.
9.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足 .
(2)如图2,点 在线段 上,连 ,过 作 ,且 ,连 交 于 ,连 ,问 与 有何数量关系,并加以证明;

苏教版八年级数学上册 压轴题 期末复习试卷(Word版 含解析)

苏教版八年级数学上册 压轴题 期末复习试卷(Word版 含解析)

苏教版八年级数学上册 压轴题 期末复习试卷(Word 版 含解析)一、压轴题1.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.3.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ;(2)已知点N 是BC 的中点,连接AN .①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.4.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A=44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.5.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.6.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.8.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).9.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.10.如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=﹣x ﹣2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标;(2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.11.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.12.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)5y x =+;(2)223)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.2.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)先判断出MF=NG ,OF=MG ,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=4,SH=0Q=1,进而求出直线PR 的解析式,即可得出结论.【详解】证明:∵∠ACB =90°,AD ⊥l∴∠ACB =∠ADC∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°∴由(1)得MF =NG ,OF =MG ,∵M (1,3)∴MF =1,OF =3∴MG =3,NG =1∴FG =MF+MG =1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC CBC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,由(1)知,△DAM≌△BCM,∴∠DBC=∠ADB,∴AD∥BC,∴∠EAF=∠ANC,在△EAF和△ANC中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.4.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.5.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.6.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG =∠ACH,∠DEC =∠HCE,∴∠DEC+∠AOG =∠ACB =90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.7.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.8.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(1280a b b -+-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.9.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH AF,∵在Rt△AEF中,AE2=AF2+EF2,AF)2+EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.10.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x +12|=32, 解得x =1或﹣2,∴T (1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.11.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.12.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8-,0).【解析】【分析】(1)根据A,(0,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.。

八年级上册中山数学压轴题 期末复习试卷(提升篇)(Word版 含解析)

八年级上册中山数学压轴题 期末复习试卷(提升篇)(Word版 含解析)

八年级上册中山数学压轴题 期末复习试卷(提升篇)(Word 版 含解析)一、压轴题1.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b dy +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点.(1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.2.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).3.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.4.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当m<−1 式,连接AD,若线段AD 沿直线AB 方向平移得到线段BE,连接DE 与直线y=−2 交于点F,则点F 坐标为.(用含m 的式子表达)5.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同-直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.6.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?7.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABF ACFS S的值.8.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )9.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△; (2)求证:点G 是EF 的中点.10.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长. 11.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.12.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21) 【解析】【分析】(1)根据融合点的定义3a c x +=,3b dy +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解; ②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可. 【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点;(2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E (t ,2t +5),点T (t ,2t−1),点D (4,0),且点T (x ,y )是点D ,E 的融合点. ∴t =13(t +4), ∴t =2, ∴点E (2,9);当∠TDH =90°时,∵点E (t ,2t +5),点T (4,7),点D (4,0),且点T (x ,y )是点D ,E 的融合点. ∴4=13(4+t ) ∴t =8, ∴点E (8,21); 当∠HTD =90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°; 故点E 的坐标为:(2,9)或(8,21). 【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.2.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】 【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证; 【详解】(1)∵222110a b a b --+-=, ∴222110a b a b --=+-=,∴2202110a b a b --=⎧⎨+-=⎩ ,∴34a b =⎧⎨=⎩,∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB , ∴S △ACB =S △ABE , ∴12AE×BO=16, ∴12×AE×4=16, ∴AE=8, ∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334x -+, ∵AB//CD ,∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上, ∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上, ∴m=115, ∴C (-3,115), ∵点A (0,3)平移后的对应点为C (-3, 115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D的坐标为(1,-265);(3)如图2中,延长AB交CE的延长线于点M.∵AM∥CD,∴∠DCM=∠M,∵∠BCE=2∠ECD,∴∠BCD=3∠DCM=3∠M,∵∠M=∠PEC-∠MPE,∠MPE=∠OPE,∴∠BCD=3(∠CEP-∠OPE).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.3.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M 是AC 中点,点N 是BC 中点, ∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形, ∴AC=BC , ∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCM ≌△ACN (SAS ); ②证明:取AD 中点F ,连接EF ,则AD=2AF , ∵△BCM ≌△ACN , ∴AN=BM ,∠CBM=∠CAN , ∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN , ∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC , 由(1)知,△DAM ≌△BCM , ∴∠DBC=∠ADB , ∴AD ∥BC , ∴∠EAF=∠ANC , 在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAF ≌△ANC (SAS ), ∴∠NAC=∠AEF ,∠C=∠AFE=90°, ∴∠AFE=∠DFE=90°, ∵F 为AD 中点, ∴AF=DF , 在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.4.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.5.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC, CD = CE,∠ACB =∠DCB =∠DCE-∠DCB,即∠ACD = ∠BCE,∴△ACD≌△BCE,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.在等腰直角△DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.6.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,PC BD B C BPCQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.7.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF =∠1+∠BAF =60°即可解决问题;②只要证明△BFC ≌△ADB ,即可推出∠BFC =∠ADB =90°;(2)在BF 上截取BK =AF ,连接AK .只要证明△ABK ≌CAF ,可得S △ABK =S △AFC ,再证明AF =FK =BK ,可得S △ABK =S △AFK ,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK , ∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99 AF KF CP CF PK CP CP CP ==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.10.(1)①见解析;②DE =297;(2)DE 的值为【解析】【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.11.(1)点B(3,5),k=﹣43,b=9;(2)点Q(0,9)或(6,1);(3)存在,点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478)【解析】【分析】(1)53y x相交于点B,则点(3,5)B,将点A、B的坐标代入一次函数表达式,即可求解;(2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.12.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 压轴题 期末复习试卷易错题(Word 版 含答案)一、压轴题1.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).2.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.3.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.4.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?5.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .(1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t的值;若不存在,请说明理由.6.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.7.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为: (不写证明过程)8.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).9.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.10.如图,在平面直角坐标系中,直线AB经过点A(32,32)和B (23,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.11.如图,以ABC的边AB和AC,向外作等腰直角三角形ABE△和ACF,连接EF,AD是ABC的高,延长DA交EF于点G,过点F作DG的垂线交DG于点H.(1)求证:FHA ADC≌△△;(2)求证:点G是EF的中点.12.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD ﹣OA =2(AM ﹣AO ),∴OD+OA =2AM .当点D 在点B 右侧时,过点E 作EH ⊥y 轴于点H∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.2.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可.【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +,解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.3.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.4.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.5.(1)详见解析;(2)36(04)2BDE t t S -+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】(1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.6.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.7.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3AD+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH 3,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE =2AD ,∵CD =DE +CE ,∴CD =2AD +BD ;(3)作AH ⊥CD 于H .∵∠BAC =∠DAE , ∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.8.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.9.(1)(73,2);(2)y=x﹣13;(3)E的坐标为(32,72)或(6,8)【解析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2, 整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2), 则点T 的坐标为(33a +,23a +), 当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32, 此时点E 的坐标为(32,72), 当∠TDH =90°时,点T 与点D 的横坐标相同, ∴33a +=3, 解得,a =6,此时点E 的坐标为(6,8),当∠DTH =90°时,该情况不存在,综上所述,当△DTH 为直角三角形时,点E 的坐标为(32,72)或(6,8) 【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.10.(1)y=﹣3x +2;(2)△AOD 为直角三角形,理由见解析;(3)t =23或3. 【解析】【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C1),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】 解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:320b b ⎧+⎪⎨⎪=+⎩,解得:=2k b ⎧⎪⎨⎪=⎩故直线AB 的表达式为:y+2; (2)直线AB 的表达式为:y+2,则点D (0,2), 由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,故△AOD 为直角三角形;(3)直线AB 的表达式为:y=﹣3x +2,故点C,1),则OC =2, 则直线AB 的倾斜角为30°,即∠DBO =30°,则∠ODA =60°,则∠DOA =30° 故点C1),则OC =2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=32(2﹣t)=QH,OQ=QH+OH=3(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t =23; ③当PO =PM 时,则∠OMP =∠MOP =30°,而∠MOQ =30°,故这种情况不存在;综上,t =23或3. 【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.11.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.12.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S112=AC•NE,S212=AB•CD,∴12S ACS AB=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。

相关文档
最新文档